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Abstract

Background: Estimating whole-body composition from limited region-
computed tomography (CT) scans has many potential applications in clinical
medicine; however, it is challenging.

Purpose: To investigate if whole-body composition based on several tissue
types (visceral adipose tissue [VAT], subcutaneous adipose tissue [SAT], inter-
muscular adipose tissue [IMAT], skeletal muscle [SM], and bone) can be reliably
estimated from a chest CT scan only.

Methods: A cohort of 97 lung cancer subjects who underwent both chest CT
scans and whole-body positron emission tomography-CT scans at our institu-
tion were collected. We used our in-house software to automatically segment
and quantify VAT, SAT, IMAT, SM, and bone on the CT images. The field-of-
views of the chest CT scans and the whole-body CT scans were standardized,
namely, from vertebra T1 to L1 and from C1 to the bottom of the pelvis, respec-
tively. Multivariate linear regression was used to develop the computer models
for estimating the volumes of whole-body tissues from chest CT scans. Subject
demographics (e.g.,gender and age) and lung volume were included in the mod-
eling analysis. Ten-fold cross-validation was used to validate the performance
of the prediction models. Mean absolute difference (MAD) and R-squared (R?)
were used as the performance metrics to assess the model performance.
Results: The R? values when estimating volumes of whole-body SAT, VAT, IMAT,
total fat, SM, and bone from the regular chest CT scans were 0.901, 0.929,
0.900, 0.933, 0.928, and 0.918, respectively. The corresponding MADs (per-
centage difference) were 1.44 + 1.21 L (12.21% + 11.70%), 0.63 + 0.49 L
(29.68% =+ 61.99%), 0.12 + 0.09 L (16.20% + 18.42%), 1.65 = 1.40 L
(10.43% + 10.79%), 0.71 + 0.68 L (5.14% + 4.75%), and 0.17 + 0.15 L
(4.32% =+ 3.38%), respectively.

Conclusion: Our algorithm shows promise in its ability to estimate whole-body
compositions from chest CT scans. Body composition measures based on chest
CT scans are more accurate than those based on vertebra third lumbar.
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ESTIMATING BODY COMPOSITION FROM CT SCANS

1 | INTRODUCTION

Body composition is strongly associated with an individ-
ual’s health status and various clinical conditions, such
as cancer,' osteoporosis? cardiovascular diseases’
and diabetes* Awareness of body composition can
signal current and future health risks, facilitate individ-
ualized therapy, and monitor therapeutic performance.
There are several ways to assess body composi-
tion, such as body mass index, waist circumference,
bioimpedance, dual-energy X-ray absorptiometry (DXA),
computed tomography (CT), and magnetic resonance
imaging. Among these modalities, CT is gaining an
increasing interest to quantitatively assess in vivo body
composition because of its volumetric characteristics,
high spatial and temporal resolutions, and wide use in
clinical practice. In addition to bone and muscle, CT
imaging can discriminate subcutaneous and visceral
fat from each other and even visualize fat infiltration
in skeletal muscle (SM) and liver. In clinical practice,
a CT scan is acquired for a particular region of the
body (e.g., chest or abdomen) as related to the disease.
However, it would be desirable to have a clear concept
of whole-body composition because it may provide an
assessment of an individual’s overall health status and
allow clinicians to better understand the implications of
body composition on disease states.

Several studies have investigated if body composition
in a single region of the body can sufficiently reflect an
individual’s overall body composition.°~'3 The body com-
position obtained at the third lumbar (L3) vertebra was
often used to estimate a subject’s body composition.5-2
Swartz et al? reported that the cross-sectional area of
the SM at the third cervical (C3) vertebra strongly cor-
relates with the cross-sectional area of the SM at L3.
Mishra et al.'® concluded that both L3 and the fourth
thoracic (T4) vertebrae were useful locations for assess-
ing body composition related to SM and adipose tissue.
However, Gronberg et al.'" reported only a moderate
agreement between the SM at the T4 and L3 and con-
cluded that analyzing images at the T4 level could not
replace the estimates of SM derived at L3. Most studies
only investigated the correlation between the areas of
body tissues from single images (e.g., at the level of C3,
T4, or L3) or the total volumes of body tissues depicted
on a chest or abdominal CT scan. Although body com-
position estimated on a single image or total volumes
from a single region can reflect whole-body composition,
there are limitations with these techniques.'

In this study, we collected a cohort of 97 subjects
with paired chest and whole-body CT scans. The latter
originated from positron emission tomography (PET)-
CT scans and typically covered the body regions from
neck to thigh. Using our in-house software, we quan-
tified five different tissues related to body composition
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(visceral adipose tissue [VAT], subcutaneous adipose
tissue [SAT], intermuscular adipose tissue [IMAT], SM,
and bones). Additionally, lung volume was computed
using the chest CT scans to study whether including
this would improve estimation accuracy. Our objec-
tive was to develop and validate a set of computer
models for estimating three-dimensional (3-D) whole-
body composition measures based on chest CT scans
alone.

2 | METHODS AND MATERIALS

21 | Study cohort

To establish the cohort for this study, we revisited a
previous study cohort consisting of 471 lung cancer sub-
jects treated at our institution. The original cohort had
the following inclusion criteria: (1) non-small cell lung
cancer, (2) pretreatment chest CT scans and PET-CT
scans, (3) posttreatment chest CT scans and PET-CT
scans, (4) lung resection, and (5) minimum 5-year follow-
up. For this retrospective study, we applied additional
inclusion criteria: (1) the pretreatment chest CT scans
and the PET-CT scans were acquired within 2 weeks
of one another to ensure that their weight changes
were limited; (2) the PET-CT scans were acquired from
head to thigh; and (3) the chest CT scans fully covered
the body regions from T1 to L1. Ninety-seven subjects
met all inclusion criteria (Table 1). There were 45 men
(46%) and 52 women (54%), with an average age of
67 (39-89). This study was approved by the University
of Pittsburgh Institutional Review Board (IRB) (IRB #:
STUDY20100305).

2.2 | Image acquisition

Chest CT and PET-CT scans were acquired using dif-
ferent protocols and scanners over a period of 10 years.
The CT and PET-CT scanners were primarily manufac-
tured by GE Medical Systems and Siemens. The models
of the CT scanners include Optima-CT660, LightSpeed
VCT, LightSpeed-Ultra, Emotion, and Emotion-Duo. The
models of the PET-CT scanners included Discovery
ST, Emotion, and Emotion-Duo. PET-CT scans typically
encompassed the body regions from the head to the
mid-thigh with a matrix size of 128 x 128 and an in-
plane resolution ranging from 4.1 to 5.5 mm. For the
involved CT scans, the tube voltage was consistently
120 kV, the X-ray tube current ranged from 40 to 498 mA,
and the reconstruction kernels included “lung,”“soft,”and
“standard”kernels. The image thickness of the chest CT
scans acquired along with PET scans ranged from 2.5
to 4.0 mm.
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TABLE 1 Subject demographics in our study cohort

All subjects (n = 97) Male (n = 45) Female (n = 52)
Age, mean (range) 67 (39-89) 68 (51-89) 66 (39-86)
Race, n (%)
White 86 (89) 45 (100 41 (79)
African American 11 (11) 0 (0) 11 (21)
Other races 0 (0) 0 (0) 0 (0)
Body weight (kg), mean (SD) 76.72 + 17.84 85.14 + 16.16 69.44 + 16.03
Body mass index (kg/m?), mean (SD) 27.0+54 279+52 26.2 +5.6
Underweight, <18.5, n (%) 3(3) 0(0) 3 (6)
Normal weight, 18.5-24.9, n (%) 36 (37) 14 (31) 22 (42)
Overweight, 25.0-29.9, n (%) 34 (35) 17 (38) 17 (33)
Obese, >30.0,n (%) 24 (25) 14 (31) 10 (19)
Body height (in.), mean (SD) 168.35 + 9.20 173.73 £ 65 162.84 + 7.44

B visceral adipose tissue (VAT) = bone
| subcutaneous adipose tissue (SAT)

I intermuscular adipose tissue (IMAT)

FIGURE 1 Computed results of body tissues on a whole-body positron emission tomography-computed tomography (PET-CT) scan: (a)
the original CT image, (b) the manual annotations of the body tissues, and (c) the computerized/automated segmentations of the body tissues.
(d) and (e) The three-dimensional (3-D) visualization of the five body tissues

2.3 | Quantifying 3-D body composition
on the chest CT scans and whole-body
PET-CT scans

We developed a convolutional neural network (CNN)-
based algorithm to automatically segment five different
tissues related to body composition depicted on CT
images (VAT, SAT, IMAT, SM, and bone; Figure 1)."°
This algorithm was trained and validated on a dataset
consisting of 100 CT scans with manual annotations of
these body tissues. The dataset included 50 whole-body
PET-CT scans, 25 chest CT scans, and 25 abdominal
CT scans, which were acquired on different subjects
using various protocols. A 3-D image patch-based
strategy was used to train the classical UNet model.'®

The trained CNN model has been integrated into our
in-house software to automate the identification of
the aforementioned five body tissues. As a standalone
system, our in-house software enables automated seg-
mentation of several lung anatomical structures (e.g.,
lung regions, airways, and vessels) and the five body
tissues. The performance of the CNN-based algorithm
for segmenting the five body tissues can be found in Ref.
[15] and Tables S15 and S16. We used this in-house
software to segment the five body tissues (Figure 1) and
lung volumes (Figure 2) depicted on the CT scans in the
cohort. As a way to standardize the field-of-views of the
CT scans, we quantified the volume and mean density
(Hounsfield value) of the five body tissues located from
vertebra T1 to L1 for the chest CT scans and those from



ESTIMATING BODY COMPOSITION FROM CT SCANS

MEDICAL PHYSICS——1

FIGURE 2 The lung volume segmentation: (a) original computed tomography (CT) images, (b) the segmented right and left lung regions in
overlay, and (c) the three-dimensional (3-D) visualization of the segmented lungs

vertebra C1 to the bottom of the pelvis for the whole-
body CT scans. The tissue volume and mean density
measures were tabulated with subject demographics
for prediction modeling. Figure 2 shows the results of
the segmented body composition and lung regions.
For comparison, we also quantified body tissues from a
single CT slice at L3 and used these 2-D measurements
to estimate the 3-D whole-body volumes.

24 | Prediction modeling

We used the stepwise multiple linear regression to
develop the computer models for estimating whole-body
composition from chest CT scans or single CT images
at L3 (from the PET-CT scans) along with patient infor-
mation. In addition to estimating the five body tissues, we
also developed a model for estimating the total fat. There
were three types of predictor variables: (1) the volumes
and density of the five different body tissues computed
from chest CT scans, (2) subject demographics (i.e.,
age, gender, weight, and height), and (3) lung volume
computed from chest CT scans. For each whole-body
tissue measurement, the backward stepwise multiple lin-
earregression started with a saturated model with all the
predictor variables. In the regression analysis, variables
with a p-value less than 0.1 were included in the final
prediction model. IBM SPSS v28 was used for the linear
regression modeling.

2.5 | Performance evaluation

We used the 10-fold cross-validation method to validate
the performance of the prediction models. The data was
split into 10-folds. Ninefolds were used to develop the
linear regression models. The remaining fold was used
as an independent test set to evaluate the performance
of the models. The training and testing processes were
repeated 10 times to ensure that each case in the cohort
was tested. Mean absolute differences (MADs), percent-
age errors, and the R-squared (R?) were computed as
metrics to assess the prediction performance of the lin-

ear regression models. IBM SPSS v28 was used for the
statistical analyses.

3 | RESULTS

On chest CT scans, the computed average volumes
and densities of SAT, VAT, IMAT, SM, and bone were
summarized in Table S1. Independent-samples T-test
showed statistically significant differences in the volume
measures (p < 0.05) but no significant differences in
the density measures of the body composition between
male and female subjects based on either chest CT
scans or PET-CT scans. There were significant differ-
ences between the same tissue densities computed
from chest CT scans and PET-CT scans (p < 0.05).
The scatter plots for the chest CT tissue volumes,
the L3-based tissue volumes, and their correspond-
ing whole-body CT tissue volumes were shown in
Figures S1 and S2. We also provided the scatter plots
to show the agreement between the body tissues mea-
sured on the chest CT scans and their corresponding
regions on the whole-body CT scans (Figure S3). The
RZ? values ranged from 0.925 to 0.985 for the five body
tissues.

The body composition areas computed from the sin-
gle images at L3 (from PET-CT scans) are summarized
in Table S2. There were significant differences between
the average density measures for VAT, IMAT, and SM
computed from the entire chest CT scans versus the
single images (p < 0.05). Although the images at L3
were obtained from PET-CT scans, there were still sig-
nificant differences between the density measurements
obtained from L3 images and the entire PET-CT scans.
Like the measurements in Table S2, there were statisti-
cally significant differences in the areas (p < 0.05) but
no significant differences in the densities of the body tis-
sues between males and females as computed from the
images at L3.

The models based on chest CT scans demon-
strated a significantly smaller MAD for estimating the
volume of all body tissue measures based on whole-
body PET-CT scans versus the models based on a
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Performance of the computer models to estimate the volumes of the five whole-body tissues from chest computed tomography

(CT) scans and a single CT image at third lumbar (L3) in the positron emission tomography (PET)-CT scans (n = 97)

Chest CT scan

Single CT image at L3

MAD MAD

p-Value
Tissue volume L % R-squared % R-squared (R-squared)
SAT 144 + 1.21 12.21 + 11.70 0.901 221 + 1.83 22.62 + 37.92 0.772 <0.001
VAT 0.63 + 0.49 29.68 + 61.99 0.929 1.17 + 0.94 89.21 + 276.31  0.753 <0.001
IMAT 0.12 + 0.09 16.20 + 18.42 0.900 0.20 + 0.17 39.22 + 41.78 0.701 <0.001
Total fat 1.65 + 1.40 10.43 + 10.79 0.933 3.01 + 2.42 21.18 + 37.46 0.788 <0.001
SM 0.71 + 0.68 514 + 475 0.928 1.03 + 0.94 719 + 6.43 0.855 <0.001
Bone 0.17 = 0.15 432 + 3.38 0.918 0.26 + 0.21 6.20 + 4.82 0.828 <0.001

Note: The manual annotations were used as the ground truth. The p-value was computed to assess the performance difference based on chest CT scans and a single

CT image at L3.

Abbreviations: CT, computed tomography; IMAT, intermuscular adipose tissue; L3, third lumbar; MAD, mean absolute difference; SAT, subcutaneous adipose tissue;
SM, skeletal muscle; VAT, visceral adipose tissue; %, the percentage difference between the computerized results and the manual annotation.
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single CT image at L3 (p < 0.05; Table 2). The chest
CT-based models also had a stronger linear correla-
tion (0.901-0.933) for all variables with the whole-body
PET-CT scan values versus the L3-based models
(0.701-0.855) (Figures 3 and 4). The corresponding
residual plots were provided in Figures S3 and S4.
Figures 5 and 6 showed the Bland—Altman plots of
the agreement between the measured values (unit: L)
from whole-body CT scans and the predicted values

(unit: L) from the chest CT-based model and the L3-
based model, respectively. There was no bias between
the volumes of the five tissue types computed from
whole-body PET-CT scans and those estimated from
the chest CT-based models. The paired values of the
two approaches fell essentially along the line of identity
in the scatter plots. The linear equations for the chest
CT scans and single CT image models are presented in
Tables S3-S™4.
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TABLE 3 The percentage error (%) in estimating the volumes of the five whole-body tissues from chest computed tomography (CT) scans
(n=197)

Body mass index SAT VAT IMAT SM Bone
Underweight (BMI < 18.5) 29.24 + 21.37 197.88 + 293.08 62.98 + 62.84 414 + 1.54 6.07 = 3.70
Normal weight (BMI 18.5-24.9) 14.64 + 12.02 39.31 + 49.38 20.17 + 17.68 4.98 + 3.82 4.29 + 3.08
Overweight (BMI 25.0-29.9) 11.48 + 11.81 16.09 + 11.21 12.33 + 9.08 5.15 + 5.39 4.34 + 3.40
Obese (BMI > 30.0) 8.35 + 5.95 19.69 + 23.41 11.28 + 9.85 5.36 + 4.87 4.05 + 3.46

Abbreviations: BMI, body mass index; IMAT, intermuscular adipose tissue; SAT, subcutaneous adipose tissue; SM, skeletal muscle; VAT, visceral adipose tissue.

TABLE 4 The percentage error (%) in estimating the volumes of the five whole-body tissues from a single computed tomography (CT)
image at third lumbar (L3) in the positron emission tomography (PET)-CT scans (n = 97)

Body mass index SAT VAT IMAT SM Bone

Underweight (BMI < 18.5) 116.85 + 124.17 644.43 + 972.06 115.62 + 151.19 9.22 + 7.54 598 + 8.28
Normal weight (BMI 18.5-24.9) 21.84 + 18.53 74.95 + 90.14 28.24 + 26.26 7.29 + 5.27 6.35 + 6.39
Overweight (BMI 25.0-29.9) 12.55 + 11.96 23.12 + 18.18 18.59 + 14.91 6.57 + 5.09 7.37 + 4.93
Obese (BMI > 30.0) 18.50 + 19.60 32.18 + 47.08 25.30 + 24.64 8.90 + 9.05 6.40 + 3.91

Abbreviations: BMI, body mass index; IMAT, intermuscular adipose tissue; SAT, subcutaneous adipose tissue; SM, skeletal muscle; VAT, visceral adipose tissue.

Tables 3 and 4 show the prediction percentage errors
when the subjects were classified into different cat-
egories in terms of BMI. For all BMI categories, the
models based on chest CT scans demonstrated sig-
nificantly smaller percentage errors for estimating all
body tissue measures based on whole-body PET-CT
scans than the models based on a single CT image

at L3 (p < 0.05). For underweight subjects (n = 3),
the prediction percentage error for VAT was extremely
high but pretty low for SM and bone. The models
demonstrated better performance in predicting the
whole-body fat volume, including SAT, VAT, and IMAT,
for obese and overweight subjects than for the normal-
weight subjects.
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4 | DISCUSSION

As a major cause of morbidity and mortality, lung dis-
ease is extremely common in the United States and
worldwide and carries a very high economic burden.!”-'8
Lung disease is typically a lifelong condition that signif-
icantly affects a person’s quality of life, and importantly,
the incidence of lung disease will continue to rise
over the next 50 years."” In clinical practice, chest CT
scans have been widely used for studying abnormal
lung conditions. There have been numerous studies
investigating the association between body composition
depicted on CT scans and lung diseases (e.g., chronic
obstructive pulmonary disease,'®2" COVID-19,%? pul-
monary fibrosis,2® and lung cancer?*2%). Many of these
studies used multifrequency bioelectrical impedance
analysis'®2122 to assess body composition. Advances
in artificial intelligence (Al) make it possible to efficiently
and accurately quantify body composition depicted in
a CT scan. However, most CT scans focus only on a
local region of the body. Although we can directly quan-
tify body composition based on chest CT scans, it is
often desirable to know whole-body composition, or at
least that the regional body composition measures can
accurately reflect whole-body composition. In this way;,
the body composition can be assessed based on the
availability of the chest CT scans without performing
additional tests (e.g., DXA). To our knowledge, this is
the first study that attempts to develop computer models
for predicting five different 3-D whole-body composition
volumes from chest CT scans. Given the prevalence of
lung disease and its association with body composition,
we believe that these computer models have important
clinical utility.

The methods we used have several advantages over
previous studies.'21326-28 First, we used a diverse
dataset with paired chest CT scans and whole-body
PET-CT scans. The CT scans were acquired using dif-
ferent protocols (e.g., scanner and dosage) over more
than 10 years. Second, we quantified five different tis-
sues related to body composition based on both chest
and whole-body PET-CT scans using our Al algorithm.
Most current studies related to body composition only
quantified 1-3 tissue types due to the time-consuming
manual work that is required?’-3* Ma et al 2% described
a method to identify four different types of body tis-
sues (i.e., SM, SAT, VAT, and bone), but the details about
the dataset and the segmentation methods were miss-
ing. Third, we developed computer models to estimate
whole-body tissues from chest CT scans. For chest CT
scans in our cohort, both the 3-D measurements of body
composition volumes and their 2-D areas at L3 were
computed to develop the prediction models separately.
This comparison clarified the merits of using 3-D chest
CT measures for predicting whole-body composition as
compared with the traditional methods based on the sin-
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gle images at L3 (Table 2). Finally, the prediction models
were developed based on the automated segmentation
and quantification of body composition depicted on CT
images. The relatively high prediction accuracy of the
models reflects the reliability of our computer algorithms
for quantifying body composition. We tested the contri-
bution of lung volume to the model’s performance by
including it as a predictor variable. Our linear regression
analyses showed that lung volume contributed to the
estimation of the whole-body SAT (p = 0.044) and bone
(p = 0.039) but not to other prediction models (Tables S3
and S8).

The models based on body composition areas at L3
demonstrated a lower performance for estimating all
five body tissues compared to the chest CT scan mod-
els (Table 2). L3-based models demonstrated the best
performance for estimating SM and bone compared to
other body tissues (i.e., VAT, SAT, and IMAT). Age and/or
gender contributed significantly to the estimation of SM
and bones from the chest CT-based models but not
to adipose tissue when using predictor variables from
the chest CT scans (Tables S7 and S8). When the
body composition areas at L3 are used to predict the
whole-body composition, age and gender should not be
ignored due to their significant contributions to the model
(Tables S9-S14). We noticed that the computer models
demonstrated very poor performance in predicting the
whole-body VAT and IMAT for the underweight subjects
(Tables 3 and 4). First, there were only three subjects
who were classified as underweight based on BMI. Sec-
ond, for underweight subjects, the amount of VAT and
IMAT could be very small in the body. These factors
make it difficult to predict their whole-body measures
based on local body regions. In contrast, the percentage
errors for predicting the SM and bone are pretty small
and insensitive to BMI due to their relatively high amount
in the body.

There are several limitations. We used a relatively
small dataset to develop the computer models. Although
only 97 paired scans were used, they were from the
same subjects within 2 weeks of each other, ensuring
no significant changes in body composition and thereby
increasing reliability in analyses and prediction model-
ing. The dataset was from lung cancer patients, and it is
not clear how this might affect the estimation of whole-
body compositions from chest CT scans. Our cohort was
mostly white (89%; Table 1), and therefore our results
may not be generalizable. In a strict sense, PET-CT
scans only cover the body regions from neck to thigh.
Additionally, the CT portion in the PET-CT examina-
tions has lower image quality or resolution compared to
regular CT scans. This image quality definitely affects
the accuracy of the “ground truth.” However, the effect
should be limited given the relatively large dimension
of the body tissues (Figure S3). Although DXA scans
cover the entire body, it is 2-D and cannot provide a
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detailed volumetric quantification of body composition
scans. As compared to DXA, the high resolution of CT
imaging enables the identification of the fat infiltration in
SM. Also, CT can distinguish visceral from subcutaneous
fat with a higher level of precision.3°3¢

5 | CONCLUSIONS

We developed and validated a set of computer models
to estimate five different whole-body composition vol-
umes from chest CT scans alone. Paired chest CT and
whole-body PET-CT scans were used to develop and
test the models. Our results demonstrated that whole-
body composition volumes can be reliably estimated
from chest CT scans alone and were more accurate than
methods that use a single CT slice.
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