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What is useful about Bayesian methods?
Researchers in child and adolescent mental health
often wish to use statistical methods to answer
questions like ‘How certain can we be that treatment
A is more efficacious than treatment B?’ or ‘How
strong is the evidence for a non-trivial positive
association between these two variables?’. Different
sorts of statistical analysis can answer different sorts
of questions, and it is important to ask the sort of
question that can actually be answered by your
analysis (Lakens, 2021). Bayesian methods can give
direct answers to questions such as those quoted
above, in the form of probabilities such as 72% or
98%, given our prior knowledge and what we
observed in our study. The reason for this is that
the output of Bayesian methods are probability
distributions for model parameters, conditional on
the data and our assumptions. We can use these
probability distributions, properly called posterior
distributions, to make directly interpretable proba-
bility statements about any model parameters of
interest (e.g. 75% probability of b > 0,
Kruschke, 2015).

A very useful property of this form of inference is
that it is equally applicable for assessing the
strength of evidence for no association or effect as
it is for the opposite. Bayesian methods therefore
simplify the study and reporting of null findings. A
posterior distribution concentrated around zero rep-
resents evidence for a non-existent or very small
effect just as much as a posterior concentrating on a
large effect would be evidence of that.

Good small sample performance

In a lot of child and adolescent mental health
research, it is difficult to get large sample sizes,
and underpowered studies are common. More data
will of course always give more information than less
data of the same kind, whatever the analytic method,
but Bayesian methods have many favorable proper-
ties when sample sizes are small. Bayesian

estimation does not rely on the asymptotic properties
of large samples, and will perform well with small
sample sizes as long as one is careful about making
realistic assumptions (McNeish, 2016).

Further, the way Bayesian methods can yield
graded evidence allows us to get more information
from small studies. For example, say we conduct a
small treatment study, and find that 72% of the
posterior distribution for the difference between the
groups lies above our threshold for a clinically
significant difference – in other words a posterior
probability of 72% for such a difference. While that is
not a level of certainty that would justify drawing
clinical implications, it is still more likely than not
that there is actually a difference. Such a finding
would thus justify collecting more data to increase
the precision of our estimates, and hence our
certainty.

Sequential data analysis

If we decide to collect more data in such a situation,
it is easy to incorporate it in a Bayesian analysis. The
sampling intentions of the researcher does not affect
a Bayesian analysis the same way as it does null-
hypothesis significance testing. We can in fact keep
sampling new cases and use them to update our
analysis until we achieve a satisfactory level of
precision in the parameter estimates
(Kruschke, 2015). Rather than having to plan our
sample size based on perhaps insufficient informa-
tion, we can run the study until we are satisfied with
the certainty of our conclusions, or until we run out
of patients or funding. A recent study within our field
of research gives reason to believe that in many cases
the researchers would have been able to conclude
with Bayesian methods after collecting a smaller
sample, and could have terminated their data col-
lection earlier than they did (Bertelsen, Hoffart,
Rekdal, & Zahl-Olsen, 2022). Participation in
research represents an investment of time and effort
from participants, and research requires allocation
of limited resources from research funders; as
researchers, we should not expand either of them
needlessly.Conflict of interest statement: No conflicts declared.
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Priors – an advantage, not a problem

When conducting a Bayesian analysis, we combine a
prior distribution for the parameters with a likeli-
hood for the data once we observe them to get the
posterior distribution. Priors are probability distri-
butions assigned to all model parameters indepen-
dently of the observed data. They encode in a
transparent way what assumptions we are making
about the parameter values, as long as we report our
priors when publishing our findings. Some who are
unfamiliar with Bayesian statistics feel uneasy about
letting information external to the data inform the
analysis in this way. However, we always make
assumptions when conducting statistical analyses,
Bayesian or not, and we always actually know
something about the possible range of parameter
values (Gelman, Simpson, & Betancourt, 2017).

In a regression analysis with standardized predic-
tors and outcomes in child and adolescent mental
health, we know with practical certainty that no
coefficient will be greater than �4.0, as in most cases
it would be sensational to find a coefficient of �2.0 or
larger. This information can and should be included
in the analysis; our posterior distribution would
otherwise understate what we have actually learned
from gathering and analyzing our data. In our view,
priors are one of the many advantages of Bayesian
analysis, not a difficulty that we need to bypass.
Having priors allows us to integrate previous find-
ings from our own studies or the literature directly in
the analysis in a transparent way: When setting up
our analysis, we could use the posterior from a
previous study or the distribution of effects found in
a meta-analysis to inform our choice of prior distri-
butions. Using such informative priors can protect
against spurious findings (Pedroza, Han, Truong,
Green, & Tyson, 2018), but it will also ensure that
the uncertainty in our parameter estimates is not
inflated by excluding relevant information from the
analysis.

How to get started with Bayesian methods?
Starting to use Bayesian statistics can nevertheless
seem like a large hurdle for a researcher not familiar
with it. Learning new methodology always requires
an investment of time, but there are many useful
resources available. We will here give a brief sketch
of a recommended Bayesian statistical workflow
(Gelman et al., 2020), and introduce core concepts.
In the online supplement to this editorial perspec-
tive, we have also provided runnable R-code demon-
strating a simple Bayesian analysis, which can
provide a starting point for the interested reader.
We also recommend the more extensive introductory
papers by Baldwin and Larson (2017) or by
Kruschke and Liddell (2018) as well as the introduc-
tory reading list compiled by Etz, Gronau, Dablan-
der, Edelsbrunner, and Baribault (2018).

The steps of a Bayesian analysis

There are various software implementations of
Bayesian statistics. We recommend the Stan plat-
form for model fitting (Stan Development
Team, 2019). Stan has a very powerful sampling
algorithm with interfaces for common statistical
software (R, Stata and Python among others). For R
users, the package brms (B€urkner, 2017) is a pop-
ular choice, featuring flexible specification of multi-
level regression models with syntax resembling the
widely used lme4 package, and model fitting done in
Stan. Our examples here will mainly refer to brms
functionality, but custom models can also be coded
directly in the Stan language, allowing for incredible
flexibility in specifying complex or novel models.

Defining a model

The first step in a Bayesian analysis is to define the
model, choosing a likelihood for the data and priors
for all necessary model parameters. Our choice of
likelihood will be informed by our assumptions and
knowledge about the data-generating process we are
trying to model. In many applications, we perform
some form of regression modeling, assuming our
data to be continuous normally distributed vari-
ables. This implies a normal distribution for the
likelihood. However, if we are concerned about
outliers distorting our estimates, we can easily use
a Student’s t-distribution with heavier tails to
achieve a more robust fit. We can also model
regressions of dichotomous, ordinal, categorical, or
count variables by choosing appropriate distribu-
tions.

We then proceed to consider the priors needed for
the model parameters, whether they be regression
coefficients, error variances, or other parameters. A
useful way of evaluating prior choice is to conduct a
Prior Predictive Check. We use computer simulation
to make draws from the prior distributions, and then
draw a value of the outcome variable from the
likelihood conditional on the values drawn from the
priors, repeating this process thousands of times.
Combining these draws approximates the distribu-
tion of the outcome variable implied by our priors. If
that distribution is missing likely values or ranges,
our priors are too restrictive, and if it contains
impossible or too many improbable values, we actu-
ally know more than we have encoded in our priors.
In the latter case, we should change them. In the
brms package, there are convenient functions to
conduct Prior Predictive Checking.

Fitting the model and verifying accuracy of
computation

After specifying a model with priors, we want to fit it
to data, multiplying our prior distribution with the
likelihood of the data according to Bayes theorem to
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derive the posterior distribution. Usually it is impos-
sible to derive the posterior distribution analytically,
and we must approximate it using Markov Chain
Monte Carlo (MCMC) methods, which is what our
statistical software allows us to do.

After fitting a model, we must first verify that our
use of MCMC was successful. Stan has sensitive
diagnostics to assist us in this, which are available in
all software interfaces. If there are signs of compu-
tational failure, the different chains of the algorithm
have not converged to the same posterior, or the
number of effectively independent samples from the
posterior is insufficient, we should not trust that the
algorithm has validly approximated the full posterior
distribution. If so, we need to sort out our compu-
tational problems before moving on with our analy-
sis.

Checking model fit

Satisfied that the computation was successful, we
proceed to consider whether the model fits the data.
To do this, we conduct a Posterior Predictive Check.
We draw samples from the distribution of the
dependent variable that is implied by our fitted
model, given our predictors. If our model fits well,
this distribution should resemble the actual distri-
bution of our dependent variable. If it does not, we
must consider what it is about our data that our
model is failing to capture, and perhaps revise the
model.

Inspecting the posterior distribution

With a reasonably well-fitting model, we can use the
posterior distributions of the model parameters for
statistical inference. We can plot or summarize the
posterior distributions in various ways. The mean of
the posterior is our best point estimate, given an
approximately normal posterior, but we should
always report and look for the uncertainty in the
estimates. We can calculate the proportion of the
posterior above or below some value, or report
credible intervals. These are intervals containing
some proportion of the posterior distribution. They
can be interpreted as the range where the true
parameter value can be found with the correspond-
ing probability. It has been shown that classical
confidence intervals are often incorrectly interpreted
as Bayesian credible intervals (Hoekstra, Morey,
Rouder, & Wagenmakers, 2014), suggesting that
credible intervals have very intuitive interpretations.
Which intervals to report depends on the level of
certainty required, credible intervals such as 50%,
66%, 89%, 90%, or 95% have been used. Reporting
several intervals can be informative to the reader.
Note that 95% credible intervals are known to be
unreliable without many samples from the tails of
the posterior distribution, so if they are to be
reported, care must be made that the effective

sample size (ESS) is sufficient. Exactly how many
samples are sufficient depends on how the effective
sample size is calculated. Recently developed meth-
ods allow for estimating the tail ESS separately, and
when using these estimators (implemented as stan-
dard in recent versions of brms and other Stan
interfaces) a tail ESS of at least 400 for each
parameter is considered adequate (Vehtari, Gelman,
Simpson, Carpenter, & B€urkner, 2021). When using
older estimators of the ESS, 10,000 for the overall
sample size has been recommended for reliable use
of the 95% interval (Kruschke, 2018).

Comparing to other models

We can also compare our model to other models
fitted to the same data, if that is relevant to our
research question. We can use Bayes Factors to
quantify the level of evidence provided by the data
for one model over another, for instance for a
regression with a treatment by time interaction
compared with one without (Rouder, Speckman,
Sun, Morey, & Iverson, 2009). We can also use
different forms of cross-validation to estimate how
well our models would fit to another sample than the
one we collected (Vehtari, Gelman, & Gabry, 2017).
Cross-validation is particularly useful if we are
concerned that a complex model may overfit –
representing particularities of the sample rather
than substantial features of what we are trying to
model. Efficient cross-validation is available in the
brms package.

Conclusions
In summary, Bayesian methods are useful, and align
well with the kinds of questions we wish to answer
with our analyses. We hope this introduction will
encourage many readers to try their hand at learning
Bayesian analysis, as well as assist them when
evaluating such analyses reported in this study.
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