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Abstract 

Background  Neglected tropical diseases affect the most vulnerable populations and cause chronic and debilitating 
disorders. Socioeconomic vulnerability is a well-known and important determinant of neglected tropical diseases. 
For example, poverty and sanitation could influence parasite transmission. Nevertheless, the quantitative impact of 
socioeconomic conditions on disease transmission risk remains poorly explored.

Methods  This study investigated the role of socioeconomic variables in the predictive capacity of risk models of 
neglected tropical zoonoses using a decade of epidemiological data (2007–2018) from Brazil. Vector-borne diseases 
investigated in this study included dengue, malaria, Chagas disease, leishmaniasis, and Brazilian spotted fever, while 
directly-transmitted zoonotic diseases included schistosomiasis, leptospirosis, and hantaviruses. Environmental and 
socioeconomic predictors were combined with infectious disease data to build environmental and socioenvironmen‑
tal sets of ecological niche models and their performances were compared.

Results  Socioeconomic variables were found to be as important as environmental variables in influencing the 
estimated likelihood of disease transmission across large spatial scales. The combination of socioeconomic and 
environmental variables improved overall model accuracy (or predictive power) by 10% on average (P < 0.01), reach‑
ing a maximum of 18% in the case of dengue fever. Gross domestic product was the most important socioeconomic 
variable (37% relative variable importance, all individual models exhibited P < 0.00), showing a decreasing relationship 
with disease indicating poverty as a major factor for disease transmission. Loss of natural vegetation cover between 
2008 and 2018 was the most important environmental variable (42% relative variable importance, P < 0.05) among 
environmental models, exhibiting a decreasing relationship with disease probability, showing that these diseases are 
especially prevalent in areas where natural ecosystem destruction is on its initial stages and lower when ecosystem 
destruction is on more advanced stages.

Conclusions  Destruction of natural ecosystems coupled with low income explain macro-scale neglected tropical 
and zoonotic disease probability in Brazil. Addition of socioeconomic variables improves transmission risk forecasts 
on tandem with environmental variables. Our results highlight that to efficiently address neglected tropical diseases, 
public health strategies must target both reduction of poverty and cessation of destruction of natural forests and 
savannas.
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Background
Neglected tropical diseases impacted at least 1.74 billion 
people globally in 2019 and are associated with significant 
morbidity and public health burden [1, 2]. One remark-
able example is dengue fever, which causes a significant 
economic impact on governments and households. For 
instance, a patient may spend 14–18  days in hospital at 
a cost of USD 514–1500, a severe or unbearable cost for 
families in poverty without adequate social security [1, 
3]. To reduce the risk of occurrence and emergence of 
infectious diseases, several approaches have been devel-
oped [4]. Recent strategies include interdisciplinary and 
multisectoral collaboration between public health and 
governmental institutions. For instance, the One Health 
approach proposes the monitoring of disease transmis-
sion between people, animal vectors, and reservoirs, 
as well as the ecosystem, and encompasses the agricul-
ture, health, and environment sectors of society [5]. The 
Global Health Security Agenda [6] seeks to strengthen 
countries’ capacity for the prevention and surveillance of 
infectious diseases. These strategies are consistent with 
the third Sustainable Development Goal of the United 
Nations which is to ensure healthy lives and well-being 
(https://​www.​undp.​org/​susta​inable-​devel​opment-​goals). 
Global health security is a goal that is conditional upon 
adequate infectious disease monitoring and spatial risk 
assessment [6, 7]. Hence, prevention and monitoring 
are necessary strategies to ensure global health security, 
and are a common focus for sustainable development 
achievement efforts [5, 6, 8].

An effective approach of disease surveillance is to 
investigate the underlying determinants of disease emer-
gence and recurrence in Latin America [4]. The natural 
history of a disease system is a key aspect to consider 
when aiming to reconstruct and predict disease out-
comes. Heterogeneities and particularities in vector-
borne disease cycles are influenced by the environment 
[9]. For instance, the availability of mosquito breeding 
sites is a significant factor in the spread of dengue fever 
and malaria. This includes the former requiring artificial 
water containers or ponds, as a premise for the spread of 
Aedes mosquitoes, and the latter requiring forest related 
water bodies in shadowed areas, Anopheles mosqui-
toes most common breeding sites [10, 11]. Dengue virus 
encompasses serotypes 1 to 4, while malaria is caused by 
protozoans of the Plasmodium genus, mainly by P. falci-
parum and P. vivax [1]. Furthermore, Chagas disease can 
be spread by contact with hematophagous triatomine 
(kissing bug) feces infected by Trypanosoma protozoans 
[12, 13]. Usually, contamination occurs trough kissing 
bug bites, or through contaminated food [12, 13]. The 
presence of the triatomine bugs is associated with poor 
household construction [1]. Cutaneous, and visceral 

leishmaniasis are also transmitted by the bites of arthro-
pod vectors (female phlebotomine sandflies) and are 
caused by protozoans of genus Leishmania [1, 13]. Leish-
maniasis transmission is associated with forest fragmen-
tation [14]. Moreover, Brazilian spotted fever is caused 
by bacteria of the genus Rickettsia, and is transmitted by 
tick bites. Transmission usually encompasses an animal 
reservoir such horses, cattle or capibaras [15] (See Fig. 1). 
Despite significant progress in understanding the natural 
history of vector-borne and neglected tropical diseases, 
the relationship between disease risk and socioeconomic 
and environmental factors is still poorly understood.

In the case of directly or environmentally transmitted 
diseases such as schistosomiasis and leptospirosis which 
are mainly transmitted by contaminated bodies of water, 
heterogeneities in the environment become direct driv-
ers of transmission [16–18]. Intestinal schistosomiasis 
is caused by the helminth Schistosoma mansoni and its 
transmission cycle encompasses Biomphalaria snails as 
reservoir hosts [13]. Leptospirosis is caused by bacteria 
of Leptospira genus and its transmission cycle develops in 
the presence of urine of infected domestic rodents [19]. 
Likewise, hantavirus is transmitted by inhalation of parti-
cles contaminated with the feces of infected wild rodents 
[20]. Usually, it more heavily affects human in rural envi-
ronments who work with crops, specifically sugar cane 
[21]. Hantavirus manifests as hantavirus pulmonary syn-
drome and can be fatal for infected individuals.

As the environment plays a key role in disease trans-
mission and maintenance, models linking environmen-
tal covariates with disease occurrence are often used 
in modern disease transmission risk mapping [21–26]. 
Neglected tropical diseases, for example, have strong ties 
to environmental parameters such as temperature and 
land cover, which correspond to the biological responses 
of vector survival, abundance, and pathogen transmission 
[21]. Precipitation and temperature have been frequently 
used to forecast the spatiotemporal occurrence of vec-
tor-borne diseases and zoonotic diseases like hantavirus 
[21, 27, 28]. The predictive ability of the climate on dis-
ease spatial distribution is linked to the importance of 
optimal temperatures and water availability for parasite 
reproduction and survival [22]. Environmental changes, 
measured as landscape change or ecosystem loss, have 
been used as predictor variables of multiple aspects of 
disease in spatiotemporal analysis [29]. When ecosystem 
loss occur (hereafter referred to as ‘ecosystem destruc-
tion’) it may promote disease outbreaks by facilitating 
the distributional overlap of pathogens, vectors, and res-
ervoirs with domestic animals and humans [30]. In addi-
tion, ecosystem destruction can change the abundance of 
reservoirs and vectors [21], thus augmenting the stabil-
ity of different host–pathogen systems. In Brazil, current 

https://www.undp.org/sustainable-development-goals
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evidence shows that deforestation promotes outbreaks of 
malaria [31] and others diseases with high morbidity and 
mortality [1].

Socioeconomic factors also influence how human 
diseases emerge and persist, since they affect how 

individuals live, their quality of life, and their interac-
tion with the environment [32, 33]. Neglected tropical 
diseases, such as Chagas disease, schistosomiasis, den-
gue, and leishmaniasis are linked to poverty. Neglected 
tropical diseases disproportionately affect lower income 

Fig. 1  Main reservoir, pathogen, mode of transmission of diseases included in the study. Dengue fever is transmitted by mosquitos of the Aedes 
genus. Transmission happens when an infected person is bitten by mosquitoes which then transfer the pathogen to a new host. Anopheles 
mosquitoes transmit malaria from an infected individual to a new host. Plasmodium vivax is the primary pathogen responsible for malaria in 
Brazil [13, 67]. Chagas disease is caused by protozoa from the Trypanosoma genus. Chagas disease transmission occurs through the bite of 
hematophagous Triatominae bugs or orally by the ingestion of contaminated food (e.g., açaí [13]). Cutaneous and visceral leishmaniasis are mainly 
transmitted by the bite of Phlebotominae sandflies and infect a wide range of hosts capable of infecting domestic and wild mammals. Brazilian 
spotted fever is primarily transmitted by the bite of ticks from the Amblyomma genus and is brought by Rickettsia bacteria. Additionally, it has a wide 
range of reservoirs including capybaras and horses [13]. Schistosomiasis is a helminth-caused disease, transmitted by contact with water where 
Biomphalaria snails are present so the parasite can complete its life cycle to be transmitted. Hantavirus pulmonary syndrome is transmitted by the 
inhalation of excreta from infected wild or domestic rodents [21]. Leptospirosis is caused by the bacteria Leptospira, transmitted by contact with 
water contaminated with rodents’ urine [13]. Figure made using Biorender.com (2022) and Phylopic (phylopic.org). 1While the role of wild reservoirs 
of dengue virus is not fully elucidated in Brazil or South America it is discussed whether marsupials and bats are potential reservoirs in transmission 
cycles in the Americas, however there is no evidence of their significance in the cycle of transmission [68]. 2Non-human primates can serve as 
reservoirs for malaria but only in its zoonotic manifestations, which can even have a distinct pathogen, Plasmodium simium, and have a distinct 
cycle from typical malaria, which is caused by Plasmodium vivax [67]. †Although marsupials, cattle, and rodents can be infected by Schistosoma, 
there is no proof that these animals serve as significant disease reservoirs [16]. Instead, the maintenance of the schistosomiasis transmission cycle 
depends heavily on infected humans. 3Although some researchers regard the role of wild rodents as vectors of hantavirus pulmonary syndrome 
transmission, here we will use the definition that wild rodents that are hosts to hantavirus act as reservoirs only. 4Although rodents can be 
considered vectors of the leptospirosis cycle, we considered the concept that domestic rodents are hosts and only reservoirs of leptospirosis
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households, resulting in low productivity, a high epidemi-
ological burden (i.e., mortality and morbidity), disability, 
and social stigma [32, 34]. Poverty, measured as low pro-
portional income, is a key predictor of disease presence 
and prevalence at individual or spatial level, therefore, 
it may help explain the spatial distribution of infectious 
disease [32]. Urbanization facilitates disease transmis-
sion, as demonstrated by dengue fever where mosquitoes 
thrive in human modified environments that offer abun-
dant resources, such as breeding sites [3]. Similarly, a lack 
of access to clean water and sanitation has been shown to 
increase the risk of disease transmission for diseases such 
as schistosomiasis [1]. Interaction between infectious 
disease and poverty creates a difficult-to-break cycle, or 
poverty traps, which can last for generations if proper 
health interventions are not applied, creating an increas-
ing call to properly surveil infectious diseases [6, 32]. 
Nevertheless, this challenge is exacerbated in low-income 
regions where these data are most needed, as data are 
typically incomplete, sparse, or rarely available [33]. As a 
result, until recently, the use of the socioeconomic com-
ponents in disease modeling was mostly overlooked, and 
was not often included in the ecological niche modeling 
framework of disease risk mapping [22].

The ecological niche modeling framework can be used 
to delimit the realized ecological niche of parasite spe-
cies. Realized ecological niches provide proxies of the 
influence of physiological tolerance, biological interac-
tions, and dispersal on the ecology of organisms (e.g., 
pathogens, vectors) and are measured as a hypervolume 
along environmental variables occupied by the species 
[35]. Here, to elucidate the effects of social variables in 
forecasting the geographic distribution of disease trans-
mission, we combined socioeconomic and environmental 
variables to address these gaps and improve the predicta-
bility of neglected tropical diseases throughout all Brazil-
ian regions. In addition, we sought to investigate the main 
socioeconomic and environmental drivers affecting the 
disease transmission risk. We built ecological niche mod-
els using different sets of variables: socioeconomic (e.g., 
mean income, mean income inequality Gini index, hous-
ing quality) and environmental (e.g., temperature, pre-
cipitation, ecosystem destruction) variables in combined 
(composite) and environmental only (simplified) models, 
using disease occurrence as the response variable. Fur-
thermore, we assessed model predictability (capacity to 
predict disease occurrence) using different model config-
urations to tease apart which variables best predict dis-
ease occurrence. We modeled five vector-borne (Chagas 
disease, dengue fever, malaria, leishmaniasis, and Brazil-
ian spotted fever) and three directly (environmentally) 
transmitted zoonotic (hantavirus, schistosomiasis, and 
leptospirosis) neglected tropical diseases to determine if 

model predictability and relevant predictor variable were 
consistent across infectious diseases of different natu-
ral history. We hypothesized that incorporating socio-
economic variables into such predictive models would 
add more precision in limiting disease risk in areas with 
high socioeconomic inequality and widespread poverty. 
Moreover, integrating relevant socioeconomic and envi-
ronmental variables could be a significant step forward 
aligning the Global Health Security agenda within the 
United Nation’s Sustainable Development goals (https://​
www.​undp.​org/​susta​inable-​devel​opment-​goals).

Methods
Disease occurrence data
The disease occurrence data (i.e., locations where dis-
ease was reported) came from the Brazilian Ministry of 
Health database (DATASUS [36]). This database contains 
all the reported cases of diseases that require mandatory 
notification, such as those of epidemic potential. We col-
lected data of infectious disease from 2007 to 2019, which 
is the span of time with lab-confirmed occurrences avail-
able. Only new occurrences, (i.e., incidence records) were 
regarded as a result. The chosen diseases were medi-
ated by at least one species of vectors, hosts, or reser-
voirs, hence being a subject to environmental influence. 
To reduce uncertainty only laboratory confirmed cases 
were considered in the study. To avoid interference from 
vaccination that could potentially bias the models, we 
excluded diseases that were preventable with high vacci-
nation coverage, such as yellow fever. Eight diseases met 
these requirements, namely the five vector-borne dis-
eases dengue fever, malaria, Chagas disease, cutaneous 
and visceral leishmaniasis, and Brazilian spotted fever, as 
well as three zoonotic diseases including schistosomiasis, 
leptospirosis, and hantavirus pulmonary syndrome. It is 
important to keep in mind that the DATASUS disease-
occurrence data has several limitations. For instance, 
the unequal distribution of healthcare coverage in Bra-
zil, especially the diagnostic capacity, could potentially 
bias the distributions of disease occurrence. Neverthe-
less, the Brazilian healthcare system is one of the largest 
integrated healthcare systems in the world and has a rea-
sonable reach capacity, being able to attend isolated pop-
ulations throughout its territory [37]. While this does not 
solve biased reporting, it does mitigate potential spatial 
biases in disease occurrence. Additional file  1: Table  S1 
expands and explores these and other potential limita-
tions of our method and provides more details on the dis-
ease occurrence data (Additional file 1).

The disease occurrences were assigned to the munici-
pality where the infection occurred, as declared in the 
DATASUS database. Only locality of disease presence 
was regarded, not the number or prevalence of cases. 

https://www.undp.org/sustainable-development-goals
https://www.undp.org/sustainable-development-goals
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Exact locations of disease were not available, so they were 
assigned to their corresponding municipality administra-
tive center (available from IBGE, The Brazilian Institute 
of Geography and Statistics [38]). Municipalities were 
unequal in size, so we standardized occurrences inside 
an 18 km grid, which resembles the cell size of predictor 
variables (18  km). To mitigates spatial autocorrelation, 
we used only one presence point per cell of the spatial 
extent of the study area. Potential consequences of this 
approach are discussed in Additional file 1.

Predictor variables
We employed temperature-derived and precipitation-
derived variables from WorldClim [39] with a spatial 
resolution of 10 arc-minutes (approx.18 km) averaged for 
the period 1970–2000. Worldclim bioclimatic variables 
are biologically associated to distributional limits of plant 
and animal species and are often used in ecological niche 
modeling to estimate environmental limits [39]. For 
additional landscape-change variables, we used natural 
habitat cover from the year 2016 (the sum of forest and 
savannah formation from each municipality in 2016). We 
used the values from 2016 since it was the median year 
between occurrence cases. Furthermore, we used eco-
system destruction between 2009 and 2018 (the sum of 
natural forest and grassland cover that were transformed 
into urban, pasture or plantation areas) from MapBiomas 
project to the municipality level (mapbiomas.org) [40].

As socioeconomic variables, we explored proxies for 
sanitation, demography, and income. As proxies of sani-
tation, we used percentages of households with piped 
water, percentages of households with toilets derived 
from the 2010 Brazilian socioeconomic census [38]. We 
also used estimates of population density [41], the mean 
human development index for each municipality [38], 
and the Gini index from IBGE [38], which is a coefficient 
of income disparity. All of these socioeconomic variables 
are associated with disease vulnerability [42]. We also 
used the per capita gross domestic product (GDP) as a 
proxy of socioeconomic status and economic develop-
ment [43, 44]. All socioeconomic and environmental var-
iables were resampled to approx. 18 km (10’) to match the 
spatial resolution of occurrence and climatic variables, 
including variables addressed to municipalities’ bounds. 
GDP and the Worldclim variables values were extracted 
at the municipality administrative center coordinate. 
More details on environmental and socioeconomic vari-
ables such as original resolution and source are described 
at Additional file 1: Table S2.

Variable selection and correlation
To test whether socioeconomic variables improve 
model performance for each disease, we made two sets 

of models: one set of models with the environment and 
socioeconomic variables (combined model) and one 
set of models with environment-only variables (simple 
model). In building the models, we started by checking 
the correlation between all the predictor variables. We 
allowed the fewest number of variables in each type of 
model as possible in accordance to the Occam’s razor 
principle, which prioritizes the simplest explanation. 
We removed variables with > 70% correlation, aiming 
to retain the ones with biological linkages with overall 
disease transmission (Additional file  2). The final set 
of variables for the combined models included mean 
annual temperature and annual precipitation, which are 
linked to vector or reservoir tolerance and suitability 
[22, 24, 45]; environmental destruction between 2009 
and 2018 which was highly correlated with 2016 native 
forest/vegetation cover (74%), and often associated 
with pathogen spillover [31, 46, 47]; GDP (highly cor-
related with human population, 78%), Gini coefficient 
(proxy for inequality), and proportion of households 
without a toilet (highly correlated with human develop-
ment index, − 83%) which are often regarded as proxies 
of population vulnerability [13, 48]. We used a similar 
set of variables when building the environmental-only 
set of variables for the composite model, keeping only 
the environment-related (temperature, precipitation, 
loss of natural habitat). Additionally, we used the ‘vif-
step’ function from the sdm R package [49] to choose 
a less correlated environmental variable to add to the 
model, so that both models have a similar number of 
variables and can be compared (see Additional file 2).

Ecological niche modeling
Models for each disease were built using four correla-
tive methods (i.e., generalized linear models, Maxent, 
random forest, and support vector machines) and one 
climatic envelop method (Bioclim). These algorithms are 
more conservative algorithms since they prioritize inter-
polation over extrapolation [50, 51]. Reduced extrapo-
lation is desirable in disease risk mapping to mitigate 
overprediction in environmental conditions beyond the 
observed values [51]. We used cross-validation for model 
calibration using the h-block strategy that generates nine 
independent models for each algorithm, for a total of 45 
models per disease [52]. Then, using the ‘bin model()’ 
function from the ntbox R package, we transformed each 
model using a 10% presence threshold to binarize a con-
tinuous probability map into presence and absence maps 
[53]. After binarization, we generated ensemble models 
by summarizing the algorithm models together for each 
disease. Each model ensemble represented consensus 
among algorithms on the presence of conditions suitable 
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for long-term disease transmission as a proxy for disease 
transmission risk [54].

Model evaluation and test
After building two ensemble models for each disease, 
we evaluated their quality using a partial receiver oper-
ating characteristic metric (pROC) that overcomes the 
limitation of classical ROC and area under the curve 
(AUC) approaches [55]. ROC and AUC are classic model 
evaluating metrics that partially ignore the goodness of 
fit of the models and are usually biased to favor some 
algorithms over others. The AUC/ROC metric assume 
algorithms that span broader predicted areas regard-
less of commission error as accurate. In other words, the 
extent of the background area affects its outcomes [55, 
56]. The pROC values were developed using the ntbox R 
package [53] and exhibit a range from zero to two, where 
values above one represent predictions better than ran-
dom expectations [55]. Finally, to test whether socioec-
onomic-environmental models performed overall better 
than environmental-only models in all diseases, we used 
a simple t-test for paired samples using pROC values.

Relative variable importance and response curves
To explore the relationship between environmental and 
socioeconomic variables and disease-case occurrence, 
we used response curves generated by the evaluation 
strip method [57]. The evaluation strip method addresses 
the visualization of predicted responses of a species (in 
this case, a disease, or pathogen) to environmental vari-
ables. Response curves and relative variable importance 
analysis were performed using the sdm package [49]. The 

relative variable importance identifies the most impor-
tant variables in the model, and response curves inform 
variable effects in relation to disease occurrences. Both 
response curves and variable importance were gener-
ated based on the ensemble model (averaged by all algo-
rithms) for each variable set (environmental only and 
socioenvironmental variable set).

Results
We modeled the spatial distribution of disease-trans-
mission risk for nine neglected tropical diseases in Brazil 
from 2007 to 2019. In total we assessed 723,109 disease 
occurrence records. The number of confirmed cases 
ranged from 219 for Chagas disease to 429,052 cases 
for dengue fever. Diseases such as leptospirosis, dengue 
fever, malaria, and leishmaniasis were widespread across 
the Brazilian territory. Overall, the composite models 
including both socioeconomic and environmental pre-
dictors performed 10% better (based on partial-ROC 
estimates, α = 0.05; Table 1) than the simple model using 
only environmental predictors.

Socioeconomic variables
After incorporating socioeconomic variables into the 
modeling effort, disease risk areas became more defined 
(Figs.  2 and 3), particularly for dengue fever, malaria, 
and cutaneous leishmaniasis, which shifted from mild 
suitability values covering the entire country to more 
delimited risk in southeast, central, and northeast Brazil, 
as well as along the Amazon River basin(Figs.  2 and 3). 
Model performance for dengue fever, malaria, cutaneous 
leishmaniasis, and leptospirosis, improved the most after 

Table 1  The partial receiver operating characteristic values (pROC) obtained from diseases ensemble models, resulting from 
socioeconomic (S) and environment only (E) sets of variables

All models performed better than random. The bold italic value symbolizes the only disease, Brazilian spotted fever, in which the addition of socioeconomic variables 
in the model lowered model predictability

pROC: Partial receiver operating characteristic; AUC: Area under the curve metric; S: Models made socioenvironmental set of variables; E: Models made with 
environmental set of variables; –: Not applicable

Socioenvironmental Environment only Comparison (S-E)

Mean AUC​ Mean pROC 
ratio at 5%

P value Mean AUC​ Mean pROC 
ratio at 5%

P value Change in pROC (%)

Hantavirus 0.88 1.56 0.00 0.89 1.43 0.00 9%

Leptospirosis 0.78 1.28 0.00 0.74 1.10 0.00 16%

Schistosomiasis 0.87 1.48 0.00 0.85 1.41 0.00 5.19%

Dengue fever 0.74 1.27 0.00 0.66 1.07 0.00 18.8%

Malaria 0.72 1.17 0.00 0.56 1.03 0.02 14%

Acute Chagas disease 0.89 1.37 0.00 0.82 1.35 0.00 1.73%

Leish. Visceral 0.80 1.34 0.00 0.77 1.31 0.00 2.1%

Leish. Cutaneous 0.71 1.23 0.00 0.64 1.08 0.00 13.1%

Brazilian spotted fever 0.95 1.72 0.00 0.94 1.74 0.00 −1.1%
Average – 1.40 – – 1.30 – 10%
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adding socioeconomic variables (Table  1, Fig.  4A). The 
addition of socioeconomic variables had no significant 
effect on the models of Brazilian spotted fever, visceral 
leishmaniasis, and Chagas disease (Table 1, Fig. 4A), and 
actually slightly decreased the performance of the spot-
ted fever model (change in pROC = −1.1%).

Poverty and disease risk
In the composite models, The most significant predic-
tive variables for all diseases were GDP (relative vari-
able importance = 37 ± 13% standard error), followed 
by annual amount of precipitation (29 ± 7%) and annual 
mean temperature (24 ± 8%). Low GDP (at or below the 
poverty level) was associated with higher probability of 
disease presence, with the strongest effect being found 
for hantavirus and Chagas disease (Fig.  5). A low GDP 
was linked to a higher likelihood of sickness, with the 
exception of dengue fever, which had a positive corre-
lation with GDP (Figs.  4B, 5, Additional file  1: Fig. S3). 
GDP was the most important socioeconomic variable in 
the combined models for seven of the nine studied ill-
nesses: schistosomiasis, leptospirosis, malaria, dengue 
fever, visceral and cutaneous leishmaniasis, and Chagas 

disease. For hantavirus and Brazilian spotted fever, the-
proportion of households without toilets was the most 
significant disease risk predictor (42% and 27% of relative 
variable importance respectively; Fig. 4B).

Ecosystem destruction and disease risk
In the simple models, the most important environmen-
tal predictor for most diseases (except for Brazilian spot-
ted fever) was ecosystem destruction between the years 
of 2008 and 2019 (mean relative variable importance of 
42%), followed by annual mean temperature (32%, Fig. 4). 
Ecosystem destruction was the most important variable 
of environmental models for six of the nine studied dis-
eases: leptospirosis, cutaneous leishmaniasis, dengue 
fever, schistosomiasis, hantavirus, and Chagas disease. 
Overall, ecosystem destruction had 31% more impor-
tance in determining disease presence than the next 
variable which was mean annual temperature. The rela-
tionship between ecosystem destruction and disease 
likelihood exhibited a negative trend, which meant eco-
system destruction increased disease likelihood when its 
levels were low (Fig. 5).

Fig. 2  Ensemble suitability models for vector-borne diseases made with socioenvironmental and environmental predictors models (composite 
socioenvironmental models and simple environmental models). Dark blue indicates low disease suitability, while light yellow indicates high disease 
suitability to presence or risk
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Fig. 3  Ensemble suitability models for zoonotic diseases made with socioenvironmental and environmental predictors models (composite 
socioenvironmental models and simple environmental models). Dark blue indicates low disease suitability, while light yellow indicates high disease 
suitability to presence or risk
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Discussion
Understanding the environmental and socioeconomic 
predictors which determine disease probability and vul-
nerability in human populations is a core question in dis-
ease surveillance and prevention. Untangling the effects 
of these variables can help predict transmission events 
and spatiotemporal emergence of outbreaks, which allow 
us to forecast the origins and paths of epidemic spread. 
Here, we show how ecosystem destruction and poverty 
correlates with the presence of several life cycle zoonoses 
and neglected tropical diseases on large geographic areas 
(Fig.  3). Disease probability was relatively high when 
GDP and natural ecosystem destruction were low, corre-
sponding to its early stages. Furthermore, adding socio-
economic variables in disease risk modeling improved 
overall model performance and accuracy by up to 18%. 
Likewise, socioeconomic variables significantly contrib-
ute to habitat suitability modeling and disease risk map-
ping for several neglected tropical and zoonotic diseases.

Disease modeling approaches supported by ecologi-
cal niche theory have additional advantages and applica-
tions concerning traditional spatial epidemiology models, 
including a biological understanding of the drivers of 
disease occurrence [22]. Climate-only ecological niche 
models, however, may end up identifying areas with the 
environmental conditions suitable for the pathogen, vec-
tor, or reservoir, without accounting for the presence of 
vulnerable human populations or densely populated cit-
ies. We found that dengue fever, malaria, Chagas disease, 
and hantavirus models had a more delimited distribution 
when susceptible populations were considered as a force 
facilitating the long-term maintenance of transmission 
(Fig. 2). Our findings also demonstrate that the absence 
of socioeconomic variables in disease transmission mod-
els may result in a misleading disease transmission risk, 
which in turn can have a negative influence on public 
health policy aiming to allocate resources for disease pre-
vention and treatment [1]. More precision is a desirable 
modeling feature when aiming to conduct data-driven 
surveillance or deployment of vaccines or treatment to 
at-risk populations outside the traditional disease-control 
plans.

Almost all diseases had GDP as a crucial socioeco-
nomic variable, with a tendency to have a higher prob-
ability of disease at low-income levels, (i.e., high poverty). 
This pattern was demonstrated more strongly for Chagas 
disease and hantavirus (Fig. 5). Overall, these results sug-
gests that poorer populations may have higher probabil-
ity of disease transmission risk. In fact, poverty is usually 
associated with infectious disease risk and susceptibility 
[32, 33]. Low GDP has been linked to malaria, dengue, 
and a variety of other infectious diseases, where it may 
act as both a cause and a consequence of disease risk [31, 
42]. This relationship between poverty and neglected 
tropical diseases may hinder populations and communi-
ties from escaping disease risk, a process known as pov-
erty trap [32]. Poverty traps may lock communities into a 
cycle of diseases and poverty that may last generations if 
interventions with specific policies are not implemented 
[58]. As a result, public health policies must be combined 
with social policies that reduce poverty.

In contrast, GDP was positively associated with dengue 
fever risk (Figs. 2 and 5), where municipalities with higher 
income also had higher risk of infection. This could be 
associated with the capacity of dengue transmission to be 
better sustained is urban areas with high population den-
sities [3]. An analogous result was obtained with Brazil-
ian spotted fever, which had a negative relationship with 
the proportion of households without a toilet (Additional 
file 1, Fig. S6). One explanation for this pattern could be 
that cities with high proportion of houses without toilet 
are in the Amazon region where Brazilian spotted fever 
is less prevalent [38]. Brazilian spotted fever occurs in 
areas with more intense agriculture and cattle economy, 
towards the central part of the country. These unexpected 
results encompassing Brazilian spotted and dengue fever 
demonstrates how different socioeconomic status proxies 
can denote complex transmission-risk gradients.

We also observed that disease transmission risk for 
dengue, cutaneous leishmaniasis, Chagas disease, schis-
tosomiasis, leptospirosis, and hantavirus increases under 
moderate to low levels of ecosystem degradation, in 
agreement with similar findings on malaria (Fig. 5) [31]. 
The early stages of ecosystem degradation could alter 
parasite transmission cycles surrounding pristine forests 

Fig. 4  Comparison between models’ performance and each relative variable importance. Overall performance and relative variable importance 
between ecological niche models and environmental (E) and socioenvironmental (SE) model predictors. A Small circles correspond to mean 
pROC values, generated based on a 5% error threshold, derived by multiple models using different algorithms (Random Forest, Maxent, SVM, 
and GLM). The diamond shapes represent the values from the ensemble (averaged) models for each disease. Blue represents models made with 
environmental sets of predictors and orange colors represents models made with socioenvironmental sets predictors. The dashed line corresponds 
to neutral performance. B The relative variable importance of each predictor is represented by circle size, in orange the models were made with 
environmental set predictors, in blue with socioenvironmental sets of predictors. The relative variable importance varies from 10 to 60%. pROC: 
Partial receiver operating characteristic; Br spotted fever: Brazilian spotted fever; temp.: temperature; precip.: Precipitation; Mean GDP PPP: Mean 
gross domestic product using purchasing power parity rates from [43]; % of households without toilet: Percentage of households without toilet 
from [38]

(See figure on next page.)
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Fig. 4  (See legend on previous page.)



Page 11 of 15Magalhães et al. Infectious Diseases of Poverty           (2023) 12:32 	

and savannas facilitating disease emergence [31]. In the 
case of malaria, the mosquito vector Anopheles cruzii is 
found in great abundance in tree canopies, but during 

deforestation the mosquito shifts to ground level increas-
ing malaria prevalence in both simians and humans 
[59]. This driver of disease emergence is also related to 

Fig. 5  Model individual response curves related to environmental (blue and gray) and social (orange and dark yellow) variable gradients, calculated 
using evaluating strips method. Dengue fever, hantavirus and Chagas disease results are shown as they illustrate different responses of disease 
risk to income and ecosystem destruction The Y-axis corresponds to the probability predicted by the models for disease presence while the X-axis 
has the predicted values of response variables. The relationship between remaining variables and disease probability, as well as other diseases and 
environmental and social predictors, is available in Additional file 1: Fig. S1–S9. Mean GDP PPP: Mean gross domestic product using purchasing 
power parity rates from [43]; ha: hectare
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spillover events, which occur when a parasite from a 
natural cycle of transmission infects a different species, 
in this case humans [60], which has been observed dur-
ing deforestation events [30]. The link between land-use 
change and outbreaks has been demonstrated recently 
by epidemics such as Ebola [61] and COVID-19 [62]. 
The gradient of recent deforestation or native vegeta-
tion loss in Brazil suggests that active deforestation was 
widespread in municipalities across the country [40] (see 
correlation of variables at Additional file 2). Thus, munic-
ipalities that went through ecosystem degradation in the 
past, but do not show ongoing landscape change, may 
demonstrate different transmission patterns and lower 
disease risk. Active deforestation and landscape fragmen-
tation may lead to peaks in disease transmission. Our 
study shows insights on how disease transmission risk 
varies along ecosystem destruction gradients and how 
the age of landscape destruction can be used to model 
vulnerability to disease across large-scale study areas like 
Brazil.

Our findings also support the argument that disease-
transmission risk is driven by the confluence of poverty 
and ecosystem destruction. Thus, human population 
health security cannot be achieved without addressing 
associated sectors such as ecosystem health. Our results 
indicate that it may be necessary to halt deforestation, 
even in its early stages to prevent spillover events and 
new outbreaks. This concept is specifically highlighted 
in the One Health approach [5] and it is coherent with 
the United Nations Sustainable Development Goals and 
the Global Health Security Agenda [6]. Additionally, our 
results highlight the importance of multiple sustainable 
development goals and provide an example of how they 
are interrelated: to promote, prevent, and surveil good 
health and well-being it is necessary to extinguish pov-
erty in its different forms and to ensure the protection of 
terrestrial ecosystems. These are central themes attuned 
by United Nations by the first, third, and fifteenth sus-
tainable development goals. Unfortunately, actions 
towards poverty eradication, health and well-being pro-
motion, and the protection of terrestrial land had been 
reduced by the SARS-CoV-2 ongoing pandemic, which 
made these themes even more urgent. Thus, to prevent 
neglected tropical diseases that have strong relationship 
to poverty and environment destruction, is necessary 
encompassing common solutions among the divergent 
development goals.

It is worth noting that our analyses could have potential 
limitations. As aforementioned, potential diagnostic bias, 
particularly in terms of regional variations in the capac-
ity to detect diseases, can produce low specificity and 
sensibility in the health surveillance system, especially 
in the Amazon region [13]. However, the good reach 

capacity of Brazilian healthcare [63] and our presence-
only approach, which is more conservative, can mitigate 
this problem. Furthermore, we used 2010 socioeconomic 
parameters, and it is possible that supplying outdated 
variables to the model will affect its accuracy and appli-
cability or bias the models. However, we observed that 
socioeconomic variables in Brazil, at a large scale, are 
highly correlated and retain their spatial patterns regard-
less of timeframe. While the current Brazilian govern-
ment has been slow to release socioeconomic census data 
[64], we believe that it was the best decision to use the 
variables from the 2010 socioeconomic census to not fur-
ther hamper the importance of this disease surveillance 
effort. Thus, we believe our analysis and interpretation of 
the results are sound. These and other limitations are dis-
cussed in greater detail in Additional file 1.

Public health strategies in Brazil should be directed to 
economically disadvantageous populations adjacent to 
areas undergoing fast ecosystem destruction. We found 
that the high socioeconomic inequalities and dispari-
ties widespread in Brazil are expected to exacerbate the 
burden of neglected tropical diseases. This is particularly 
remarkable given the recent country’s increasing scenario 
of severe and rapid deforestation, which is influenced by 
ongoing deliberate decisions from the Brazilian govern-
ment [65]. For example, during the administration of 
president Jair Bolsonaro (2019–2022), Brazil’s environ-
mental agency spent less than half of its budget to pro-
tect the environment in 2021 despite the record-breaking 
deforestation [66]. Also in 2021, Brazil was in a severe 
economic crisis, making populations in poverty even 
more vulnerable to disease outbreaks. Strikingly, scien-
tists in Brazil now have limited access to updated data on 
both the socioeconomic-demographic census and infec-
tious disease occurrences at the national level implying 
that critical decisions are being conducted with incom-
plete information. To achieve satisfactory public health 
results and sustainable development, Brazil must recover 
disease surveillance and sociodemographic census on a 
country scale and implement policies aiming to reduce 
socioeconomic imbalances and destruction of natural 
habitats.

Conclusions
Neglected tropical and zoonotic diseases are main 
explained, at macro-scales by poverty and early ecosys-
tem destruction in Brazil. To disrupt the cycle of disease 
transmission, it is vital to ensure that strategies for public 
health are aligned with policies of poverty diminishment 
and ecosystem conservation policies. Seeking equita-
ble public health interventions and socioeconomic res-
cue well aide in disrupting poverty cycles, balanced with 
coordinated country-specific strategies on deforestation 
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suppression, should be a continental priority to control 
the neglected tropical diseases and prevent poverty traps 
caused by a combination of environmental and social fac-
tors that facilitate disease emergence and transmission.
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