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Mammalian puberty and Drosophila metamorphosis, despite their evolu-

tionary distance, exhibit similar design principles and conservation of

molecular components. In this Viewpoint, we review recent advances in this

area and the similarities between both processes in terms of the signaling

pathways and neuroendocrine circuits involved. We argue that the detec-

tion and uptake of peripheral fat by Drosophila prothoracic endocrine cells

induces endomembrane remodeling and ribosomal maturation, leading to

the acquisition of high biosynthetic and secretory capacity. The absence of

this fat–neuroendocrine interorgan communication leads to giant, obese,

non-pupating larvae. Importantly, human leptin is capable of signaling the

pupariation process in Drosophila, and its expression prevents obesity and

triggers maturation in mutants that do not pupate. This implies that insect

metamorphosis can be used to address issues related to the biology of lep-

tin and puberty.

Introduction

Puberty marks the transformation of the child into the

adult. It constitutes a point of no return defined as the

transitional period when sexual maturity is achieved

along with important growth and behavioral changes

[1,2]. When this change is initiated, upregulation of

steroidogenesis leads to an irreversible juvenile-to-

adult transition in humans. Insect metamorphosis is

the developmental transition comparable to human
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puberty, and despite more than 500 million years of

evolutionary distance between insects and mammals,

recent studies summarized in this Viewpoint have

shown that the transition from juvenile to adult is well

conserved in both and that it is governed by common

molecular aspects ([3] and Fig. 1).

Endocrine control of mammalian
puberty

In mammals, the reawakening of the hypothalamic–
pituitary–gonadal (HPG) axis is what triggers pubertal

maturation (Fig. 1). In response to incompletely

defined nutrient, endocrine and environmental signals,

neuroendocrine gonadotropin-releasing hormone

(GnRH) hypothalamic neurons increase their firing

properties [4,5], which stimulates the pituitary gland to

release the gonadotropins luteinizing hormone and

follicle-stimulating hormone. These hormones are then

delivered via the circulatory system to promote the

maturation of the gonads and the production of sex

steroids, which signal back to the HPG axis.

GnRH neurons have the particularity of developing

embryonically outside the brain, in the nasal placode,

and they migrate to their final position in the hypotha-

lamus before birth [6]. In addition, GnRH neurons

during postnatal life recruit other populations—neu-

ronal, glial (tanycytes and astrocytes), and endothelial

—that connect with them to establish the ‘GnRH neu-

ral network’ [7–9]. This neural network fine-tunes

GnRH production and secretion in time and space.

Therefore, defects in the GnRH neurons themselves,

or in the GnRH neural network, result in defective or

delayed puberty [10]. Interestingly, the intercellular

communication within the GnRH neural network is

predominantly mediated by semaphorin signaling,

which plays a fundamental role in the development

of hypothalamic circuits but also in the control of

GnRH release by circulating sex steroids [11]. Defec-

tive semaphorin signaling leads to hypogonadotropic

Fig. 1. Neuroendocrine circuits controlling puberty (left) and metamorphosis (right). Note that for simplicity, only one pathway in each

Drosophila lobe is shown, although these neural circuits are duplicated in each lobe. We have also reversed the orientation of the

Drosophila larval brain to facilitate comparison with the mammalian brain. AstA, allatostatin A; AstAR1, allatostatin A receptor 1; Crz,

corazonin; CrzR, corazonin receptor; GnRH, gonadotropin-releasing hormone; Kiss1, kisspeptin 1; Kiss1R, kisspeptin 1 receptor; Oamb, octo-

pamine receptor in mushroom bodies; PTTH, prothoracicotropic hormone; and tor, torso.

360 The FEBS Journal 290 (2023) 359–369 � 2022 The Authors. The FEBS Journal published by John Wiley & Sons Ltd on behalf of

Federation of European Biochemical Societies.

Sexual maturation in flies and mammals J. Guirado et al.



hypogonadism [12], defective neuroendocrine control

of the adult ovarian cycle [13], and obesity [14].

The most potent upstream pubertal signal known to

activate pulsatile firing of GnRH neurons is the neu-

ropeptide kisspeptin, a product of the Kiss1 gene, which

activates the G protein–coupled membrane receptor

Kiss1R (also known as GPR54) in GnRH neurons in

the median eminence [15–18]. Mature kisspeptins in

mammals are cleaved, and administration of decapep-

tide Kp10 (Kiss-10), the minimum active site, can elicit

a robust increase in the circulating levels of GnRH [19].

Kisspeptin-positive neurons are widespread in the

hypothalamus, mainly in the arcuate nucleus and in the

rostral anteroventral periventricular area [20], with a

third, less explored, population in the amygdala [21].

Kisspeptin neurons in the arcuate nucleus, named

kisspeptin/neurokinin B/dynorphin (KNDy) neurons,

also coexpress the tachykinin neurokinin B and the

endogenous opioid peptide dynorphin [22,23].

Increased activity of the kisspeptin–Kiss1R signal in

response to complex and ill-defined reciprocal positive

and inhibitory signals mediated by KNDy neurons

correlates with the GnRH pulse generator and the

onset of puberty [24]. The kisspeptin neuron popula-

tion in the anteroventral periventricular area is notably

larger in female rodents and is involved in the preovu-

latory surge of gonadotropins [25]. Importantly, a lack

of either kisspeptin or Kiss1R results in absent or

delayed puberty onset in animals and hypogo-

nadotropic hypogonadism in humans [26–28]. How-

ever, genetic ablation of kisspeptin or Kiss1R neurons

using a diphtheria toxin fragment specifically in these

cells leads to no change in the timing of the onset of

puberty or attainment of fertility [29]. Interestingly, if

kisspeptin neurons are ablated in adult mice, fertility is

inhibited, suggesting that there is compensation during

the formation of reproductive neural circuits that

occurs early in development [30].

The onset of puberty is regulated by many permis-

sive factors [31]. For example, in seasonal breeders the

photoperiod signals the optimal time of year for the

onset of puberty [32]. Among the different pubertal

regulators, nutritional and metabolic cues have been

shown to play a critical role in the central control of

puberty, with numerous studies in rodents and humans

indicating that a female’s fat reserve must exceed a

critical threshold to allow the onset of puberty [33]

and thus signal the attainment of sufficient somatic

growth to support pregnancy. In fact, the escalating

prevalence of child obesity has been blamed for alter-

ations of the age of onset of puberty [34], and malnu-

trition and intensive physical training can delay

puberty [35,36].

In this regard, classical studies in mice [37] and

humans [38,39] showed that a deficiency of leptin (a

hormone secreted by fat cells) or its receptors (which

signal the amount of energy stored in the body) leads

to hyperphagia, early-onset obesity, and delayed or

complete failure to initiate the pubertal transition.

Despite these phenotypes and the fact that leptin mod-

ulates the expression of Kisspeptin in the hypothala-

mus [40], leptin receptors are low or null in Kisspeptin

neurons and GnR neurons [20,41], which supports an

indirect mode of action of leptin and other hormonal

signals in the regulation of these neuronal populations

via mechanisms that are poorly defined. For example,

other populations that would play a fundamental role

in these processes would be anorexigenic neurons

expressing pro-opiomelanocortin and cocaine- and

amphetamine-regulated transcript (POMC/CART neu-

rons) and orexigenic neurons expressing neuropeptide

Y and agouti-related peptide (NPY/AgRP neurons),

which are activated in conditions of an excess and defi-

cit of energy, respectively. NPY and AgRP have been

shown to inhibit Kisspeptin neurons [42], whereas

POMC neuropeptides (alpha-melanocyte stimulating

hormone and CART) have been reported to modulate

GnRH neurosecretory activity acting via melanocortin

receptors (MC3R and MC4R) [43–45]. In a recent arti-

cle, Lam et al. [46] reported that melanocortin signal-

ing via MC3R also plays a fundamental role in the

control of puberty in humans. Humans who carry

loss-of-function mutations in MC3R showed delayed

puberty accompanied by reductions in linear growth,

lean mass and circulating levels of insulin-like growth

factor I (IGF1), thus linking conserved nutritional cues

to control of puberty [46]. Finally, an alternative to

the canonical kisspeptin–HPG pathway involving de

novo ceramide synthesis at the hypothalamic paraven-

tricular nucleus and ovarian sympathetic innervation

has recently been characterized as playing a fundamen-

tal role in obesity-induced precocious puberty in

female rats [47].

While it is mainly lipid signaling molecules that

seem to play a fundamental role in the onset of pub-

erty, other master metabolic hypothalamic sensors,

such as the mammalian target of rapamycin (mTOR),

AMP-activated protein kinase (AMPK) and sirtuin 1

(SIRT1) [48], have also been linked to metabolic/nutri-

tional status and pubertal timing.

For instance, AMPK (a highly conserved serine/

threonine kinase that senses glucose and energy status)

and SIRT1 (a nicotinamide adenine dinucleotide

[NAD+]-dependent deacetylase) are activated in condi-

tions of negative energy balance, and both operate

in kisspeptin-positive neurons in the arcuate
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hypothalamus to delay pubertal timing independently

of body weight [49,50]. At least for SIRT1, pubertal

timing mechanistically involves epigenetic repression of

the puberty-activating gene Kiss1 [50]. In contrast,

mTOR (a second serine/threonine kinase, which

detects amino acid availability) is activated in the

inverse pattern and has the opposite behavior to those

of AMPK and SIRT1, at the time of puberty [51].

Mechanistically, in mouse embryonic fibroblasts, acti-

vated AMPK can inhibit mTORC1 by directly phos-

phorylating the tumor suppressor tuberous sclerosis

complex 2 (TSC2) and the critical mTOR complex 1

(mTORC1)-binding subunit, raptor [52]; in addition,

glyceraldehyde 3-phosphate dehydrogenase (GAPDH),

a glycolytic enzyme, has been shown to be a critical

mediator of AMPK-driven SIRT1 activation [53].

Future research will determine the mode of action of

these cellular sensors in Kiss1 cells or in other popula-

tions of the GnRH neural network in the control of

puberty.

Integration of signals by PTTH
neurons in the coordination of growth
and metamorphosis

In the larval central brain of Drosophila melanogaster, a

pair of prothoracicotropic hormone (PTTH)-releasing

neurons located in each hemisphere has long been con-

sidered to be the primary promoting factor in the

biosynthesis of the hormone ecdysone, the main steroid

in insects. These neurons project and secrete PTTH, a

neuropeptide initially identified in the silkworm Bombyx

mori [54], into the prothoracic gland (PG), where

they activate the Ras/Raf/ERK (extracellular-signal-

regulated kinase) MAP (mitogen-activated protein)

kinase pathway via its receptor tyrosine kinase, torso, to

promote ecdysone production for regulating larval mat-

uration [55]. Ptth gene transcription significantly

increases 12 h before pupariation, and genetic ablation

of PTTH neurons extends the third instar (L3) larval

stage and delays the time to pupariation by 4 or 5 days,

with a significant increase in adult body size [56]. A

recent study in Ptth-null mutants showed only a modest

delay of 1 day in the timing of metamorphosis [57], indi-

cating that PTTH cannot be considered as the main pro-

motor of ecdysone synthesis. The existence of one or

more additional ecdysteroidogenic signals produced by

the PTTH neurons could explain the difference in delay

observed in response to PTTH loss compared with

PTTH neuron ablation [58].

Recent studies have reported that the timing of

PTTH secretion is controlled by different neuropep-

tides expressed in different larval cell populations

(Fig. 1), including the Drosophila kisspeptin homolog

allatostatin A (AstA) [59] and GnRH homolog cora-

zonin [60], as well as the neurotransmitters acetyl-

choline and octopamine [61].

AstA is expressed in a pair of neurons located in the

basolateral protocerebrum, and GRASP (green fluores-

cent protein [GFP] reconstitution across synaptic part-

ners) analysis [62] detected a physical interaction

between the axons of AstA neurons and the dendrites

of PTTH neurons and insulin-producing cells [59].

AstA receptor 1 (AstAR1) is the insect homolog of

mammalian Kiss1R, and its knockdown in PTTH

neurons resulted in developmental delay and larger

pupae—a phenotype similar to that of Ptth-null

mutants [57,59].

A second neuropeptide, corazonin, is expressed in

three pairs of neurons located in the dorsolateral and

dorsomedial protocerebrum [63,64]. GRASP analysis

on this cell population detected GFP expression in

PTTH neurons and PG cells [60]. Interestingly, ultra-

structural studies confirmed this communication and

revealed bidirectional connectivity between corazonin

and PTTH neurons [60]. In this case, knockdown of the

corazonin receptor (CrzR), a member of the GnRH

receptor superfamily on PTTH neurons, increased pupal

body size without affecting pupariation timing [60].

Classical neurotransmitters that are widespread in the

central larval nervous system are also involved in regu-

lating the activity of PTTH neurons in Drosophila. In a

recent report, Hao et al. [61] showed that among neuro-

transmitters, only acetylcholine and low doses of octo-

pamine increased intracellular Ca2+ levels in PTTH

neurons. Pharmacological treatment with cadmium

chloride, a voltage-dependent Ca2+ channel antagonist,

abolished octopamine-induced Ca2+ responses in the

green fluorescent calcium sensor GCaMP6m (medium)-

expressing PTTH cells [61], suggesting that low doses of

octopamine might modulate the activity of PTTH cells

via the G protein–coupled b3-octopamine receptors

(Octb3R). Octopamine-mediated signaling, likely occur-

ring at the level of the subesophageal zone, has been

shown to regulate corazonin neurons in systemic growth

[60]. Genetic analysis performed only on acetylcholine

receptors showed that depletion of the a1 and a3 sub-

units of nicotinic receptors, but not muscarinic recep-

tors, reduced the Ca2+ responses of PTTH neurons to

acetylcholine and also increased pupal body size without

affecting pupariation timing [61]; this is a very similar

phenotype to that obtained with the neuropeptide cora-

zonin [60]. The lack of effect on pupariation time sug-

gests that corazonin and acetylcholine neurons affect

PTTH neurons to promote basal ecdysteroid biosynthe-

sis, but not its peak. Monitoring of GCaMP6s (slow)
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activity in PTTH neurons after corazonin neuron acti-

vation revealed a strong response only during the mid-

L3 larval stage, but not later [60], which would support

this hypothesis. In contrast, maximal AstA/AstAR1

activity has been observed toward the end of larval

development [59], likely anticipating the rise in PTTH

levels and the onset of metamorphosis.

Furthermore, extensive studies have shown that

PTTH neurons are under the control of circadian

rhythms in the blood-feeding hemipteran Rhodnius

prolixus [65]. In Drosophila, pigment-dispersing factor

(PDF)-producing clock neurons contact PTTH neu-

rons, and PDF influences the transcriptional periodic-

ity and attenuates the rise of Ptth transcription before

pupariation [56] suggesting that circadian rhythms

may control PTTH release in Drosophila as well. When

larvae face tissue damage signals during their develop-

ment, PTTH neurons and insulin-producing cells

receive inputs from leucine-rich repeat–containing G

protein–coupled receptor 3 (Lgr3)-positive neurons [66]

to synchronize growth and maturation until the dam-

age is resolved.

PG neurons as a neuroendocrine
center in the coordination of growth
and metamorphosis: a network of
increasing complexity

As the major endocrine organ that dictates puparia-

tion, the PG plays a central role in integrating multiple

signals (Fig. 2) that inform the state of growth and

maturation to ultimately control secretion from the

organ and trigger the juvenile-to-adult transition.

These cross talks include autocrine signals generated in

the PG itself, which do not involve PTTH neuron

activity [58,67,68], and brain-derived [64,69] and

Fig. 2. Scheme of the integration of autocrine, brain- and non-brain-derived signals by the prothoracic gland for the coordination of growth

and maturation in Drosophila. 5-HT, 5-hydroxytryptamine (serotonin); 5-HT7, 5-hydroxytryptamine (serotonin) receptor 7; Actb, activin-b; Alk,

anaplastic lymphoma kinase; apolpp, apolipophorin; babo, baboon; dpp, decapentaplegic; Ec, ecdysone; Egfr, epidermal growth factor recep-

tor; ER, endoplasmic reticulum; Fatp2, fatty acid transport protein 2a; jeb, jelly belly; Octb3R, octopamine b3 receptor; PTTH, prothoraci-

cotropic hormone; Pvf3, PDGF- and VEGF-related factor 3; PG, prothoracic gland; Pvr, PDGF- and VEGF-receptor related; tkv, thickveins;

Sema1a, semaphorin1a; spi, spitz; tor, torso; upd2, unpaired 2; and vn, vein.
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non-brain-derived signals [70–73] from organs that

convey nutritional status, environmental development

and other unknown inputs that directly impact the

PG.

Autocrine signals primarily include multiple receptor

tyrosine kinases (anaplastic lymphoma kinase [Alk],

PDGF- and VEGF-receptor related [Pvr], and epider-

mal growth factor receptor [EGFR]) that, together

with PTTH/torso, seem to share the same signaling

pathway to control pupation through Ras/ERK acti-

vation [58]. Why is there this redundancy of receptor

tyrosine kinase signaling in the PG? Different explana-

tions have been proposed: (a) to confer robustness and

flexibility in response to changing developmental con-

ditions, (b) to act synchronously or sequentially and

achieve Ras/ERK activation that is strong enough to

drive the massive PG secretion necessary for carrying

out puparation or (c) to induce other unidentified

downstream signaling pathways in addition to Ras/

ERK signaling [58]. Although receptor tyrosine kinase

activation is the predominant signaling in the PG, acti-

vation by monoaminergic autocrine signaling through

the G protein–coupled octopamine-b3 receptor

(Octb3R) has also been reported to act upstream of

insulin/insulin-like growth factor (IIS) ligand family

and Ras/ERK signaling [68]. A second G protein–cou-
pled receptor in the PG, 5-hydroxytryptamine receptor

7 (5-HT7), responds to food-related signals from a

subset of stomatogastric serotoninergic (SE0PG) neu-

rons that directly innervate the PG [69]. In conditions

of nutrient scarcity, the projections of SE0PG neurons

are reduced [69], leading to decreased 5-HT signaling

to PG cells and, as a result, reduced ecdysone release

and delayed development, likely due to defective trans-

lation in those cells [74].

Multiple inputs from non-cerebral organs seem cap-

able of influencing pupariation through diffusible sig-

nals reaching the PG (Fig. 2). Unlike the signaling of

tissue damage mediated by the positive regulation of

insulin-like peptide 8 [66,75], under normal physiologi-

cal conditions, decapentaplegic (Dpp), a ligand of the

transforming growth factor-b (TGF-b) signaling path-

way, is released from the imaginal disks to the hemo-

lymph and its signaling via the thickveins (Tkv)

receptor also negatively regulates the production of

ecdysone [72]. Activin, another TGF-b ligand, the

source of which is unknown, functions in this process

in the PG antagonistically to Dpp signaling [71].

Although the mode of integration of these pathways is

not well defined, the hypothesis predicts that Dpp sig-

naling must be reduced in the PG to allow pupariation

to proceed. A recent study has shown that the salivary

gland–derived peptide Sgsf is secreted into the

hemolymph to regulate systemic growth via the

IIS/target of rapamycin (TOR) signaling pathway

without affecting metamorphic timing [73]. Interest-

ingly, ablation of the salivary glands is necessary to

control metamorphic timing, which also suggests the

existence of one or more additional signals produced

by salivary gland cells through mechanisms that are

still unknown.

Despite this cross talk of multiple pathways con-

verging on the PG, it remains to be clarified how these

triggers of ecdysone biosynthesis affect cholesterol traf-

ficking [76–78] and the transcription and chromatin

remodeling of Halloween ecdysteroid biosynthetic

genes [79,80] for timing ecdysone production in

response to these stimulus-triggered signaling path-

ways. Although 20 ecdysteroidogenic transcription fac-

tors have been identified to date, we still do not fully

understand their mechanism of action and whether it

is direct or indirect, or their mode of interaction in the

expression of Halloween genes. There is evidence that

the transcription of Halloween genes is directly inhib-

ited by epigenetic control, via the nuclear receptors

methoprene-tolerant (Met) and germ cell–expressed
(Gce) via Kr€uppel homolog 1 (Kr-h1) [81,82].

It is also unclear whether communication between

the fat body, the larval fat and energetic reservoir, and

the PG (either directly or indirectly via PTTH neurons)

informs that adequate overall reserves of energy or

specific nutrients/metabolites have been reached to meet

the demands of subsequent reproduction and thus

allow pupariation. If this were so, it would mean that

despite the evolutionary distance, the process of meta-

morphosis is governed by principles more similar to

puberty than we might think. We also mostly do not

know what cellular processes occur at the level of the

PG once the larva has passed the critical weight, lead-

ing to the production and secretion of ecdysone [83].

We have recently described that inhibiting lipid

transport from the fat body via knockdown of apolipo-

phorin (apolpp), or in the PG via knockdown of

Fatty acid transport protein 2 (Fatp2), Semaphorin1a

(Sema1a) and leptin-like unpaired 2 (upd2), precludes

the transition through the critical weight without mea-

surable impairment in the IIS signaling pathway and

results in larvae that never left the food and continued

growing and gaining weight until death [70]; these

effects are analogous to those of leptin/LepR loss in

patients and mice. Silencing of cationic amino acid

and sugar transporters had no effect. These results

support a critical role of lipid signaling, transport, and

sensing in the events leading to sexual maturation

commitment. Validating our conclusion, expression of

the human leptin transgene in the PG rescued both the
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obese and non-pupating phenotypes of upd2-mutant

and Sema1a-mutant animals, suggesting that a fat sen-

sor mechanism similar to the leptin system in mam-

mals may act in the larval PG to coordinate body

weight and growth for pupariation. Supporting the

involvement of lipids in sexual maturation, a recent

study has shown that enhancing cholesterol signaling

in PG cells, a substrate for ecdysone production, leads

to increased body growth and premature pupariation

[84].

Interestingly, Sema1ai PGs are distinctly different

from PGs with knockdown in the IIS/TOR pathway:

we did not detect any alteration in the size or

endoreplication of the Sema1ai PG cells, a feature pre-

viously linked to ecdysone synthesis [85]. Neither IIS/

TOR nor PTTH/torso/Ras activation corrected larval

arrest and obesity caused by Sema1a depletion in PG

cells [70]. Our finding that TOR activation cannot res-

cue Sema1a deficiency in the PG suggests either that

nutrient sensing by TOR is upstream of Sema1a or

that Sema1a-mediated events may provide compe-

tence for responding to TOR. We favor this second

possibility.

Analysis of the metabolic status of Drosophila larvae

using an optimized NMR profiling assay and other

commercial assays in dissected tissues and whole ani-

mals [86] showed elevated levels of sugar and lipids

accumulated during the extension of feeding behavior

[70]. Together with this metabolic analysis, we used

super-resolution imaging of the PG to determine that

the high secretory competence of the PG requires

endocytosis, endoplasmic reticulum remodeling and

ribosomal maturation for the acquisition of the high

biosynthetic and secretory capacity of the PG cells; all

these processes are Sema1a-dependent. Interestingly,

we found that nanobody-based retention of upd2::

GFP in the nuclei of PG cells led to a non-pupating

and massively obese phenotype that was indistinguish-

able from the phenotype resulting from the knock-

down of upd2 in PG cells [70]. In the brain and

peripheral organs, fat body cells and imaginal disks

respond to upd2 and ecdysone to initiate nutrient-

independent growth, differentiation, and maturation

[70,87–89].

Conclusions

Recent studies of mammalian puberty and insect meta-

morphosis have shown that, despite their evolutionary

distance and physiological differences, these critical

events exhibit similar design principles and conserva-

tion of the molecular components involved. A variety

of environmental and internal cues (e.g., nutrition,

photoperiod, temperature, and tissue damage) appear

capable of influencing sexual maturation through the

activation of neuroendocrine organs, culminating in

steroid production and secretion. Among these signals,

the communication between peripheral body fat levels

and endocrine organs seems crucial and allows the

assessment of nutrient availability and the growth sta-

tus of internal organs, ensuring that maturation starts

at the right time. This is extremely concerning given

the current rampant prevalence of childhood obesity

and its possible relationship with the increasing inci-

dence of early puberty [34], which affects growth and

final body size, and which is associated with a number

of adult morbidities [90–92].
Holistic investigation through the combined use of

model organisms is certainly necessary to identify

upstream signals (lipids, amino acids, etc.) and their sen-

sors in the brain, as well as how these signals are inte-

grated in the control of metamorphosis and puberty.
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