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Abstract

Knowing what information a user wants is a paramount challenge to informa-

tion science and technology. Implicit feedback is key to solving this challenge,

as it allows information systems to learn about a user's needs and preferences.

The available feedback, however, tends to be limited and its interpretation

shows to be difficult. To tackle this challenge, we present a user study that

explores whether tracking the eyes can unpack part of the complexity inherent

to relevance and relevance decisions. The eye behavior of 30 participants read-

ing 18 news articles was compared with their subjectively appraised compre-

hensibility and interest at a discourse level. Using linear regression models,

the eye-tracking signal explained 49.93% (comprehensibility) and 30.41%

(interest) of variance (p < .001). We conclude that eye behavior provides

implicit feedback beyond accuracy that enables new forms of adaptation and

interaction support for personalized information systems.

1 | INTRODUCTION

Understanding and knowing what the user wants in terms
of information is a paramount challenge for information
systems (Saracevic, 2007). Text mining techniques are cur-
rently employed to infer a user's information need through
estimating whether a document is similar to a query (infor-
mation retrieval), is popular among similar people or fri-
ends (collaborative filtering), or is similar to a user model
(cognitive filtering). Even though these techniques are
unmistakably successful, they seem to be plagued by a
magic barrier: A limit in their potential to predict the value
of information (Said & Bellogín, 2018; Voorhees, 2002).
Current techniques struggle to adapt to differences between
users, such as their knowledge and preferences, as well as
to differences within users, such as changing information
needs and interests (Hill et al., 1995). Because the value of

information differs per user and changes over time
(Belkin, 2008; Saracevic, 2007), continuous feedback is
needed to better predict whether and when information is
valuable to a user (Ghorab et al., 2013; Liu et al., 2020).

Asking users to provide copious and continuous input
about the information they want is not likely to succeed.
Instead, implicit feedback that does not require any inter-
action from the user is a more viable option (Barral
et al., 2016; Ghorab et al., 2013; Liu et al., 2020). Basic
on-line measures have already been successfully lever-
aged for text mining. Features from click-stream data,
browsing data, and query-text relations enhance binary
ranking precision by up to 31% (Agichtein et al., 2006)
and predict graded relevance assessments by up to
r = .411 (Guo & Agichtein, 2012). Additionally, physio-
logical signals (Barral et al., 2016) and, in particular, eye-
tracking (Li et al., 2018) holds the promise to expand on
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these results (Cole et al., 2015). Human attention follows
a distinctive and identifiable pattern for relevant and
nonrelevant results (Li et al., 2018). Eye-tracking data
can show what search results, or what parts of docu-
ments, are attended to and use this as feedback for query
expansion, refinement (Buscher et al., 2012), and even
construction (Ajanki et al., 2009). Relevance, in the sense
of binary text mining accuracy, can be detected from
eye-tracking with an accuracy of 64% (Liu et al. 2014),
74% (Gwizdka 2014), 80% (Bhattacharya et al. 2020), and
86% (Gwizdka et al. 2017).

The performance on predicting (binary) relevance
decisions from eye-tracking data confirms its potential
for implicit feedback. Notwithstanding, the intuitive con-
cept of relevance packs a vast complexity of human judg-
ment and experience. Users apply a range of criteria
when judging relevance, such as about the topicality,
credibility, style, and reading level of a document
(Schamber, 1994) and the story and visual effects of a
movie (Adomavicius & Kwon, 2015). This vast complex-
ity of human judgment subsequently shapes a cognitive-
affective experience of relevance (Ruthven, 2021). During
an evolving interaction session, a particular set of meta-
cognitive judgments and experiences unfolds, such as the
case with users' reflection on processing dynamics: While
cognitive ease is typically associated with feelings of satis-
faction (Al-Maskari & Sanderson, 2010), intermediate
complexity seems associated with feelings of interest
(Dubey & Griffiths, 2020; van der Sluis et al., 2014). The
importance of these cognitive-affective judgments and
experiences during interaction indicate a potential for
feedback “beyond the conventional accuracy metrics”
(McNee et al., 2006, p. 1097).

Eye-tracking offers a unique potential to unpack part
of the complexity inherent to relevance and relevance
decisions. Starting with the early work of Hess and
Polt (1960, 1964), the eyes are known to reflect aspects of
both cognitive processing and interest value. Subsequent
research highlights that the eyes are particularly adept to
reflect moment-to-moment cognitive processes (Just &
Carpenter, 1980; Miller, 2015; Rayner, 1998). Among
others, the eyes rest longer on words or regions that are
difficult to process (Rayner et al., 2006) as well as attend
to stimuli that offer intermediate levels of uncertainty in
information theoretic terms (Gottlieb, 2012; Kidd &
Hayden, 2015). It is thought that interested individuals
direct attention and employ cognitive resources to main-
tain intermediate rates of information acquisition
(Blain & Sharot, 2021; Graf & Landwehr, 2015; Kidd &
Hayden, 2015). Their ability to offer continuous feedback
makes it likely that tracking the eyes can reveal both the
processing dynamics and attention patterns that are char-
acteristic of interested individuals.

Notwithstanding the identified uses for and potential of
eye-tracking data for implicit feedback, it is unclear
whether or not the unique potential of the eyes is as an
indicator of (binary) relevance decisions, cognitive
processing, or interest, nor how well these constructs can be
distinguished using eye-tracking data. Similar to the inher-
ent ambiguity in behavioral traces data (Van der Sluis
et al., 2017) and physiological signals (van den Broek, 2011),
eye-tracking data are difficult to interpret. Whether these
cognitive processes become apparent through observing
eye behaviors during reading is unclear, as many cognitive
processes intertwine and observed effects are typically
small and indistinctive when combined across word, sen-
tence, and discourse levels (Rayner et al., 2006). In addi-
tion, eye-tracking data are inherently noisy, in particular
in ecologically valid settings. There is likely to be a signifi-
cant variation in head position and distance, lighting con-
ditions, and a low sampling frequency, especially with
inexpensive consumer-market eye trackers. Given these
challenges, eye-tracking feedback on cognitive-affective
processes is typically proposed and explored with highly
controlled setups and stimuli (Rayner et al., 2006), which
raises questions on its feasibility in an applied setting like
text mining.

Incorporating both the opportunities and challenges
that the eyes offer for implicit feedback, this paper pre-
sents a study that examines whether or not tracking the
eyes can offer feedback above and beyond conventional
accuracy metrics. We explore how well comprehensibility
and interest can be identified and distinguished and we
discuss how these aspects possibly feed back to inform
text mining techniques. We frame interest following the
emotion-appraisal theory of interest, which considers
interest as the momentary feeling-of-interest induced by
an external stimulus, here texts (Silvia, 2006). This fram-
ing aligns with conceptualizations on situational interest
but contrasts with more persistent personal or individual
interests (Shin & Kim, 2019; Sinnamon et al., 2021). It
furthermore hypothesizes that a certain level of
processing difficulty is conducive to interest, but within
limits of comprehensibility (Sinnamon et al., 2021; van
der Sluis et al., 2014).

By exploring the ability of the eyes to unveil compre-
hensibility and interest, this study aims to bring a classi-
cal and long-standing difference in the interpretation of
eye behaviors, between cognitive activity (Hess &
Polt, 1964) and interest value (Hess & Polt, 1960), within
the context of human–information interaction. Next, we
discuss the interpretation of eye-tracking data. Subse-
quently, in section 3, the experimental method is
described, including subsection 3.4. In section 4 the
results are presented. Finally, in section 5 we discusses
the results and reflect on the implications.
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2 | BACKGROUND: EYE
BEHAVIOR

Our eyes follow a distinctive and identifiable pattern
while reading. The task at hand (e.g., reading) and con-
text (e.g., text) influence the major characteristics of eye
behavior (Luke & Henderson, 2013; Rothkopf
et al., 2007). Even though this means that eye behaviors
are mostly determined by the task and text, higher-order
cognitive processes—like comprehension and interest—
can change specific features of these behaviors (Luke &
Henderson, 2013). Hess and Poll early on identified this
potential of the eyes to reflect higher-order mental pro-
cesses: the interest in visual information (1960) and men-
tal activity caused by problem solving difficulty (1964).
This distinction reflects (a) the cognitive control hypothe-
sis (or: eye-mind link), which states that “the eye remains
fixated on a word as long as the word is being processed”
(Just & Carpenter, 1980, p. 330), relating fixations to cog-
nitive processing, and; (b) the “like more, look more”
assumption (or: information value link), which states
that interested observers shift their gaze towards stimuli
they value (Gottlieb, 2012; Miller, 2015). In the following
subsections, we will review both hypotheses with a spe-
cial attention for higher-order cognitive processes.

2.1 | The eye-mind link

In self-paced reading and eye-movement research, the
speed of reading and the movements of the eye are inter-
preted as indirect measurements of cognitive activity. Dur-
ing reading, the eyes make a series of rapid movements
(i.e., saccades) separated by periods when the eyes are rela-
tively still (called fixations). During the fixations new visual
information is encoded from text. Fixations typically last
about 200–250 ms, but neither shorter nor longer fixations
are uncommon. Saccades typically last about 20–40 ms,
depending on the distance traveled (Rayner et al., 2006).
Saccades that move backwards (called regressions) form
about 10% of all saccades in skilled readers and often travel
short distances (i.e., one word). In comparison to eye move-
ments, pupil size and blinks respond with a delay of 1.3 s
to changes in human cognitive activity (Just et al., 2003),
while they primarily respond to changes in brightness
(Beatty & Lucero-Wagoner, 2000).

Following the eye-mind link, lower-order processes
related to word decoding and recognition are causally
related to eye movements during reading. For example, the
printed word frequency determines as much as 30–90 ms
of total fixation duration per word (Inhoff & Rayner, 1986).
Furthermore, readers perceive a word including and within
its context. More semantically related words require less

fixation time to process. Similarly, shorter and more proba-
ble words (cf., n-grams) are more likely to be skipped over,
increasing saccade length and shortening fixation times
(Ehrlich & Rayner, 1981). A spill-over effect can also be
observed, when readers need to resolve an ambiguous
meaning of a word. Word sense ambiguity increases fixa-
tion times, possibly delayed to subsequent words when the
reader tries to get extra information before committing to a
meaning, and can cause regressions, when the reader ini-
tially committed to a wrong meaning (Rayner &
Duffy, 1986). These strong effects not only indicate that
lower-order processes related to lexical processing are caus-
ally linked to eye behaviors, but also that they can be
modeled fairly accurately: Objective word and word-
context characteristics explain the major part of variance in
aggregated number of fixations, fixation time, and saccade
length (Rayner et al., 2006).

In understanding text, readers must be able to inte-
grate information within and across sentences to form a
coherent discourse representation. Overall, such higher-
order processes manifest itself through longer and more
fixations, more time to read, and more regressions
(Rayner et al., 2006; Schotter et al., 2014), while the
sustained effort involved in comprehension is likely to
increase pupil size (Just et al., 2003) and decrease its vari-
ability (Toker & Conati, 2017). For example, readers slow
down at the end of sentences and subsequently show a
larger saccade into the next sentence, as presumably
readers wrap-up the information in a sentence (Rayner
et al., 2006). Also, fixations and regressions increase
when readers encounter inconsistencies between sen-
tences and look longer at pronouns, anaphora, and noun
phrases when the antecedent is distant or difficult to
identify. Contrary to lower-order processes, however,
higher-order processes are not causally linked to eye
behavior. They mainly become apparent when “some-
thing doesn't compute” (Rayner et al., 2006, p. 244), which
is less common for skilled readers and for normal, well-
written texts. This leaves it unclear whether the highly
controlled findings typical to reading comprehension
studies extrapolate to models of comprehensibility in an
applied context.

2.2 | The information value link

Eye behavior is closely linked to interest. Overt visual
attention is thought to share with interest that both seek
to maximize information value (Gottlieb, 2012). Given a
known task, observers shift gaze to sources that optimally
reduce their uncertainty pertaining to the next appropri-
ate action (Ballard & Hayhoe, 2009; Rothkopf
et al., 2007). Interested observers—not driven by a task—
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similarly shift their attention to sources they value; as
aptly captured by the “like more, look more” assumption.
Interest value is associated with sources that offer a
potential for uncertainty reduction and/or knowledge
acquisition (Gottlieb et al., 2013; Graf & Landwehr, 2015;
Silvia, 2006). The information value perspective of eye-
movement control draws close parallels between interest
and eye movements. It casts eye movements in probabi-
listic, information theoretic terms optimizing some form
of information value (Gottlieb, 2012; Gottlieb et al., 2013)
and explains why eye movements, for example related to
the relevance of search results, are fairly predictable
(Buscher et al., 2012). This type of eye movement control
depends on a known context where observers (and, simi-
larly, experimenters) can estimate the expected informa-
tion value of sources they can attend, for example by
reading an abstract or by skimming headings.

Even though the information value perspective sug-
gests a strong, formal, and granular link between interest
and eye movements, the subjective experience of interest
is generally considered a higher-order construct that
spans over longer periods of time than single gaze shifts
(Silvia, 2008b). To a certain extent, such subjective expe-
riences of interest are characterized by identifiable pat-
terns in reading behavior as well (O'Brien et al., 2020).
Readers spend more time on interesting sentences than
on less interesting sentences (Wade et al., 1993), while
interest tends to decrease rather than increase reading
time at a discourse level (Shirey & Reynolds, 1988; van
der Sluis et al., 2016). Once interested, readers presum-
ably employ their mental resources more effectively and
experience fewer distractions (Miller, 2015; van der Sluis
et al., 2016). These findings suggest that distinctive eye
behaviors both precede and follow on the activation of
motivational resources typical to the experience of inter-
est (Silvia, 2006). The distinctive patterns of interested
readers might be detectable; for example, as differences
between focal and ambient attention (Krejtz et al., 2016).

Promising examples exist of modeling higher-order
affective constructs related to interest. Jaques et al. (2014)
predicted students' curiosity with 73.17% accuracy by
modeling gaze transitions between various interface ele-
ments of an intelligent tutoring system and over fairly
long episodes of interaction (14 min). Sims and
Conati (2020) predicted users' confusion while using a
visualization tool with up to 82% accuracy using a neural
network trained with eye-tracking features. Bixler and
D'Mello (2016) predicted mind wandering while reading
with up to 72% accuracy (chance level of 60%) using vari-
ous classifiers with eye-tracking features and text charac-
teristics (i.e., difficulty). The differences in tasks, context,
and constructs make it unclear whether these results rep-
licate for interest during reading.

2.3 | The challenge of co-existence

As the preceding review shows, the influence of lower-
order processes via the eye-mind link is well established,
while the information value link interpretation is strength-
ening. These links support the understanding that eye
behaviors are fairly predictable within a well specified task
and context (Albrengues et al., 2019; Anderson et al., 2004;
Chandra et al., 2020; Luke & Henderson, 2013). It indicates
that the eyes are primarily driven by lower-order processes;
they “do not do anything at the request of higher-order cogni-
tive processes that they would not do anyway” (Luke &
Henderson, 2013, p. 1241). In parallel, both cognitive
(e.g., comprehension) and affective (e.g., interest)
processing seems to influence specific features and patterns
of eye behavior. Higher-order processes are, however, not
causally linked to eye behavior. This gives rise to a chal-
lenge of co-existence—of different higher and lower-order
processes that influence eye behaviors through possible
interactive and synergetic relationships (Goettker &
Gegenfurtner, 2021; Kaakinen, 2021).

As already indicated by Hess and Polt's (1960, 1964)
original claims, eye behaviors can be interpreted as both
cognitive activity and interest. This seemingly co-
existence is explained by a theoretically intricate relation-
ship between cognitive processing dynamics and the
experience of interest (Graf & Landwehr, 2015;
Silvia, 2006). To invoke interest, a text must contain a
certain level of novelty and complexity, yet still remain
comprehensible to a reader (O'Brien & McKay, 2016;
Silvia, 2006; van der Sluis et al., 2014). A model of inter-
est will therefore need to disentangle such distinctive
processing patterns from the processing dynamics shared
with comprehensibility.

Hess and Polt's (1960, 1964) original claims underpin
the eyes' potential to disclose both readers' comprehensi-
bility and interest. Co-existence, however, poses a clear
challenge to modeling higher-order constructs using eye-
tracking. We decompose this challenge as follows:

1. How well can differences in comprehensibility be
detected at discourse level for regular, non-
experimental (news) content?

2. Is it possible to unveil the experience of interest dur-
ing reading?

3. Can we untangle the different interpretations of eye
behaviors?

This triplet needs to be tackled to enable eye-tracking-
induced individual feedback on both comprehensibility
and interest during reading. In addition, reading is a
learned behavior which accordingly shows substantial
inter-personal differences in eye behaviors (Carter &
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Luke, 2018; Payne et al., 2020). Similar to our iris and ret-
ina, also our eye behavior is personalized and, possibly,
has biometric properties (van den Broek, 2010), which
need to be accounted for. The next section will present the
research methodology we use to address these challenges.

3 | METHOD

Initial analyses on the subjective data are reported in van
der Sluis et al. (2014). The current study reports on the
potential of eye-tracking to reveal comprehensibility and
interest.

3.1 | Participants and materials

Thirty volunteers (22 male, 8 female) with an average age
of 28.60 (SD = 6.06) participated. None of them were
native English speakers; but, all graded their reading lit-
eracy as high (M = 4.63; SD = .62; range 1–5), and all
pursued or already obtained a university degree.

Eighteen articles from The Guardian1 were sampled
from a corpus of 14,856 articles at three levels of complexity:
low, average, and high. Textual complexity was estimated
using a computational analysis specified in van der Sluis
et al. (2014). The analysis included seven textual features,
including common features such as word frequency and
novel features such as character and word-level entropy.

All articles were truncated after 1,200 characters.
Three dots were added to indicate the story would nor-
mally continue. Any lay-out was stripped from the

articles, leaving only the title and textual content. The
layout was not specifically designed for eye tracking.
Rather it was intended to mimic (bootstrapped) designs
common on the Internet. An example stimulus is
shown in Figure 1.

3.2 | Instruments

After each article was read, a questionnaire was adminis-
tered to measure the following appraisals:

• Comprehensibility was measured by three 7-point dif-
ferentials, in accordance with related studies
(e.g., Fayn et al., 2015; Silvia, 2008a): comprehensible–
incomprehensible, coherent–incoherent, and easy to
understand–hard to understand, which gave a high
Cronbach's α = .893, N = 540 (Cronbach, 1951).

• Interest was measured using three items commonly
used in interest studies (Silvia, 2005, 2008a, 2010). Two
7-point differentials: interesting–uninteresting and
boring–exciting and one 7-point Likert scale asking
participants to agree with the statement “I would be
interested in reading more of this text.” The three
items formed a consistent scale, confirmed by an excel-
lent Cronbach's alpha of .921 (N = 540).

• Novelty and complexity were additionally measured but
will not be analyzed in relation to eye-tracking. These
measures consisted of the following 7-point semantic-
differentials: complex–simple (Silvia, 2008a), familiar–
unfamiliar (Silvia, 2008a), and easy to read–difficult to
read (Song & Schwarz, 2008).

FIGURE 1 Example of

article presentation. Content

courtesy of Guardian News &

Media Ltd. The article is

partially blurred to comply with

their open license terms
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These scales are commonly applied in experiments
on the appraisal structure of interest for both textual
stimuli and artwork (Fayn et al., 2015; Silvia, 2008a,
2010). Structural equation models confirmed that each
of the scales covered a distinctive factor and that each
explained a significant portion of variance in interest
responses (see van der Sluis et al., 2014). The scales
are furthermore shown to respond to theoretically
related scales and manipulations, including coping
potential and individual differences (Fayn et al., 2015;
Noordewier & van Dijk, 2016).

3.3 | Design and procedure

The experiment used a within-subjects design that
showed every article to every participant. For each partic-
ipant, the articles were grouped in three counter-
balanced blocks based on their average topical familiarity
scores. Within each block, the articles were shown in ran-
domized order. The design controlled for the influence of
novelty in order to isolate the influence of articles varying
in complexity on comprehensibility and interest.

The experiment started with instructions and an ini-
tial questionnaire on basic demographics and topical
familiarity. Participants were told that the experiment
queried their interest in different news articles and that
reading was self-paced. Each block started with textual
instructions and ended with the closing questionnaire.
Each of the 18 articles were followed by the above men-
tioned scales. The full experiment lasted around 45 min.
Some participants indicated this demanded a lot of their
concentration. The eye-tracker was calibrated before the
start of the experiment. The experiment took place in a
dedicated room with only artificial and thereby con-
trolled lighting.

3.4 | Eye-tracking apparatus and
analysis

Here we describe the eye movement acquisition, as
shown in Figure 2. We used a SMI RED60 binocular eye-

tracker at 60 Hz and BeGaze 3.0.181 software to track the
participant's gaze on a standard 2200 TFT monitor (resolu-
tion: 1280 � 1024). One participant's eye-tracking data
was lost due to a software failure.

The forthcoming feature (and parameter) set contains
features regularly used in reading studies, complemented
with saccade and regression speed to capture differences
in reading speed as generally seen with interested readers:

• Fixations (count, duration) were detected using a
dispersion-based algorithm (Blignaut, 2009), with a
pre-specified minimum duration of 80 ms.

• Saccades (count, amplitude, duration, peak speed): the
connection between two subsequent fixations. The
eye-tracker registered blinks as saccades with a 0, 0px
position, which were excluded from further analysis.

• Regressions (count, amplitude, duration, peak speed):
saccades with a northwards (y-axis) and horizontal
(x-axis) direction of minimal 20px distance. This over-
laps approximately with the size of the word “the” on
the screen and excludes regular, progressive saccades
as well as microsaccades that presumably correct dis-
placements in eye position.

• Coefficient K (Krejtz et al., 2016, p. 4):

K ¼ 1
i

X
i

di�μd
σd

�ai�1�μa
σa

� �
, ð1Þ

where ai+1 is the saccade amplitude, di the ith fixation
duration and μd, σd, μa, and σa are the participant's
mean and standard deviation of the fixation duration
and saccade amplitude (see p. 15 on normalization).
This measures the ratio between focal attention, char-
acterized by longer fixations indicative of a central
mode of visual processing, and ambient attention,
characterized by longer saccades indicative of an
exploratory mode of processing (Krejtz et al., 2016).

• Pupil size (in pixels): the normalized (see Equation 2)
average pupil diameter across both eyes during a fixa-
tion. Because of varying baseline levels in pupil size
across people, non-normalized pupil size was not
included.

FIGURE 2 The processing

pipeline applied to the eye-

tracking (E.T.) signal
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• Reading time (in seconds): the duration between the
first and last fixation per article.

For each feature, the interquartile range (iqr) was
computed. Data points laying outside a limit of 4 times
the iqr below the second or above the third quartile were
identified as outlier and removed. This is a rather lenient
limit (e.g., saccades of several seconds) and allows for
rather skewed distributions (e.g., saccade duration). This
resulted in a total of 285,190 fixations, 259,286 saccades,
34,605 regressions, and 196,613 K samples, a reduction
of, respectively, 0.50, 15.35, 6.80, and 1.59%.

Eye events not in the area of interest (i.e., the article
title or content) were removed. This resulted in 168,914
fixations, 154,560 saccades, 18,450 regressions, and
88,723 K samples.

The eye event data were summarized per reading ses-
sion. Subsequently, for each feature, the statistical param-
eters count, mean, variance, skewness and kurtosis were
calculated to represent the signal's distribution. The sta-
tistical moments variance, skewness, and kurtosis were
included to capture both discourse-level and local effects
on reading patterns (see section 2).

To tackle inter- and intra-personal differences in eye
behavior, all data were normalized as follows (van den
Broek, 2011, p. 87):

ef tð Þ¼ f tð Þ�μ, ð2Þ

with μ being participant's personal baseline from the
original feature series f(t). The normalization was exe-
cuted twice with μ being respectively participant's
median during the experiment (annotated with a) and
the respective experimental block (annotated with b).
Coefficient K was an exception on this, as it was already
normalized (see Equation 1). Such a normalization step
is standard in psychophysiological and oculometric stud-
ies and is both suitable and reliable for absolute level
comparisons (van den Broek, 2011). As each of these nor-
malizations will likely (un)cover different sources of vari-
ability they will each be included to the subsequent
feature selection and statistical modeling steps. The
resulting data set contained in total 130 variables and
522 observations.

To secure further processing, checks were executed
for missing values, intra-variable variance, and between-
variable correlation. In total, five observations were
removed that contained missing values, none of the vari-
ables had near-zero variance, and five variables were
highly correlated (r > .95) and subsequently removed:
saccade count, K skewnessa, and K kurtosisb. The final
data set contained 127 variables for 517 reading episodes.

3.5 | Statistical analysis

Statistical analyses were performed in R using packages
outliers, caret, Hmisc, MASS, ggplot2, and ggextra.
A regression analysis was performed in two steps. Firstly,
for both comprehensibility and interest, a linear regres-
sion model (LRM) was trained on the session data with
stepwise variable reduction. The explanatory perfor-
mance of the regression models was evaluated using R2.
The overlap between the resulting predictor sets (after
variable reduction) is illustrated in Figure 3. Second, the
reduced set of predictor variables from the linear models
was used to predict unseen observations in a leave-one-
out cross-validation setting. For each observation out of
N total observations, a LRM was trained (without vari-
able reduction) on N � 1 observations and tested on one
observation. The set of predictors was thus assumed to be
an optimal set, while the coefficients were retrained with
every evaluation pass. The predictive performance was
evaluated using min�max normalized root-mean-square
error (nRMSE) and Pearson's correlation r (see Figure 4).
Figure 4 shows density plots and a trend line with 95%
confidence intervals, calculated using locally weighted
smoothing with R's loess and predict.lm methods.

4 | RESULTS

4.1 | Descriptive statistics

Participants appraised the 18 articles as comprehensible
(M = 5.35, SD = 1.23) and interesting (M = 4.66,
SD = 1.43) (scale: 1–7). Comprehensibility and interest
appraisals share 21.69% of variance. Table 1 gives the
eye-tracking features and their parameters' averages. Two
of Table 1's values differ from typical values (see sec-
tion 2). The mean fixation length was 367.35 ms,

FIGURE 3 Importance of predictors for the interest and

comprehensibility regression models. Absolute t-values are

averaged for shared predictors. Anti-correlational refers to

predictors with opposing signs for both models
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SD = 112.27), where a typical fixation takes 200–250 ms.
Regression duration was longer than mean saccade dura-
tion with a mean of 71.08 ms (SD = 32.45), this can how-
ever be expected as microsaccades were excluded by the
specification of regressions (see Section 3.4).

Table 2 gives the significant correlations between eye-
tracking variables and comprehensibility and interest.
The correlational analysis shows strong effects for

reading time, which correlated with both comprehensi-
bility and interest both before and after normalization
(a,b): Easier to comprehend texts need less time to read
and interested readers read faster. This is also reflected in
the counts of fixations, saccades, and regressions. These
all decrease significantly when less time is spent reading.

Average pupil size correlated with comprehensibility,
indicating less effort was exerted, while its variance

FIGURE 4 Predictive performance of statistical models for comprehensibility (a) and interest (b) in a leave-one-out cross-validation

setting. The scatterplots show the actual and predicted values, accompanied by a trend line and 95% confidence intervals for the predictions.

Above and to the right of the scatter plots, density plots illustrate the distribution for the shown values

TABLE 1 Average values of the

eye-tracking variables per article

reading session

Feature Sum Mean Var Skewness Kurtosis

Reading time (s) 75.01

Fixation

Count 324.83

Duration (ms) 367.35 55.83 1311.96 2536.82

Pupil size (px) 0.79 �0.05 5.46

Regression

Count 35.62

Amplitude (�) 16.41 318.84 1.37 1.75

Duration (ms) 71.08 4.31 1198.80 1089.58

Peak speed (�/s) 851.99 283,408.86 0.31 �0.66

Saccade

Count 297.80

Amplitude (�) 2.67 19.46 2.66 9.02

Duration (ms) 28.96 0.60 2460.64 6823.96

Peak speed (�/s) 179.40 57,916.98 2.60 9.13

Coeff. κ 0.04 0.67 �0.15 1.94
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decreased with both comprehensibility and interest. For
normalized fixation duration, its variance similarly
decreased with comprehensibility and interest. This sug-
gests a more fluent and consistent reading behavior with
both comprehensibility and interest.

For saccades, their amplitude, duration, and speed had
several significant relationships. The overall picture of these
relationships is that, with comprehensibility, saccades were
shorter, took less time, and had a lower peak speed. For
interest, saccades showed similar relationships with the
exception of peak speed. Interested readers furthermore
showed less variance and higher skewness in the distribu-
tion of their saccade duration. Regressions showed two
effects: their amplitude decreased with comprehensibility
whereas the skewness and kurtosis of peak speed increased
with comprehensibility, suggesting distinctive distributions
of regressions between comprehensibility and interest. In
addition to saccades and regressions, normalized Coefficient
K variance decreased with interest, indicating less variation
between focal and ambient modes of visual processing.

4.2 | Linear regression

The LRM for comprehensibility consists of 60 parameters,
R2 = 49.93, F(59, 454) = 7.67, p < .001. The LRM for
interest consists of 69 parameters, R2 = 30.41,
F(68, 445) = 2.86, p < .001. Stepwise variable reduction
was used to reduce the LRM's dimensionality.

Figure 3 illustrates the number of unique and shared
predictors for both models, including whether or not the
direction of correlation is shared. The model for compre-
hensibility contains 14 unique predictors. The model for
interest contains 23 unique predictors. In total 45 features

are shared between the models, of which 38 shared the
same sign and 7 have opposing signs. Figure 3 further-
more shows that fixation, saccade, and regression predic-
tors are present in both models as well as in their
overlap.

Noteworthy from Figure 3 are the influences of read-
ing time, pupil size, and Coefficient K. Reading time has
a strong, yet opposing influence on both models which
offsets the consistently negative correlation between
reading time and interest and comprehensibility (see
Table 1). Pupil size has four out of six features predictive
of interest or anti-correlational, which contrasts with the
typical relation found between pupil size and cognitive
effort. Finally, Coefficient K is mostly related to the inter-
est model with four out of six predictors exclusive to
it. These observations indicate that these three features
can help discriminate between comprehensibility and
interest when considered in co-dependence with other
included predictors.

To assess the predictive performance of both LRMs,
we applied leave-one-out cross-validation. The LRMs
predicted r = .608 and r = .329 of comprehensibility and
interest ratings, with normalized errors of respectively
nRMSE = .164 and nRMSE = .232. Figure 4 illustrates
this predictive performance. It relates the model predic-
tions to the actual appraisals of participants, including
the 95% confidence intervals for the predictions. Further-
more, the figure shows the distributions of actual and
predicted values.

Figure 4a shows a possible detriment to predictive
performance. Due to a lack of training data, the compre-
hensibility model is less reliable at low levels of compre-
hensibility. At medium and high comprehensibility, the
relation between predicted and actual values is close to

TABLE 2 Correlations (r) between eye-tracking variables and comprehensibility (comp.) and interest (inte.) appraisals

Variable

Correlation (r)

Variable

Correlation (r)

Variable

Correlation (r)

Comp. Inte. Comp. Inte. Comp. Inte.

rea. tim. �.144* �.124** reg. amp. avg. �.089*** sac. dur. var.b �.090*** �.091***

rea. tim.a �.226* �.160* reg. spe. ske. �.129** sac. dur. ske. .090***

rea. tim.b �.225* �.164* reg. spe. kur. �.102*** sac. dur. ske.b .112***

pup. avg.a �.113*** sac. amp. avg.a �.117** sac. spe. avg.a �.120**

pup. var. �.177* �.092*** sac. amp. avg.b �.137** �.091* sac. spe. avg.b �.124**

pup. var.a �.088*** sac. dur. avg. �.095*** sac. spe. kur. �.099***

pup. kur. .086*** sac. dur. avg.b �.104*** �.125** κ. var.a �.088***

fix. dur. var.a �.088*** �.094*** sac. dur. var. �.103***

Note: Variables annotated with a and b are normalized per participant and per participant-experimental block, respectively (see Equation 2).
Abbreviations: rea. tim., reading time; fix., for fixation; reg., regression; sac., saccade; dur., duration; pup., pupil; amp., amplitude; spe., peak speed; avg.,
average; var., variance; ske., skewness; kur., kurtosis.

*p < .001; **p < .01; ***p < .05.
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an optimal diagonal line, accompanied by small confi-
dence intervals. Figure 4b shows a low predictive perfor-
mance for interest. This is further shown by the
difference in data distributions between the predicted
and participants' appraised interest.

5 | DISCUSSION

We shed light on a classic, over half a century standing
discrepancy in the interpretation of eye behaviors:
processing (Hess & Polt, 1964) versus value (Hess &
Polt, 1960). Eye-tracking data enabled to delineate
aspects of cognitive processing and, to a lesser extent,
interest value. The LRMs explained 49.93 and 30.41% var-
iance (p < .001) for respectively comprehensibility and
interest, with a predictive performance of r = .608 and
r = .329, respectively. These findings confirm the eyes'
potential to offer feedback above and beyond conven-
tional accuracy metrics.

This study is the first to benchmark and compare
comprehensibility and interest in an eye-tracking study.
Other studies did evaluate the ability of eye-tracking to
predict related constructs, such as relevance judgments
with 64–86% (Gwizdka et al., 2017; Liu et al., 2014), mind
wandering during reading with 72% (12% above chance
level) (Bixler & D'Mello, 2016), curiosity with 73%
(Jaques et al., 2014), and confusion with 82% accuracy
(Sims & Conati, 2020). However, there are notable differ-
ences with the approach taken in the present study.
These studies evaluated a binary classification accuracy
rather than a continuous regression problem. Baseline
chance levels are much lower for a 7-point (14.29%) than
a binary scale (50.00%) (van den Broek et al., 2013).
Moreover, typically auxiliary features about the text and
user-interface interaction were added as predictors while
longer time frames were recorded. By focusing exclu-
sively on short reading sessions, we addressed a notably
hard problem. Further, by using only event-based eye-
tracking features and straightforward regression tech-
niques, the present work shifted focus away from
machine learning techniques towards the value and pos-
sibilities of the features and their interpretation in terms
of the predicted constructs (Rudin, 2019). Taken together,
exploring a long standing discrepancy against a 14.29%
baseline, the 49.93% (comprehensibility) and 30.41%
(interest) explained variance can be regarded a promising
performance.

The findings support the proposition that appraised
comprehensibility can be detected from the eyes. The text
passages used were all well-written news articles, reg-
arded as fairly comprehensible (M = 5.35, SD = 1.43).
This shows that small differences in comprehensibility

can already be detected from the eyes. This is further
supported by the small confidence intervals and nearly
linear fit between predicted and appraised comprehensi-
bility (see Figure 4a). This result is distinct from earlier
findings as typically word-level difficulties average out at
a discourse level and discourse-level difficulties only
become visible when large, often artificial obstacles are
encountered (Rayner et al., 2006). The result indicates
that higher-order processes related to comprehension,
even though not causally linked to eye behavior, can
nonetheless be detected from the eyes. It remains a ques-
tion however whether our model generalizes across other
genres of texts or whether effective models can only be
learned for specific genres of text.

In line with Hess and Polt (1960, 1964), the current
findings show that the eyes not only reveal aspects of cog-
nitive activity but also of interest. Our results particularly
confirm original findings that pupil size variations have
distinctive distributions for comprehensibility and inter-
est. The predictive performance of the interest model
nevertheless also underlines the challenge of detecting
interest from the eyes. Using eye-tracking data, it seems
hard to distinguish comprehensibility from interest. Both
the comprehensibility and interest models share the
majority of predictors (45 variables). A likely interpreta-
tion for this overlap comes from the theoretical impor-
tance of comprehensibility as key appraisal for interest
(Silvia, 2006). In particular, the overlap between predic-
tors points to the intervening role of complexity: Textual
complexity can increase interest by stimulating the reader
while at the same time decrease interest by reducing com-
prehensibility (van der Sluis et al., 2014). This indicates
that distinctive processing dynamics—complex yet
comprehensible—likely underlie the experience of inter-
est (Graf & Landwehr, 2015; Silvia, 2006) as well as
explains the overlap of predictors between comprehensi-
bility and interest.

An alternative interpretation for the overlap between
predictors comes from possible psychometric and
oculometric limitations. From a psychometric perspec-
tive, users' introspective judgments are overall influenced
by positive affect and top-down processing expectations.
This puts a natural limit on the divergent validity of mea-
sures of comprehensibility and interest. A shared vari-
ance of 21.69% confirms some degree of overlap, as is
also theoretically expected, but nevertheless indicates
that the two constructs can be differentiated subjectively.
From an oculometric perspective, the eyes do not readily
reveal interest as suggested by the “like more, look more”
assumption. Our confirmation of a negative correlation
between reading time and interest rather indicates that
interested readers employ their mental resources more
effectively—with likely finegrained influences on their
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eye behavior. With 23 unique predictors for the interest
model and 45 features shared with the comprehensibility
model, the current results can neither confirm nor refute
the possibility of disentangling interest from comprehen-
sibility using eye-tracking data. Our results rather indi-
cate a need for specialized eye-tracking features and
subjective instruments that can identify and distinguish
interest's distinctive processing dynamics. A case to the
point is the ratio between focal and ambient attention as
measured by coefficient K (Krejtz et al., 2016), which
showed a distinctive distribution for interest.

The entanglement of higher-order processes is inher-
ent to the “co-existence challenge”: Higher-order pro-
cesses combine to influence specific features of eye
behavior, while lower-order processes influence eye
behavior's major characteristics. The deterministic nature
of the eye-mind link and information value link offers a
partial solution to this co-existence. The eye-mind link
causally relates fixations to the lexical processing of
words whereas the information value link probabilisti-
cally relates gaze shifts to uncertainty reduction and
knowledge acquisition. These links indicate that a large
portion of variability in eye behavior stems from textual
characteristics and relevance rather than from higher-
order effects of comprehensibility and interest. Modeling
the characteristics of a text region (Bixler &
D'Mello, 2016; van der Sluis et al., 2014) as well as the
relevance of those regions can help interpret eye behav-
iors at word and discourse level. Such models have the
potential to relate and distinguish higher-order from
lower-order processes, including the relation between
word processing and comprehensibility and between rele-
vance and interest, and will likely improve predictions of
comprehensibility and interest beyond the current
results.

Through exploring implicit measures of comprehen-
sibility and interest, this study aimed to unpack part of
the vast complexity of human judgment and experience
inherent to relevance. Of these measures, comprehensi-
bility has traditionally been associated with the cogni-
tive relevance or pertinence of information in relation
to instrumental information needs. This relevance
space is typically considered within task-based situa-
tions in which (more or less) objective and intellectual
criteria dominate relevance decisions (Saracevic, 2007;
Xu, 2007). Interest is instead associated with interac-
tions that are more hedonic and affective in nature
(Ruthven, 2021; Xu, 2007). Even though a vast variety
of interactions seem not driven by instrumental needs
anymore, this emotional side of relevance has arguably
been less well integrated into theorizing on relevance
(Belkin, 2008; Ruthven, 2021). Our results rather high-
light an intricate relationship between cognitive

processing dynamics and the affective experience of
interest. This conclusion is in line with the emotion-
appraisal theory of interest, which postulates that inter-
est, and emotions in general, follow from (subliminal)
cognitive appraisals (Ellsworth & Scherer, 2003;
Silvia, 2008b). This suggests that the non-instrumental,
emotional side of relevance follows from what is com-
monly considered as cognitive relevance. Rather than
being dichotomous, the cognitive and affective sides on
relevance relate closely.

The presented study furthermore contributed to an
understanding of the cognitive judgments that are key to
users' affective experience as well as the extent to which
they can be revealed for feedback. Knowing which judg-
ments are central and can be revealed opens up for new
forms of adaptation. The right types of feedback can
explain why something was relevant, which potentially
offers an improved understanding of users' information
needs. It furthermore can turn users' cognitive-affective
experience with the retrieved information into an objec-
tive for information systems. This potentially offers vari-
ous new forms of interaction support that help users cope
with the complexities of information and knowing
(e.g., Taranova & Braschler, 2021). These new opportuni-
ties for adaptation will be instrumental for information
systems to enter into cooperative relationships with their
users, where systems increasingly consider subjective
aspects of information interaction until they eventually
cater for information that challenges yet resonates with
its users (Ruthven, 2021).

Even though the wide-spread application of eye-
tracking as implicit feedback for text mining is unlikely
to be realized in the near future, the present study indi-
cated its potential usefulness. Tracking the eyes offers a
unique potential to reveal processing dynamics that
underlie both cognitive and affective aspects of informa-
tion interaction. This conclusion is in line with the obser-
vation made by Hess and Polt (1960, 1964) over half a
century ago: the eyes can reveal aspects of both cognitive
activity and interest value. In particular, the current work
shows that eye movements unveil discourse-level com-
prehensibility and that particular cognitive processing
dynamics partly underlie the experience of interest. The
contribution of the proposed types of continuous observa-
tion provides an opportunity for new system design. For
systems that deliver personalized information, optimized
‘beyond the conventional accuracy metrics’ for how we
process and experience information.
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