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Objective: To design a deep learning model based on multimodal magnetic resonance image (MRI) sequences for auto-
matic parotid neoplasm classification, and to improve the diagnostic decision-making in clinical settings.

Methods: First, multimodal MRI sequences were collected from 266 patients with parotid neoplasms, and an artificial intel-
ligence (Al)-based deep learning model was designed from scratch, combining the image classification network of Resnet and the
Transformer network of Natural language processing. Second, the effectiveness of the deep learning model was improved through
the multi-modality fusion of MRI sequences, and the fusion strategy of various MRI sequences was optimized. In addition, we
compared the effectiveness of the model in the parotid neoplasm classification with experienced radiologists.

Results: The deep learning model delivered reliable outcomes in differentiating benign and malignant parotid neoplasms. The
model, which was trained by the fusion of T2-weighted, postcontrast T1-weighted, and diffusion-weighted imaging (b = 1000 s/mm?),
produced the best result, with an accuracy score of 0.85, an area under the receiver operator characteristic (ROC) curve of 0.96, a sen-
sitivity score of 0.90, and a specificity score of 0.84. In addition, the multi-modal paradigm exhibited reliable outcomes in diagnosing
the pleomorphic adenoma and the Warthin tumor, but not in the identification of the basal cell adenoma.

Conclusion: An accurate and efficient Al based classification model was produced to classify parotid neoplasms, resulting
from the fusion of multimodal MRI sequences. The effectiveness certainly outperformed the model with single MRI images or
single MRI sequences as input, and potentially, experienced radiologists.
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INTRODUCTION

Deep learning is a subdivision of artificial intelli-
gence (Al). In recent years, the demand for deep learning
in medical diagnosis has gradually emerged, largely due
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to the technological advancement in the pertaining field.
A convolutional neural network (CNN) is the fundamen-
tal algorithm of deep learning. At present, CNN has led
to respectful outcomes in the application of the two-
dimensional magnetic resonance image (MRI) image
classification’™ and it was recently suggested that the
CNN trained by dynamic contrast enhancement MRI
sequence would result in improved performance on the
classification and localization of breast cancer.”

The tumors of the salivary gland mostly occur in the
parotid gland, which is the largest salivary gland in the
human body, and about 25% of parotid neoplasms are
malignant.5® Surgery is the primary treatment option
for parotid neoplasms, and detailed evaluation is typically
carried out before the surgery in order to select the appro-
priate surgical tactic for a particular pathological tumor
type. The preoperative assessment of parotid gland
tumors mainly includes medical history, physical exami-
nation, imaging examination, fine needle aspiration
cytology (FNAC), and so on.® An FNAC is in general
invasive and less diagnostically sensitive to malignant
tumors.”'® However, other studies proposed that the
hollow needle biopsy technique has high sensitivity and
specificity for the diagnosis of parotid neoplasms, while
the accuracy also heavily depends on the doctor’s surgi-
cal skills and the selection of equipment.'! The accuracy
of preoperative FNAC can be effectively improved with
the assistance of ultrasound, but as a stand-alone
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preoperative evaluation method, the capability of ultra-
sound is limited.'? Typically, the imaging methods for
evaluating the parotid gland tumor include ultrasound,
computerized tomography, and MRI. Comparing the first
two methods, MRI is more effective and accurate to
obtain the tumor’s internal structural feature and spatial
relationship with surrounding tissues.!®> Yet, further
advancement in the functional MRI has recently been evi-
dent in terms of the diagnostic accuracy of disease.”'%1®
For example, using a multiparametric non-contrast
MRI approach, Takumi et al. recently improved the dif-
ferentiation of malignant salivary gland lesions from the
benign ones.'®

In toto, MRI plays a pivotal role in the non-invasive
evaluation of parotid gland tumors, therefore, any strat-
egy or paradigm that potentially improves the accuracy
and efficiency of MRI-based preoperative diagnosis will
greatly benefit patients with parotid neoplasms. An Al-
based deep learning has been used to improve the perfor-
mance of MRI in the diagnosis of parotid gland tumors.
Matsuo et al.'” combined the deep learning technique
and an anomaly detection strategy, and applied the tech-
nology to a small and unbalanced MRI dataset of parotid
tumors, resulting in a diagnostic performance superior to
radiologists. The model achieved an area under the
receiver operator characteristic curve (ROC-AUC) of 0.86.
Another study by Chang et al.'® used multimodal MRI
images to train deep learning models, as well as the
transfer learning method, to classify parotid gland
tumors. The model accurately distinguished the benign
tumor subtypes of pleomorphic adenoma and Warthin
tumor, but unfortunately with poor sensitivity in malig-
nant tumor detection. The present study aimed to gener-
ate a deep learning model based on the multimodal MRI
sequence to classify the parotid neoplasms automatically,
so as to provide better support in clinical decision-
making.

MATERIALS AND METHODS
Patient Cohort and MRI Protocol

Participants. Inclusion criteria: Patients who under-
went surgical resection of the parotid gland tumor from January
1st, 2015 to May 31st, 2020 in the Eye, Ear, Nose and Throat
(EENT) Hospital of Fudan University, and the tumor was post-
surgically confirmed as parotid neoplasms through pathological
assessment. In addition, the corresponding MRI examination
was performed prior to the surgery.

Exclusion criteria: Patients with pathological assessment
indicating schwannoma, eosinophilic adenoma, cystic degenera-
tion, hemangioma or uncertain pathologies. Also excluded if the
MRI examination was conducted without being contrast-
enhanced T1-weighted (CE-T1) or diffusion-weighted (DWTI).

Ethics: The ethical committee of the EENT Hospital
approved this study (#2021176). As a retrospective study without
any adverse effect on de-identified subjects, the patient consent
form was exempt.

Patient profile: The study included 266 patients (153 males
and 113 females) with parotid neoplasms. The average age was
50.9, ranging from 15 to 85. There were 218 cases of benign
tumors and 48 cases of malignant tumors. The benign tumors
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were further categorized into the subtypes of pleomorphic ade-
noma, Warthin tumor, and basal cell adenoma.

MRI protocol. All patients voluntarily underwent
contrast-enhanced MRI and DWI for the assessment of disease
before surgery. We collected multiple MRI sequences, including
T1-weighted (T1), T2-weighted (T2), postcontrast T1-weighted
(CE-T1), apparent diffusion coefficient map (ADC), and DWI
(b = 1000 s/mm? and b = 0 s/mm?). Images were acquired by one
of the two MRI 3.0T units (Magnetom Verio and Magnetom Pri-
sma, Siemens Healthcare, Erlangen, Germany), with combined
head and neck coils. Acquired images were stored and processed
in the format of Digital Imaging and Communications in Medi-
cine (DICOM).

The detailed MRI parameters were as follows. The field of
view (FOV) was 240 x 240 mm, the matrix was 320 x 240, the
thickness of axial images was 3—4 mm, and the thickness of
coronal images was 3—4 mm. Axial fat-suppressed T2-weighted
images were obtained from the turbo-spin-echo (TSE) sequence
with TR/TE = 4460/78 ms. T1-weighted images were also
obtained from the TSE sequence with TR/TE = 849/11 ms. The
gadolinium-contrast-enhanced fat-suppressed T1 weighted
images were acquired immediately with VIBE sequence,
TR/TE = 3.73/1.52 ms, after a bolus of an intravenous injection
of 0.1 mmol/kg using Gadoteridol injection (BIPSO GmbH,
Germany) at a 2—-3 ml/s rate followed by a 10 ml saline flush at
the same rate with a power injector. The imaging parameters
of RESOLVE DWI were as follows: TR/TE = 3600/65 ms, slice
thickness/gap = 4/0.1mm, FOV = 220 x 230 mm,
matrix = 160 x 60 mm, voxel size = 2 x 2 x 4 mm, diffusion
mode = 4 scan trace, b = 0 or 1000 s/mm?.

Data

Data calibration. Software “ITK-SNAP” (www.itksnap.
org) was used to calibrate MRI images.'® All the slices containing
tumors in the MRI sequences were calibrated by in-house physi-
cians and formed as the input sequence of the deep learning
model, and the tumors were classified according to the pathology
into four categories, namely, pleomorphic adenoma, Warthin
tumor, basal cell adenoma, and malignant tumor. Later, the
tumor was inclusively framed, as demonstrated within the CE-
T1 sequence (Fig. 1).

Dataset distribution. Randomly stratified sampling
was carried out to keep equivalent proportions, that is, balanced,
benign and malignant tumors between the training and the test
sets. First, all data were divided into two layers based on benign
versus malignant tumors. Then, the two layers of data were fur-
ther split into a training set and a test set in the ratio of 4:1. In
addition, 20% of the training set was used for validation (see
Table I for detailed data distribution).

Data preparation

Data augmentation. To achieve proper convergence,
the deep learning model usually requires a huge amount of data
during the model training process. However, images are unique
in medical settings, because it is often unrealistic to obtain a
large number of compatible and calibrated MRI images. There-
fore, the original dataset needs to be expanded through data aug-
mentation to improve the training process adequately. Here,
using a series of data augmentation strategies,?’ we achieved a
10-time randomized enhancement on the annotated images with
calibration frames in each MRI sequence.

Data preprocessing. Typically, the CNN-like Resnet
takes RGB images as input,?! that has three channels that cap-
ture red, green, and blue signals respectively. However, the MRI
image generated in each modal is in grayscale with a single
channel and cannot be directly processed by CNN. Therefore, we
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Fig. 1. lllustrations of the calibrated magnetic resonance images in the dataset, each shaded rectangle represents the location of an identified
parotid tumor. (A) malignant tumor, (B) pleomorphic adenoma, (C) basal cell adenoma, (D) Warthin tumor.

experimented with two different preprocessing methods to con-
vert the MRI images to eligible CNN input format, to take full
advantage of the pre-trained networks. To briefly sum, the MRI
images were resized to 224 x 224 according to the input require-
ment of Resnet-18, then converted to RGB format in one of the
two following methods.

1. In the single-modal paradigm, the same MRI sequence served
as reiterated input of RGB channels.

2. In the multi-modal paradigm, compatible modalities were com-
bined, such as T1, T2 and CE-T1, so that each MRI sequence
served as the channel input of individual RGB channels.'”

Deep Learning Paradigms

Single-modal paradigm

Image classification network. Upon the model
development, we firstly designed an image classification network
of parotid gland tumors based on the Resnet-18, as illustrated in

TABLE I.

Distribution of Pathological Subtypes of Parotid Tumors Between
the Training Set and the Test Set.

Classification

Data Benign Tumor Malignant Tumor Total
Training 174 (102, 72) 38 (19, 19) 212 (121, 91)
Test 44 (28, 16) 10 (4, 6) 54 (32, 22)
Total 218 (130, 88) 48 (23, 25) 266 (153, 113)

Numbers in the parentheses (male, female) indicate gender
distribution.
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Figure 2. The backbone of Resnet-18 was initialized by pre-
trained weights on ImageNet,?? given our dataset was not ade-
quate to train a deep learning model effectively. The model was
composed of the first two layers of Resnet18 and ROI-Align?® and
extracted the tumor features using the MRI frame and the posi-
tion of the bounding box as input. The classification output logits
were calculated by the tumor features through the fully con-
nected network, and the prediction was produced by the SoftMax
function. During the training process, the cross-entropy function
was used to calculate the loss of the output and the actual label,
and the loss was optimized by the ADAM optimizer with an ini-
tial learning rate le—4, originally proposed by Kingma and Ba.?*
In order to prevent overfitting, we also used p = 0.5 to perform a
dropout operation on the fully connected layer. As mentioned
above, the image classification network generated vectors rep-
resenting image features. Two-dimensional images from the six
individual modals of MRI sequences were used as the
training data.

Sequence classification network. In recent years,
the Transformer network with a multi-head self-attention mech-
anism that learns multi-space attention features from the
sequence of original features has made remarkable achievements
in the field of natural language processing and showed great
promise in other sequence processing fields.?® In the present
study, we constructed the sequence classification model based on
the Transformer network. The model utilized the pre-trained
image classification network to obtain tumor features that were
extracted from an original MRI sequence and use the encoder
structure in the Transformer network to extract self-attention
information. The number of encoder layers and number of heads
were set to 1 and 4 respectively by cross-validation. The encoder
layer produced a self-attention feature that contains sequential
information. The features were max-pooled along sequential
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Fig. 2. An illustration of the two-stage single-modal paradigm. In the first stage, an image classification network was trained to produce a vec-
tor describing image features through the first two layers of Resnet-18 and the ROI-Align. In the second stage, using the newly extracted
image features as the input, a sequence classification network further extracted the sequential features and identified the subtype of tumors.

FC = fully-connected network.

dimensions to achieve the tumor feature of the entire input
sequence. Finally, logits were calculated in the same way as in
the image classification network. During the training process,
the parameters of the image classification network were deter-
mined. The sequence classification network was optimized by the
ADAM with an initial learning rate of le—5. We also used
p = 0.5 to perform a dropout operation on the fully connected
layer to avoid overfitting.

Multi-modal paradigm. The multi-modal paradigm,
based on the sequence classification model, aimed to explore the
improvement by the fusion of multiple modalities sequences.
Specifically, the fusion operation was implemented inside a deep
learning framework, namely, Pytorch (www.pytorch.org). We
experimented with two methods of fusion, early fusion, and late
fusion. In early fusion, as shown in Figure 3, the data of multiple
modalities were only fused according to the RGB channel in the
data preprocessing stage,'”?! as the input of CNN. In late fusion,
we used multiple CNN branches to extract features from single-
modal sequences. The feature vectors of different sequences,
obtained in the above process, were fused as the input of the
Transformer encoder with one of the following two methods. One
method is the vector addition (“Add.”), where feature vectors
were combined from multiple modalities to obtain a vector of the
same dimension. The other method was vector splicing (“Spl.”),
where feature vectors were concatenated to a higher dimension,
maintaining the characteristics of each vector.

Cross-Validation and Model Evaluation

During the training process, a five-fold cross-validation
method was used to optimize hyperparameters. The patients in
the training set were divided into five groups by stratified ran-
dom sampling. To evaluate the proposed model comprehensively,
we used accuracy, the area under the ROC curve (ROC-AUC),
sensitivity, and specificity as evaluation metrics. In addition, an
experienced radiologist analyzed and scored the MRI sequences
of all cases in the test dataset. He had 20+ years of experience in
diagnostic radiology specializing in head and neck surgery, 10+
years of experience in MRI diagnosis, and 1000+ identifications
of parotid neoplasms. Here, his diagnostic decision was based on
the identical “deep learning” dataset without additional clinical
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information from the patients. He determined the tumor malig-
nancy, severing as a benchmark to evaluate the model perfor-
mance. Briefly, tumors were scored by a five-point scale system,
with 1 point being a definitive benign tumor, five indicating defi-
nitely malignant, and three being undetermined. A ROC curve
was subsequently established based on the scoring system, eval-
uating the diagnostic power of the radiologist.!”-?%

RESULTS

Single-Modal Paradigm

Image classification network. The effectiveness of
the deep learning model, for differentiating benign and
malignant parotid gland tumors, trained by different
input options of individual MRI images is shown in
Table II. The AUC-ROC score of the model, trained by
CE-T1 images, was the highest (0.85) by single-image
inputs. The best accuracy score of the model was 0.84,
resulting from the training input of DWI-b1000 images.
The sensitivity of the training model was low in general,
with the highest sensitivity of 0.68, obtained from DWI-
b0 images training input.

Sequence classification network. According to the
result based on single-image input, we concluded that the
MRI images of CE-T1, T2, DWI-b0, and DWI-b1000 were
more effective to differentiate benign and malignant
tumors. Thus, we subsequently conducted CNN training
with various MRI sequences. The performance scores
with a 95% confidence interval from six different inputs
are presented in Table II. The overall performance of the
model trained by MRI sequences, was largely better than
the corresponding single-image input, except for the T1
sequence. The AUC-ROC of the model, trained by the CE-
T1 sequence, reached an equivalent performance to that
of the DWI-b1000 sequence, with a score of 0.89, superior
to other sequence inputs. Additionally, the best sensitiv-
ity score was achieved by the DWI-b1000 input, the best
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branches that merged corresponding modalities together. Extracted features were subsequently combined as the input of the Transformer

encoder. FC = fully-connected network.

specificity by the CE-T1 input, and the best accuracy by
the CE-T1 input.

Multi-Modal Paradigm

In real-world practice, clinicians and radiologists
evaluate parotid gland tumors through multiple MRI
sequences. The present study simulated the practice
and used multiple sequences as the training input of
the network to extract features from multi-modal MRI
sequences (Table III). The fusion of multiple modal
MRI images evidently elevated the efficiency of the
deep learning diagnosis model, with significantly
improved accuracy, ROC-AUC, sensitivity, and specific-

ity scores. The combination of MRI sequences in the
multi-modal paradigm enhanced ROC curves from that
of individual sequences in the single-modal paradigm
(Fig. 4A-D). In addition, the late-fusion strategy
resulted in better effectiveness than the early-fusion
strategy, while the vector splicing method exhibited a
superior outcome to the vector addition method. In
sum, the deep learning model trained by T2, CE-T1,
and DWI-b1000, using the vector splicing method with
a late-fusion strategy, presented the best performance,
with an AUC-ROC score of 0.96, accuracy of 0.85, sen-
sitivity of 0.90, and specificity of 0.84 (Table III). It is
also worth noting that the best result was not achieved
by the fusion of all the modalities of MRI sequences.

TABLE II.
The Performance Scores of Single-Modal Paradigms and the Comparison Between Single-Image and Single-Sequence Inputs.
Training Input Accuracy ROC-AUC Sensitivity Specificity
T Single-image 0.70 (0.65-0.75) 0.75 (0.68-0.82) 0.60 (0.48-0.71) 0.73 (0.67-0.78)
Single-sequence 0.71 (0.57-0.84) 0.75 (0.56-0.91) 0.60 (0.22-0.89) 0.73 (0.60-0.85)
T2 Single-image 0.78 (0.73-0.82) 0.80 (0.73-0.86) 0.60 (0.48-0.74) 0.81 (0.77-0.86)
Single-sequence 0.84 (0.73-0.94) 0.88 (0.75-0.98) 0.71 (0.44-1) 0.86 (0.75-0.98)
CE-T1 Single-image 0.81 (0.78-0.85) 0.85 (0.80-0.90) 0.47 (0.35-0.59) 0.89 (0.85-0.93)
Single-sequence 0.87 (0.78-0.96) 0.89 (0.77-0.98) 0.70 (0.44-1) 0.91 (0.80-1)
DWI-b0 Single-image 0.75 (0.63-0.88) 0.82 (0.64-0.95) 0.68 (0.33-0.89) 0.76 (0.63-0.90)
Single-sequence 0.76 (0.63-0.88) 0.83 (0.68-0.95) 0.79 (0.56-1) 0.75 (0.63-0.88)
DWI-b1000 Single-image 84 (0.80-0.88) 0.82 (0.75-0.88) 0.58 (0.46-0.72) 0.90 (0.86-0.93)
Single-sequence 0.84 (0.73-0.94) 0.89 (0.78-0.98) 0.80 (0.56-1) 0.84 (0.73-0.95)
ADC Single-image 0.82 (0.78-0.86) 0.77 (0.69-0.84) 0.43 (0.29-0.58) 0.90 (0.87-0.94)
Single-sequence 0.78 (0.65-0.88) 0.82 (0.68-0.94) 0.60 (0.33-0.89) 0.82 (0.70-0.93)

Values in the parentheses indicate 95% confidence interval. Notable values are in bold, see main text for details.

ADC = apparent diffusion coefficient; DWI
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TABLE Il

The Performance Scores of the Multi-Modal Deep Learning Model With Different Fusion Strategies and an Experienced Radiologist.

Training Input Vector Accuracy ROC-AUC Sensitivity Specificity
T Early-fusion 0.83 (0.73-0.92) 0.88 (0.74-0.98) 0.89 (0.67-1) 0.82 (0.70-0.93)

T2 Late-fusion Add. 0.87 (0.78-0.96) 0.88 (0.75-1) 0.69 (0.33-1) 0.91 (0.80-1)
CE-T1 Spl. 0.85 (0.76-0.94) 0.89 (0.72-0.99) 0.70 (0.44-1) 0.89 (0.78-0.98)
T2 Early-fusion 0.76 (0.63-0.88) 0.86 (0.74-0.96) 0.70 (0.44-1) 0.77 (0.63-0.90)
CE-T1 Late-fusion Add. 0.85 (0.73-0.94) 0.93 (0.83-0.99) 0.80 (0.56-1) 0.86 (0.75-0.95)
DWI-b1000 Spl. 85 (0.75-0.93) 0.96 (0.89-1) 0.90 (0.67-1) 84 (0.73-0.95)
DWI-b0 Early-fusion 0.82 (0.69-92) 0.83 (0.65-0.96) 0.60 (0.22-0.89) 0.86 (0.75-0.98)
DWI-b1000 Late-fusion Add. 0.83 (0.71-0.94) 0.87 (0.67-1) 0.79 (0.56-1) 0.84 (0.73-0.95)

ADC Spl. 0.94 (0.88-0.1) 0.91 (0.7-1) 0.89 (0.67-1) 0.95 (0.88-1)
All MRI sequences (Early + late)-fusion Add. 0.78 (0.65-0.88) 0.76 (0.56-0.91) 0.59 (0.33-0.89) 0.82 (0.70-0.93)
Spl. 0.76 (0.63-0.88) 0.84 (0.70-0.96) 0.69 (0.44-1) 0.77 (0.65-0.90)

Late-fusion Add. 0.89 (0.80-0.96) 0.80 (0.56-1) 0.70 (0.33-1) 0.93 (0.85-1)
Spl. 0.81 (0.69-0.92) 0.95 (0.86-1) 0.81 (0.56-1) 0.81 (0.70-0.93)
Radiologist 0.70 (0.58-0.82) 0.74 (0.59-0.86) 0.70 (0.44-1) 0.70 (0.58-0.85)
Values in the parentheses indicate 95% confidence interval. Notable values are in bold, see main text for details. “Add.” = vector addition method,

“Spl.” = vector splicing method.
ADC = apparent diffusion coefficient; DWI = diffusion-weighted; MRI =

Performance Comparison Between the Deep
Learning Model and Radiologists

The effectiveness of the present model trained by
multi-modal MRI sequences was compared to an experi-
enced radiologist (Table III), ROC-AUC curves from both
optimally trained multi-modal paradigm and single-
modal paradigm were also compared to the radiologist
(Fig. 4E,F). Using either multi-modal sequences or a sin-
gle sequence as the training input, the model produced
efficacious ROC curves, indicating superior diagnostic
performance compared to the experienced radiologist.

The Effectiveness of the Multi-Modal Paradigm
to Distinguish Other Tumors

The above results indicated that the fusion of multi-
modal sequences improved the diagnostic performance of
deep learning, specifically, in differentiating benign and
malignant parotid tumors. The present study additionally
applied the aforementioned, optimized methods to iden-
tify tumor subtypes, including pleomorphic adenoma,
Warthin tumor, and basal cell adenoma. Here, using the
fusion of all sequences produced the best performance in
distinguishing the three tumor subtypes (Table IV). The
best model performance was observed in the diagnosis of
pleomorphic adenoma, with the best accuracy score of
0.93, ROC-AUC of 0.96, the sensitivity of 0.96, and speci-
ficity of 0.90. The diagnostic effectiveness of the basal cell
adenoma was considerably worse.

DISCUSSION

The features of MRI sequences are critical in the diag-
nosis of parotid neoplasms.2° The present study is inno-
vative in terms of utilizing a newly designed CNN to
classify parotid gland tumors. Briefly, the first two layers of
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magnetic resonance image; ROC = receiver operator characteristic.

the pre-trained Resnet-18 were selected to extract the over-
all image features based on the concept of learning transfer.
Then, the tumor features were extracted by using ROI-Align
to match the position of the tumor’s bounding box with the
image features. Previous studies on the MRI-based classifi-
cation of parotid gland tumors are very limited. The present
study for the first time applied the multiple MRI sequences
to classify parotid neoplasms, and successfully outperformed
the prior studies in which only individual MRI images were
considered. Matsuo et al.'” investigated several CNNs,
including VGG16, MobileNet, Resnet-50, and CVAE. The
VGG16-based model with the Lo-constrained SoftMax loss
function resulted in the best diagnostic accuracy. Chang
et al.'® applied the U-Net to the classification of parotid
gland tumors, effectively detecting Warthin tumor and pleo-
morphic adenoma, but the model was not sensitive to the
detection of malignant tumors. Xia et al®' also selected
Resnet to distinguish benign and malignant tumors, but the
tumor subtype detection was based on a simple decision tree
structure.

The MRI sequences were processed by the pre-
trained CNN, resulting in a sequence of tumor features.
Meanwhile, the Transformer network, which has
achieved remarkable performance in the field of natural
language processing, was used to obtain the features of
the whole sequence through a multi-head self-attention
mechanism. Moreover, this study integrated different
modalities of MRI sequences and proposed a multi-modal
paradigm with various fusion strategies. Due to the lim-
ited dataset, overfitting in the deep learning model inevi-
tably occurred. To resolve the issue, a two-stage training
method was adopted to optimize the model. That is, the
image feature extraction network was initially trained,
followed by the optimization of the sequence classification
network. In addition, CNN and Transformer networks
were simplified to avoid overfitting.
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Fig. 4. Receiver operator characteristic (ROC) curves of the multi-modal deep learning paradigm and the corresponding single-sequence ROC
curves. (A) Multi-model sequences (T1 + T2 + CE-T1) and the corresponding single sequences, (B) Multi-model sequences (T2 + CE-T1 +-
DWI-b1000), (C) Multi-model sequences (all sequences), (D) Multi-model sequences (DWI-b0 + DWI-b1000 + ADC). (E) Selected single-modal
ROC curves compared to a radiologist, (F) Multi-modal ROC curves compared to the radiologist. ADC = apparent diffusion coefficient;

DWI = diffusion-weighted.

Certain selection biases existed in the retrospective
study, for instance, some patients who did not undergo
MRI examination were excluded. The present model can
be further verified using external datasets from other

Laryngoscope 133: February 2023

hospitals. The model will especially benefit from a multi-
center effort with expanded malignant cases, which were
limited to 48 in the present study, and with considerable
heterogeneity.
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TABLE IV.

The Performance Scores of the Multi-Modal Paradigm to Distinguish the Tumor Subtypes, Pleomorphic Adenoma (PMA), Warthin Tumor (WT),
and Basal Cell Adenoma (BCA).

Subtype Training Input Accuracy ROC-AUC Sensitivity Specificity
PMA T1/T2/CE-T1 0.84 (0.73-0.92) 0.95 (0.89-0.99) 0.87 (0.71-1) 0.81 (0.64-0.93)
ADC/DWI-b0/b1000 0.78 (0.65-0.88) 0.87 (0.77-0.96) 0.83 (0.67-0.95) 0.74 (0.57-0.89)
All MRI sequences 0.93 (0.86-0.98) 0.96 (0.90-1) 0.96 (0.86-1) 0.90 (0.79-1)
WT T1/T2/CE-T1 0.91 (0.82-0.98) 0.93 (0.83-1) 0.80 (0.62-1) 0.95 (0.86-1)
ADC/DWI-b0/b1000 0.87 (0.78-0.96) 0.96 (0.91-1) 0.87 (0.69-1) 0.87 (0.75-0.97)
All MRI sequences 0.87 (0.78-0.96) 0.97 (0.92-1) 0.87 (0.69-1) 0.92 (0.8-0.97)
BCA T1/T2/CE-T1 0.78 (0.67-0.88) 0.77 (0.59-0.95) 0.33 (0-0.80) 0.83 (0.73-0.93)
ADC/DWI-b0/b1000 0.76 (0.63-0.88) 0.77 (0.53-0.95) 0.67 (0.2-1) 0.77 (0.64-0.89)
All MRI sequences 0.73 (0.59-0.84) 0.84 (0.69-0.96) 0.84 (0.40-1) 0.71 (0.57-0.84)

Values in the parentheses indicate 95% confidence interval. Notable values are in bold, see main text for details.

ADC = apparent diffusion coefficient; DWI = diffusion-weighted; MRI =

The superior performance of the present model was
the result of collective effort based on continuous optimi-
zation and improvement by focusing on, for instance, the
training input and feature extraction strategies. For
future studies, the research team plan to enroll more
patients with parotid tumors of different pathological
subtypes and emphasis the classification of malignant
tumors. Additionally, a semi-supervised learning method
can be used to generalize the model, by using additional
unannotated images to minimize the likelihood of over-
fitting. Furthermore, a new approach®?®® has been
established to synthesize annotated MRI images from CT
images for the purpose of image segmentation or data
augmentation. The approach can be integrated into the
present model with our in-house CT dataset, resulting in
an expanded training dataset, and subsequently,
improved accuracy of the deep learning. With a greater
training dataset, either by the recruitment of new
patients or by artificial data augmentation strategies, we
expect to use the deep learning model to facilitate clinical
decision-making on a broader patient cohort.

CONCLUSION

In the present study, an Al-based deep learning
model was established by selecting either individual MRI
images or MRI sequences as the training input, using the
reconstructed Resnet-18 network to extract image fea-
tures, and characterize the features through the Trans-
former network. Data fusion strategies were explored
using various combinations of MRI sequences. In sum, a
deep learning classification model based on the fusion of
multi-modal features was produced and successfully
improved the artificial diagnostic efficiency resulting in
superior performance over experienced imaging physi-
cians. Along the course of the model development, the
model performance has been continuously improved by
optimizing the training input and data fusion methods,
such as image sequence versus single-image, multi-modal
versus single-modal, late fusion versus early fusion, etc.
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magnetic resonance image; ROC = receiver operator characteristic.
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