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Background. Pancreatic ductal adenocarcinoma (PDAC) is a devastating cancer, and the therapy options for PDAC remain
restricted. The distinctive tumor immunological microenvironment (TIME) of PDAC, comprising a high number of stromal cells
and a limited infiltration of cytotoxic T lymphocytes (CTLs), rendered immunotherapy ineffective. The protein level of ubiquitin-
specific protease 43 (USP43) was a prognostic predictor in numerous cancers; however, its function in PDAC is limited. This article
focuses on the influence of USP43 expression on PDAC prognosis and TIME alteration. Methods. Based on TCGA database and
tissue microarray staining, the expression of USP43 in PDAC was evaluated. The association between USP43 and prognosis was
then investigated using tissue samples and online databases. In PDAC tumor tissues, the correlation between USP43 expression
and clinicopathological characteristics, immune cell infiltration, and prognosis was investigated. The expression of USP43 in
PDAC cell lines was evaluated using quantitative polymerase chain reaction. Using a cell counting kit-8 (CCK-8) and a cell colony
formation test, the viability of the cells was determined. On the basis of online databases and tissue samples, the link between
USP43 and immune cell infiltration around PDAC was also examined. For statistical analyses, the software GraphPad, R, and SPSS
26.0 were utilized. Results. The expression of USP43 was considerably higher in PDAC compared to normal pancreatic tissue in
both the TCGA database and the tissue microarrays of PDAC patients (P<0:001). High USP43 expression was associated with
poor overall survival in both the TCGA database and the tissue microarray of PDAC patients (P ¼ 0:046 and 0.021, respectively).
USP43 overexpression promoted PANC-1 cell proliferation (P ¼ 0:0018), but USP43 knockdown decreased PANC02 cell prolif-
eration (P<0:001). According to the TCGA database, USP43 is associated with T cell activation and inhibits CD8+ T cell activation
in PDAC, as proven by a study of cell lines. Moreover, in both TCGA and PDAC cell lines, USP43 expression was negatively linked
with the chemokine signaling pathway. Conclusions. Overexpression of USP43 is a potential prognostic indicator for PDAC
patients. USP43 is a potential biomarker associated with T cell activation, suppression of CD8+ T cell enrichment, and the cytokine
signal pathway. Future multicenter studies are needed to confirm our findings and their potential application in the treatment of
PDAC patients.

1. Introduction

Pancreatic ductal adenocarcinoma (PDAC) is a fatal illness
that accounts for ∼90% of pancreatic adenocarcinoma and
has a 5-year survival rate of 10% [1, 2]. PDAC is highly

aggressive and biologically diverse, and patients’ prognoses
and therapy responses are highly varied, hence effective
treatment of PDAC remains limited [3]. Nearly 80% of
patients with PDAC are identified with locally advanced
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disease or distantmetastases, restricting their surgical options.
Currently, FOLFIRINOX (folinic acid, 5-fluorouracil, irino-
tecan, oxaliplatin) chemotherapy regimens are the mainstay
of treatment for advanced PDAC, with resectable PDAC out-
comes improving [4]. Immunotherapy has recently made
major advances in the treatment of numerous types of malig-
nancies, which have been found to extend the survival of
patients with melanoma, nonsmall cell lung cancer, and renal
cell carcinoma [5–8]. Therefore, understanding the biology,
microenvironment, and immunotherapy of pancreatic cancer
is necessary.

PDAC has a distinct tumor immune microenvironment
(TIME) with up to 80% nontumor stroma that includes extra-
cellular matrix proteins (collagens, fibronectin, laminin,
glycosaminoglycans) and stromal cells (immune cells, cancer-
associated fibroblasts (CAFs), endothelial cells) [9–11]. These
cells and structures serve as a physical barrier that prevents
immune cells from identifying and destroying PDAC. In addi-
tion, the immune cells infiltrating PDAC are uncommon and
predominantly suppressive immune cells, such as regulatory T
cells (Tregs), myeloid-derived suppressor cells, dendritic cells,
and tumor-associated macrophages, while cytotoxic T cells
appear to have diminished [12–14]. In addition, a complex
network between chemokine and chemokine receptors has
been shown to impact TIME in PDAC, hence encouraging
cancer growth [15]. Thus, PDAC is considered as “immune
desert” or immunologically “cold” tumor. Consequently, it is
essential to identify intrinsic and/or extrinsic tumor targets
that can alter the TIME of PDAC from immunologically
“cold” to “hot” and thereby improve its responsiveness
to ICIs.

Most proteins undergo acetylation, methylation, phosphor-
ylation, glycosylation, sumoylation, or ubiquitination after syn-
thesis. One of these alterations is ubiquitination, which enables
a small molecule of ubiquitin to attach to lysine residues of
target proteins; dysregulation of ubiquitination may contribute
to the development of malignancies [16, 17]. Ubiquitination is a
reversible process that removes ubiquitin chains from proteins
through the function of deubiquitinases (DUBs) and regulates
the stability or activity of these proteins through this process
[18, 19]. Ubiquitin-specific proteases (USPs) constitute the
most numerous categories, and a growing number of studies
have shown that USPs influence tumor formation, such as cell
proliferation and death [17, 20]. Previous research has revealed
that ubiquitin-specific protease 43 (USP43) can greatly influ-
ence breast cancer growth and metastasis by regulating EGFR/
PI3K/AKT and that USP43 can also regulate the breast cancer
cell cycle and epithelial–mesenchymal transition pathway, hence
promoting tumorigenesis [21, 22]. Furthermore, USP43 was
highly expressed in colorectal cancer (CRC) and increased
CRC cell proliferation, invasion, and migration [23]. However,
research on the expression of USP43 and its relationship to
PDAC is scarce.

In this study, we will investigate the expression of USP43
in PDAC and the relationship between USP43 and patient
survival, as well as the effect of USP43 expression on TIME
and the likely pathways involved in tumorigenesis and
progression.

2. Materials and Methods

2.1. Study Cohort. This study included a total of 38 PDAC
patients treated at the First Affiliated Hospital of Dalian
Medical University from June 2019 to December 2021.
Participants in this trial had R0 pancreaticoduodenectomy,
and all tumor tissues were pathologically confirmed to be
PDAC without any prior neoadjuvant therapy. The following
clinicopathological characteristics were analyzed: age, gen-
der, T and N stages (according to the 8th edition of the
TNM staging system), stage (according to the 2022 version
of the NCCN guideline), grade, surrounding organ infiltra-
tion, and surrounding fat infiltration. Four plasma tumor
indicators, CA19-9, CA125, CEA, and AFP, were investi-
gated. Before enrolment, all patients signed written consents
based on their knowledge of the study’s nature. The median
age of the patients was 64 years old, and overall survival (OS)
ranged from 6 to 39 months.

2.2. Bioinformatic Analysis. The expression levels of USP43
in various types of cancers were analyzed with the online
database (https://xenabrowser.net/datapages/, accessed
December 16, 2022) including TCGA (The Cancer Genome
Atlas) and GTEx (Genotype-Tissue Expression). In total,
183 samples of PAAD tissues from TCGA, and 167 samples
of normal pancreatic tissues from the GTEx dataset were
included in this study.

2.3. Immunohistochemical (IHC) Staining. Thirty-eight
PDAC patients’ tumor tissues and normal tissues were pro-
vided by Dalian Medical University’s First Affiliated Hospital
in accordance with Dalian’s ethics committee for human
research (registration number is PJ-KS-KY-2021-203) and
the patient’s written consent was taken. The newly dissected
tissue (about 3mm thick) was preserved with 4% parafor-
maldehyde at room temperature overnight. Afterward, the
tissue was washed with running tap water for 5min before
being dehydrated with 75% alcohol, 85% alcohol, and 95%
alcohol for 5min each, followed by three times with 100%
alcohol for 5min each. The tissue was cleared in xylene twice
for 5min each time and then immersed in paraffin three
times for 5min each time. The paraffin-embedded tissue
was sectioned on a microtome at 5–8 μm thickness and
floated in a 40°C water bath containing distilled water. We
transferred the sections onto glass slides suited for immuno-
histochemistry, allowing the slides to dry overnight before
storing them at room temperature. IHC staining was per-
formed according to a standard protocol routinely (KIHC-5,
ProteinTech, Wuhan, China). USP43 primary antibody
(1 : 50, PA5-55684, ThermoFisher, USA) was used in stain-
ing. Then, stained samples were analyzed using standard
light microscopy.

Each sample was examined twice by two pathologists who
were blinded to the experiment. The expression of USP43 was
thus evaluated as follows: the intensity of staining was scored
as 0 (negative), 1 (weak), 2 (moderate), and 3 (strong), and the
proportions of positive cells were categorized as 0 (<5%),
1 (5%–<25%), 2 (25%–<50%), 3 (50%–<75%), and
4 (75%–100%). The multiplication for intensity and
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proportion was used to evaluate the level of USP43 expres-
sion. ImageJ (version 1.52) was used for the analysis and the
cutoff value of USP43 was 2.75. A score <2.75 was defined as
low expression, while a score >2.75 was defined as high
expression.

Using the same method, each section was stained with
different immune cell markers as follows: CD4 (1 : 100,
EP204, CST, USA) for helper T lymphocytes (Th cells),
CD8 (1 : 100, D8A8Y, CST, USA) for cytotoxic T lympho-
cytes (CTLs), CD68 (1 : 200, D4B9C, CST, USA) for macro-
phage, CD163 (1 : 300, D6U1J, CST, USA) for M2-polarized
macrophages, FOXP3 (1 : 100, D6O8R, CST, USA) for Tregs.
We selected six areas with abundant immune cell infiltration
at a high-power field (HFP) (400x), and counted positive
cells number in each field, and calculated the average count
per HFP.

2.4. Cell Culture. Human pancreatic cancer cell lines (BxPC-3,
PANC-1) and HEK293T cell line were purchased from Cell
Bank of Chinese Academy of Sciences (Shanghai, China).
Murine pancreatic cancer cell line (PANC02) was purchased
from BeNa Culture Collection (Xinyang, Henan, China).
Cells were cultured in a humidified incubator with 5%
CO2 at 37°C in Dulbecco’s modified Eagle’s medium
(DMEM, C11995500BT, Gibco, USA) containing 10% fetal
bovine serum (FBS, LV-FBS-S500, Newzerum, New Zealand)
and 1% penicillin–streptomycin (C0222, Beyotime, China).

2.5. Lentiviral shRNA Infection. Lentiviral particles generated
with a standardized protocol were used to produce the highly
purified plasmids. Take 100mm cell-culture dish as an
example, HEK293T cells were transfected with 4 μg of lenti-
viral shRNA or USP43 plasmid (control group transfected
equal plasmid), 3 μg of viral packaging plasmid pPAX2, and
1 μg of envelope plasmid pMD2.G to produce lentivirus.
Transfection was performed with LipoFiter Liposomal
Transfection Reagent (HB-TRLF-1000, Hanbio, China) and
Opti-MEM (31985062, Gibco, USA). During the first 24 hr
after infection, no FBS was added to DMEM. We then chan-
ged the growth medium with DMEM containing 10% FBS
and cultured HEK293T cells for another 24 hr. The virus was
collected after being filtered via 0.45μm filters.When the cancer
cells (PANC-1, PANC02, and BxPC-3 cells) covered 70%–80%
of the dishes, they were infected with the virus in the presence of
polybrene (0.5 μg/ml, 40804ES76, Yeasen, China), and 48 hr
after infection, the cells were chosen with 0.5μg/ml puromycin
(QLL-42-01, InvivoGen, Hong Kong, China). USP43 overex-
pression system was constructed in PANC-1 cells using
Lentiviral (Fenghbio, China). PANC02 cells were infected

with pPLK/GFP+Puro-Usp43 shRNA using the same method
(PPL, China).

2.6. Quantitative Polymerase Chain Reaction (qPCR). Total
RNA was extracted using RNAiso Plus (9109, Takara, Japan).
According to the manufacturer’s instructions, cDNA was
synthesized from mRNA using Hifair III 1st Strand cDNA
Synthesis SuperMix for quantitative polymerase chain reac-
tion (qPCR) (11141ES60, Yeasen, China). All samples mRNA
expression were quantified using the Applied Biosystems®

7,500 Fast system (ThermoFisher, USA) to determine the
comparative CT and were normalized to β-ACTIN/β-Actin
levels concentrations. Sequences of primers are reported in
Table 1.

2.7. Cell Colony Formation. For cell colony formation assays, we
utilized DMEMwith 10% FBS and 1% penicillin–streptomycin,
then we resuspended and counted the cells. Mix of 2ml
medium and 500 cells were added to one well of six-well plate.
Repeat it three times for each cell line. We added 100μl of the
abovementioned medium to every well and everyday. After
5–10 days, cell colony had formed and fixed with 4% parafor-
maldehyde (P0099, Beyotime, China) for 20min and stained
using crystal violet (C8470, Solarbio, China) for 5min. Then,
the pictures were taken under a digital camera and the cell
colony formation rate was calculated.

2.8. CCK-8. After cell lines were digested and centrifuged,
they were resuspended, counted using a cell counting plate.
Each well in a 96-well plate was filled with 100 μl cell sus-
pension containing 2,500 cells. The following day, 10 μl of
CCK-8 solution (C0041, Beyotime, China) was added to the
medium of the first two pairs of wells. Then, continue to
culture them for 2 hr in the incubator. After the crystals
were completely melted, the absorbance at OD 450 nm was
measured to calculate cell proliferation. Each group was rep-
licated three times, and each replication was monitored at
four-time points.

2.9. Statistical Methods. The clinical data were examined and
compared using the χ2 test, and the Kaplan–Meier technique
and log-rank test were used to compute and assess the sur-
vival analysis. The Cox proportional hazards model was used
to conduct univariate and multivariate Cox regression anal-
ysis. Student’s t-test (paired or unpaired) was used to com-
pare two groups; one-way ANOVA was used to compare
more than two groups. Bars and error represent mean Æ
standard deviations (SD) of replicate measurements. Using
the web program Cutoff Finder [24], optimal cut-off values
for gene expression were calculated, and the cut-off values

TABLE 1: Human and mouse primer sequences utilized in qPCR.

Characteristics Forward primers (5′–3′) Reverse primers (5′–3′)

USP43 (human) CAAGGCAATTCCCAGCACG TGGTGACAGGCAGTTCTCAGA
Usp43 (mouse) AGCTCACGGGCTGGTATCT AAGACCTGTACTGTGCTTGAAAG
CXCL12 (human) ATTCTCAACACTCCAAACTGTGC ACTTTAGCTTCGGGTCAATGC
Cxcl12 (mouse) TGCATCAGTGACGGTAAACCA TTCTTCAGCCGTGCAACAATC
β-ACTIN (human) CATGTACGTTGCTATCCAGGC CTCCTTAATGTCACGCACGAT
β-Actin (mouse) GTGACGTTGACATCCGTAAAGA GCCGGACTCATCGTACTCC
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served as the basis for classifying them into a higher-level
group and a lower-level group. GraphPad Prism 8 software,
R software (version 4.0.1), Xiantao Scholarship (https://www.
xiantao.love/), and SPSS 26.0 statistical tools were utilized for
statistical analyses (IBM). P-values<0.001 ( ∗∗∗), <0.01 ( ∗∗), or
<0.05 ( ∗) were considered statistically significant.

3. Results

3.1. USP43 Is Highly Expressed in PAAD and Correlate with
Poor Prognosis. Using the TCGA database, the expression of
USP43 was studied in 33 types of cancer in order to compare
the expression of USP43 between tumor and normal tissues.
USP43 expression was higher in tumor tissues than in normal
tissues in several types of tumors, including pancreatic

adenocarcinoma (PAAD), rectum adenocarcinoma (READ),
colon adenocarcinoma (COAD), cholangiocarcinoma
(CHOL), stomach adenocarcinoma (STAD), and esophageal
carcinoma (ESCA). The difference between PAAD tumor tis-
sue and normal tissues is significant among these malignancies
(P<0:001, Figure 1(a) and 1(b)). Then, we collected 350
PDAC patients from the TCGA database and divided them
into two groups based on the median expression of USP43
(high vs. low). The relationship between USP43 expression
and OS, disease-specific survival (DSS), and progress free inter-
val (PFI) was then investigated, revealing that high USP43
expression was associated with poor OS, DSS, and PFI
(P ¼ 0:046, HR= 1.76, Figure 1(c)), (P ¼ 0:041, HR= 1.95,
Figure 1(d)), and (P ¼ 0:02, HR = 1.83, Figure 1(e)),
respectively.
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FIGURE 1: Continued.
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3.2. Validation of USP43 Expression in PDAC Based on
Tissue Samples. To verify that the expression of USP43 signif-
icantly higher in tumor tissues, 38 PDAC tissues and 38 para-
PDAC tissues were obtained from our hospital in this study.
Interestingly, compared with normal tissue, the USP43 expres-
sion was significantly higher in tumor PDAC (P<0:001,
Figures 2(a) and 2(b)). After follow-up for 2 years, we

divided the patients into two groups according to the median
expression of USP43 (high vs. low), and we study the survival
differences by using Kaplan–Meier curves that revealed the
high USP43 expression patients were correlated with signifi-
cantly shorter OS (P ¼ 0:012, Figure 2(c)) confirming the
bioinformatic result and indicating its potential role as a
biomarker for PDAC patients. In addition, we investigated
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the association between USP43 expression and clinicopatho-
logical characteristics and serum biomarkers (Table 2). High
USP43 expression was positively associated with surround-
ing organ infiltration (P ¼ 0:044) and high CA19-9 level
(P ¼ 0:049) in tumor tissues, indicating that it may be a
prognostic factor.

The univariate Cox proportional-hazards model revealed
that three parameters, including USP43 expression (P ¼
0:019), CA19-9 (P ¼ 0:005), and CA125 (P ¼ 0:046), were
substantially linked with increasing risk of death in patients
with PDAC (Table 3). LMR (lymphocyte to monocyte ratio,
P ¼ 0:014) and lymphocyte in plasma (P ¼ 0:039) were

strongly linked with a reduced risk of mortality. Then,
we build a multivariate Cox regression model for variables
that were significant in the univariate analysis and show that
only USP43 expression and CA19-9 were independent sur-
vival predictors (Table 4).

3.3. High USP43 Expression Promote Proliferation of PDAC.
At the cell lines level, comparing PANC-1 control group
mRNA expression to PANC-1USP43-OE groupmRNA expres-
sion revealed significantly higher expression in the PANC-1
USP43-OE group (P<0:001, Figure 3(a)). The USP43-OE
group had a higher colony formation rate than the control group
(P ¼ 0:0018, Figure 3(b) and 3(c)) based on this result. In the
interim, we conducted the colony formation assay with PANC02
control and PANC02 shUSP43 cells. It was demonstrated that
the PANC02-shUSP43 group expressed significantly lower
USP43 than the control group (P<0:001, Figure 3(d)) among
these two cell lines. Compared to the PANC02 control group,
colony formation was significantly reduced in the PANC02

TABLE 2: χ2 test to explore the relationship between USP43 expres-
sion and clinical features or tumor markers of PDAC.

Characteristics Number
Tumoral USP43

expression P-value
Low High

Age (years old)
≤64 20 12 8 0.194
>64 18 7 11

Gender
Male 19 8 11 0.330
Female 19 11 8

T stage
T1-2 23 12 11 0.740
T3-4 15 7 8

N stage
N0 20 9 11 0.516
N1-2 18 10 8

Stage
I–IIA 18 8 10 0.516
IIB–III 20 11 9

Differentiation grade
Well 9 2 7 0.160
Moderate 15 9 6
Poor 14 8 6

Surrounding organ infiltration
Negative 14 10 4 0:044∗

Positive 24 9 15
Surrounding fat infiltration

Negative 19 10 9 0.746
Positive 19 9 10

CA19-9 (U/ml)
<307.5 22 14 8 0:049∗

>307.5 16 5 11
CA125 (U/ml)

<37.2 29 17 12 0.127
>37.2 9 2 7

CEA (ng/ml)
<4.66 27 16 11 0.074
>4.66 11 3 8

AFP (IU/ml)
<2.45 21 10 11 0.744
>2.45 17 9 8

 
∗P-values< 0.05.

TABLE 3: Univariate Cox analyses of USP43 expression and clinico-
pathological parameters.

Characteristics
Univariate analysis

HR 95% CI P-value

USP43 expression
High expression vs. low

2.927 1.194–7.173 0:019∗

Surrounding organ infiltration
No infiltration vs. infiltration

0.371 0.142–0.967 0:042∗

CA19-9 (U/ml)
High vs. low

1.000 1.000–1.000 0:005∗

CA125 (U/ml)
High vs. low

1.011 1.000–1.021 0:046∗

LMR
High vs. low

0.748 0.592–0.944 0:014∗

Lymphocyte
High vs. low

0.392 0.161–0.954 0:039∗

 
∗P-values< 0.05.

TABLE 4: Multivariate cox analyses of USP43 expression and clini-
copathological parameters.

Characteristics
Multivariate analysis

HR 95%CI P-value

USP43 expression
High expression vs. low

2.652 1.055–6.663 0:038∗

Stage
IIB–III vs. I–IIA

1.113 0.184–6.744 0.908

T stage
T3–4 vs. T1–2

0.723 0.376–1.390 0.330

N stage
N1–2 vs. N0

1.521 0.675–3.424 0.311

CA19-9 (U/ml)
High vs. low

1.000 1.000–1.000 0:021∗

CA125 (U/ml)
High vs. low

1.007 0.995–1.019 0.286

Lymphocyte
High vs. low

0.503 0.197–1.285 0.151

 
∗P-values< 0.05.
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shUSP43 group (P ¼ 0:0044, Figures 3(e) and 3(f)). In addition,
CCK-8 assays were performed on PANC-1 (control-OE and
USP43-OE) and PANC02 (control-sh and shUSP43) cell lines.
The findings revealed that USP43-OE group dramatically
enhanced the proliferation of PANC-1 cell lines (Figure 3(g)),
and shUSP43 group remarkably decreased the proliferation of
PANC02 cell lines (Figure 3(h)).

3.4. USP43-Related Genes and Biological Function. After con-
firming the predictive significance of USP43 using bioinfor-
matics, patient samples, and cell lines, we attempted to
investigate the underlying mechanism and linked genes
that may explain its role. We discovered differentially
expressed genes (DEGs) based on USP43 expression by
examining the TCGA database, and numerous cytokine
genes were negatively correlated with USP43 (Figure 4(a)).
In addition to the DEGs, we performed a KEGG enrichment

analysis and discovered that USP43 was strongly related with
the chemokine signaling pathway and cytokine–cytokine
receptor interaction (Figure 4(b)). Both associations are neg-
ative (P ¼ 0:054, 0.054, respectively, Figures 4(c) and 4(d)).
Furthermore, we conducted a GO enrichment analysis,
which revealed that high USP43 expression is associated
with a variety of immunological biological processes, includ-
ing T cell activation, lymphocyte differentiation, and leuko-
cyte proliferation (Figure 4(e)). Meanwhile, the molecular
function of USP43 is linked to cytokine activity and cytokine
receptor activity (Figure 4(f)). Because USP43 is so tightly
associated with cytokines, we looked for which cytokines in
the broad cytokine family were related to USP43 and found
to be strongly inversely associated with CXCL12 expression
(Figure 4(g)). Then, we looked at the association between
USP43 and CTLs enrichment, and the results showed that
they were inversely correlated (Figure 4(h)).
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3.5. USP43 Inhibits CD8+ T Cell Activation in PDAC. We
examined the IHC stain of immune cell markers such as
CD4, CD8, CD68, CD163, and FOXP3 in PDAC tissue to
understand the immune-related function of the USP43 gene.
The IHC results revealed that elevated USP43 expression was
correlated negatively with CD8 expression (Figure 5(a)). The
higher the expression of USP43, the lower the infiltration of
CD8+ T cells. IHC staining of other markers revealed no

significant association (Figure 5(b)). We used the PANC02
control and shUSP43 cell lines to show the association between
USP43 and cytokines. We examined the transcriptomes of two
cell lines and discovered that USP43 is indeed related to
cytokine–cytokine receptor interaction (Figure 5(c)), with a
negative tendency (Figures 5(d) and 5(e)). This finding sup-
ported the KEGG and GO enrichment analyses from the
TCGA database, which indicated that the predictive value of
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USP43 genemay be owing to its role in immunemodulation in
PDAC patients.

4. Discussion

Patients with PDAC have a poor prognosis, highlighting the
need to develop innovative therapeutic strategies for this

aggressive illness [25]. USPs are the largest DUBs family
and a growing number of studies show that various USPs
may be important targets for cancer therapy due to their
ability to regulate tumor formation, including tumor growth
and the process of metastasis [16, 17, 19, 20, 26–28]. Previous
research indicates that USP43, a member of the USPs family,
plays a significant role in breast cancer, CRC, lung squamous

Ca
se

 1
Ca

se
 2

USP43 CD8

100 μm

ðaÞ

Spearman
r = –0.069
P = 0.680

0

50

100

150

CD
16

3 
ex

pr
es

sio
n

0 2 4 6
USP43 expression

Spearman
r = 0.138
P = 0.408

FO
XP

3 
ex

pr
es

sio
n

200

150

100

50

0
0 2 4 6

USP43 expression

Spearman
r = 0.056
P = 0.737

0
20
40
60
80

100

CD
4 

ex
pr

es
sio

n

0 2 4 6
USP43 expression

Spearman
r =  –0.408
P = 0.011

 0

20

40

60

80

CD
8 

ex
pr

es
sio

n

0 2 4 6
USP43 expression

Spearman
r = –0.053
P = 0.753

50

100

150

200

250

CD
68

 ex
pr

es
sio

n

0 2 4 6
0

USP43 expression

ðbÞ

Cytokine–cytokine receptor interaction
MAPK signaling pathway

NOD-like receptor signaling pathway
Rap1 signaling pathway

Ras signaling pathway
Calcium signaling pathway

Axon guidance

Influenza A
Complement and coagulation cascades

Metabolism of xenobiotics by cytochrome P450

Bile secretion
Drug metabolism − cytochrome P450

Pertussis

Rheumatoid arthritis
AGE-RAGE signaling  pathway in diabetic

complications

Legionellosis
Steroid biosynthesis

Measles

Malaria
Amoebiasis

Gene ratio
0.02 0.03 0.04 0.05 0.06

P value

0.001
0.002
0.003
0.004

Counts
10
15
20
25

30

ðcÞ
FIGURE 5: Continued.

10 Journal of Immunology Research



cell carcinoma, and nonsmall cell lung cancer can promotes
tumor migration, invasion, and associated with a poor prog-
nosis [22, 29–31]. In osteosarcoma, the expression of USP43
is higher than normal tissue, but is not associated with prog-
nosis [19].

In our study, we used the TCGA database and tissue
microarrays of PDAC patients to assess the expression of
USP43 in PDAC and para-PDAC/normal tissues. USP43
was shown to be overexpressed in PDAC tissues, and its
high expression was related to decreased survival. High
USP43 expression in tumor tissues was substantially associated
with surrounding organ infiltration and elevated CA19-9
levels. Multiple Cox regression analysis also demonstrated
that USP43 expression and CA19-9 level were independent
predictive markers of PDAC, indicating that USP43 may be
an essential adjunct in the diagnosis of PDAC. Experiments in
vitro established that USP43 enhanced the proliferation of
PDAC and that the overexpression or knockdown of USP43
promoted or inhibited the proliferation of PDAC, respectively.
Therefore, elevated USP43 expression in PDAC patients sug-
gested a poorer prognosis. USP43 malfunction may be one of
the variables that influence the evolution of PDAC. Despite the
complexity and diversity of USP43’s underlying processes in
PDAC patients, it remains an essential gene in carcinogenesis
and development.

PDAC is characterized by a large number of stromal
components and stromal cell infiltration which compose
an immunosuppressive microenvironment. TIME of PDAC
typically lacks of intratumor effector lymphocytes and results
in a weak response to immunotherapy [8, 32, 33]. Therefore,
PDAC is considered as a “cold tumor.” Previous investiga-
tions on infiltrating immune cells around PDAC determined
that the ratio of CD8+ T cells was related to prolonged OS
and RFS [34–37]. Poor tumor infiltration of CD8+ T cells
results in low immunogenicity of PDAC, which is regarded
as a significant factor in the failure of checkpoint

immunotherapy in PDAC [38]. Thus, tumor-infiltrating
CD8+ T cells may be able to predict the response of PDAC
to ICIs treatment [39]. On the other hand, the CD3+, CD4+,
and CD8+ T cells were independently related to tumor recur-
rence, according to previous literature [40, 41]. One study
reported that, the high infiltration of CD3+, CD4+, and CD8+

T cells predicted a favorable OS [40]. It has been suggested
that CD8+ T cells and NK cells can promote pyroptosis in
cancer cells, and that pyroptosis of cancer cells might simul-
taneously trigger stronger anticancer immunity [42–44]. Sim-
ilarly, it has been shown that cytotoxic T cells, such as CD8+ T
cells and NK cells, might predict an increase in OS in samples
with overexpression of pyroptosis and iron-induced targets
[45]. In this study, we found that expression of USP43 was
positively associated with poor prognosis and negatively asso-
ciated with cytotoxic CD8+ T cell infiltration through IHC
staining of tissue microarray and TCGA database. This also
confirmed previous studies and further emphasized the anti-
cancer effect of CD8+ T cell in PDAC.

Many studies have shown that CAFs possess the ability of
promoting tumor proliferation andmetastasis by secreting vari-
ous cytokines [46, 47]. These studies suggest that targeting cor-
relation between tumor and stromal components can improve
treatment efficacy. Our study also confirmed that USP43
expression was negatively correlated with chemokine signaling
pathway and with cytokine–cytokine receptor interactions.

In this research, we did not verify the relationship
between USP43 expression and immune cells in vivo. In a
more ideal situation, tumor cells should be implanted in
mice. Second, the lack of clinical cases decreased the statisti-
cal power. Finally, the findings reported here need to be
validated in further biological experiments.

In conclusion, our research indicates that the deubiqui-
tinate function of USP43 may serve as a possible prognostic
marker for PDAC. In addition, we discuss the possible role
of USP43 in the development of TIME in PDAC. The
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transformation of a “cold tumor” into a “hot tumor” makes
ICIs for PDAC conceivable [48, 49]. These discoveries not
only complement to our current knowledge of TIME but also
open the way for a potentially immunotherapy for PDAC.
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