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Abstract

Motivation: Elucidating functionally similar orthologous regulatory regions for human and model organism
genomes is critical for exploiting model organism research and advancing our understanding of results from
genome-wide association studies (GWAS). Sequence conservation is the de facto approach for finding orthologous
non-coding regions between human and model organism genomes. However, existing methods for mapping non-
coding genomic regions across species are challenged by the multi-mapping, low precision, and low mapping rate
issues.

Results: We develop Adaptive liftOver (AdaLiftOver), a large-scale computational tool for identifying functionally
similar orthologous non-coding regions across species. AdaLiftOver builds on the UCSC liftOver framework to
extend the query regions and prioritizes the resulting candidate target regions based on the conservation of the
epigenomic and the sequence grammar features. Evaluations of AdaLiftOver with multiple case studies, spanning
both genomic intervals from epigenome datasets across a wide range of model organisms and GWAS SNPs,
yield AdaLiftOver as a versatile method for deriving hard-to-obtain human epigenome datasets as well as reliably
identifying orthologous loci for GWAS SNPs.

Availability and implementation: The R package and the data for AdaLiftOver is available from https://github.com/
keleslab/AdaLiftOver.

1 Introduction

Genome-wide association studies (GWAS) have revealed many non-
coding SNPs for complex human traits (Welter et al. 2014,
Gallagher and Chen-Plotkin 2018). However, identifying the effect-
or genes of non-coding SNPs and elucidating their specific roles in
disease etiologies are key challenges of modern GWAS. Model or-
ganism studies are important and under-exploited resources for dis-
secting GWAS SNPs by experimentally perturbing the orthologous
model organism loci for the human genomic regions of interest.
Reliable maps of non-coding genomic regions between human and
model organism genomes will not only improve our understanding
of the evolution of regulatory mechanisms but also pinpoint func-
tionally similar regulatory elements for comparative genomics and
epigenomics analysis.

Sequence alignment has made fundamental contributions to
phylogenetic analysis and evolutionary biology (Earl et al. 2014).
Leveraging DNA sequences as the mapping units is the standard ap-
proach to establish putative orthologous mappings across different
species. The current architecture of translating genomic coordinates

across genome assemblies is largely based on UCSC’s chained and
netted sequence alignment results, which are summarized as
chain files. The UCSC liftOver tool (Hinrichs et al. 2006) is the de
facto mapping strategy in cross-species studies. More recently,
bnMapper (Denas et al. 2015), which is a Python implementation
similar to UCSC liftOver but leverages reciprocal chain files allow-
ing for only one-to-one mappings across species has emerged.
However, there are a number of practical drawbacks of these strict-
ly sequence alignment-based mapping approaches of non-coding
sequences. We group these into three categories as follows using
the mappings between promoters of orthogolous human and mouse
genes:

1. The prevailing multi-mapping issues. A given non-coding region

in the human genome can be mapped, i.e. lifted over, to multiple

mouse regions. For example, when we consider the 16 374

human genes with mouse orthologues, 94.7% of their promoters

map to multiple mouse regions with an average of 38.8 6 22.0

regions (Supplementary Section 1.1). Merging of the small gaps
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<10 bp yields mapping of the human promoters to an average of

3.68 6 2.73 mouse regions and still leaves 78.6% as mapping to

multiple regions. In particular, 34.8% of the human promoters

map to multiple mouse regions separated apart by at least

200 bp.

2. Inaccurate mappings and low precision issues. Sequence-based

mapping of the 16 374 orthologous human and mouse pro-

moters is prone to generating 2842 (17.4%) false positive and

205 (1.2%) false negative cases (Supplementary Table S1).

Figure 1a illustrates an example of a true positive (76.3% of all

orthologous promoters) at the promoter regions of FEZF2 in

human and Fezf2 in mouse. Figure 1b demonstrates a potential

discrepancy between the orthologous chain segments at the pro-

moter regions of OPN4 and Opn4. As a consequence, UCSC

liftOver and bnMapper fail to map the OPN4 promoter to

mouse genome. This promoter region can be mapped to the cor-

rect counterpart after extension on both sides and, hence, is clas-

sified as a false negative for the purposes of this exploration

(Supplementary Section 1.1).

3. Low mapping rates. Unlike the highly conserved orthologous

promoters, Cheng et al. (2014) found that �50% of the tran-

scription factor occupied regions failed to map to the mouse gen-

ome and Dong et al. (2021) observed that �80% of diabetes

related human GWAS SNPs were unmappable to the mouse gen-

ome. This highlights the general challenge of mapping human

non-coding regions to model organism genomes.

Recent deep learning applications have yielded advanced investi-
gations of the regulatory code of DNA sequences. Early applications
of deep convolutional neural network models used only DNA
sequences to predict protein binding, histone modification, and
chromatin accessibility (Alipanahi et al. 2015, Zhou and
Troyanskaya 2015). Basset (Kelley et al. 2016) predicted the impact
of non-coding variants on cell type specific DNase-seq profiles.
With larger scale and finer resolution, Basenji (Kelley et al. 2018)
incorporated distal interactions and predicted a much larger collec-
tion of epigenome profiles. ExPecto (Zhou et al. 2018) evaluated the

tissue-specific gene expression changes for mutations. Cross-species
investigations with deep neural networks (Kelley 2020, Minnoye
et al. 2020) implicated a higher level regulatory code beyond strict
sequence conservation as playing a significant role for predicting
functionally similar non-coding regions. Minnoye et al. (2020) dis-
covered examples of functionally similar enhancers that sequence-
based methods failed to identify. Beyond sequence conservation,
functional genomic annotations are important complementary infor-
mation to determine functional similarity of non-coding regions be-
tween species (Kwon and Ernst 2021). Many studies have revealed
the evolutionary landscape of genomes and epigenomes by compar-
ing matched datasets across species (Odom et al. 2007, Brawand
et al. 2011, Vierstra et al. 2014, Cheng et al. 2014, Villar et al.
2015, Gjoneska et al. 2015). EpiAlignment (Lu et al. 2019) is the
first method that incorporates both matched ChIP-seq experiments
and DNA sequences as the mapping units to identify orthologues be-
tween human and mouse. However, EpiAlignment allows for binary
encoding of only one matched pair of functional genomic datasets,
which provides limited information for discriminating a conserved
epigenome against a random one.

To address the limitations of strictly sequence-based mapping of
functionally similar non-coding regions and leverage higher-order
regulatory grammar embedded in DNA sequences, we developed
Adaptive liftOver (AdaLiftOver). AdaLiftOver is built on the UCSC
liftOver framework for identifying and prioritizing orthologous
regions by leveraging functional epigenome information. It enables
mapping genomic coordinates between any two species with chain
files and at least one pair of matched epigenome datasets.
AdaLiftOver takes as input query genomic regions, the UCSC chain
file, and one or more matched epigenome datasets (Fig. 2). We cura-
ted a list of matched epigenome datasets between human and mouse
for general use from the ENCODE resources (Moore et al. 2020).
AdaLiftOver allows the users to adaptively incorporate additional
matched datasets and adjust the contribution of these datasets to the
mapping. For each query region, AdaLiftOver generates a curated
list of candidate target regions and prioritizes them with a score
from a logistic model. The users can retrieve the final set of mapping
regions by retaining only the top candidate target regions exceeding
a score threshold (Fig. 2).

We applied AdaLiftOver to a variety of case studies including
genomic intervals (peaks) from ATAC-seq and ChIP-seq experi-
ments of seven different species including chicken, cow, horse,
mouse, pig, rat, and zebrafish, and SNPs from GWAS datasets as
queries. AdaLiftOver yields consistently superior performances than
the competing methods for mapping of both the peaks across human
and a variety of model organism genomes and the SNPs to the
mouse genome. The R implementation for AdaLiftOver is available
at https://github.com/keleslab/AdaLiftOver.

2 Materials and methods

2.1 AdaLiftOver framework
AdaLiftOver is a large-scale computational framework that lever-
ages functional regulatory information to enhance the UCSC
liftOver. Specifically, AdaLiftOver implements a two-step strategy
for mapping each query genomic region Q (Fig. 2), which could con-
stitute genomic intervals from biochemically active regions of the
genome (i.e. ChIP-seq peaks) or GWAS SNPs. We first directly apply
the UCSC liftOver to map Q. If Q fails to map directly, we extend
Q with a local window on both sides and then apply the UCSC
liftOver on the extended query region to generate candidate target
regions. Let O1;O2; . . . ;Om denote the resulting candidate regions.
We note that it is possible to have no orthologous regions, i.e.
m¼0. For each orthologous region Oj, j ¼ 1; . . . ;m, AdaLiftOver
generates a list of evenly spaced candidate target regions with a pre-
defined resolution Tj;1;Tj;2; . . . ;Tj;nj

, where nj � 1 and their widths
are set to be equal to that of Q. For simplicity, we denote all curated
target genomic regions of Q as T1;T2; . . . ;Tn, where n ¼

Pm
j¼1 nj.

AdaLiftOver computes the local epigenomic feature vectors for Q
and T1;T2; . . . ;Tn as eQ and eT1

; eT2
; . . . ; eTn

. Likewise, the local

Figure 1 (a) The promoter of FEZF2 in human maps directly to the promoter of

Fezf2 in mouse. (b) The promoter of OPN4 in human maps indirectly to the pro-

moter Opn4 in mouse by allowing for a local window. The small rectangles depict

chain segments from the pairwise sequence alignment. Orthologous chain segments

between human and mouse are highlighted and connected with bands
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sequence grammar feature vectors are defined as sQ and,
sT1
; sT2

; . . . ; sTn
. Then, the epigenomic and the sequence grammar

feature similarities can be defined as Ei ¼ simðeQ; eTi
Þ and

Si ¼ simðsQ; sTi
Þ, respectively, where i ¼ 1; 2; . . . ; n and simð�Þ is a

similarity function. AdaLiftOver scores each candidate target region
Ti with a logistic function rðb0 þ b1Ei þ b2SiÞ, where rðxÞ ¼ 1

1þe�x is
the sigmoid function and ðb0; b1;b2Þ are predefined logistic regres-

sion parameters estimable by the training module.

2.2 Regulatory information similarity
2.2.1 Epigenomic features

We interrogated 67 matched ENCODE ChIP-seq and DNase-seq
datasets between human and mouse from the following 10 tissues:

heart, kidney, liver, lung, placenta, small intestine, spleen, stomach,
testis, and thymus (Supplementary Section 1.2). These datasets are
integrated into AdaLiftOver and the users can augment these with

additional epigenome datasets from matched tissues and/or cell
types. While there are a number of ways to summarize the signal

from epigenome datasets, due to the computational challenges we

articulated in Supplementary Section 1.4, we considered the local
epigenomic features as 67-dimensional binary vectors from the over-
lap of the genomic regions with the peaks from the epigenome data-
sets. The choice of binarization provides a balance between the
signal-to-noise ratio and the computational time, space, and mem-
ory requirements (Supplementary Section 1.4). We also remark that,
in all the case studies that follow, the query samples are not from
these 10 tissues used to derive the epigenome features to illustrate
robustness of AdaLiftOver for mapping query regions of interest
without directly relevant epigenome datasets.

2.2.2 Sequence grammar features

We utilized 841 core vertebrate JASPAR motifs (Castro-Mondragon
et al. 2022) as a list of ‘words’ capturing the high-level ‘grammar’
encoded by DNA sequences and are beyond traditional sequence
alignment. We used ‘motifmatchr’ (Schep et al. 2017) for fast motif
scanning in the vicinity of genomic regions instead of storing and
querying the genome-wide motif occurrences. We define the se-
quence grammar feature of a query region as the 841-dimensional
binary vector.

2.2.3 Similarity metrics

For a pair of binary vectors u; v 2 R
d, their weighted cosine similar-

ity with weight w 2 R
d can be computed as:

simðu; vÞ ¼
Pd

i¼1 wiuiviffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPd
i¼1 wiui

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPd
i¼1 wivi

q :

As default, AdaLiftOver uses equal weights while computing
similarity scores. The users can specify the weights for computing
the epigenomic feature similarities with different functional genomic
datasets. This specific choice of the epigenomic and sequence gram-
mar feature similarity metric is a result of our investigations on the
ENCODE candidate cis-regulatory elements (cCREs) (Moore et al.
2020). We identified 103 529 orthologous cCREs between human
and mouse using UCSC liftOver (Supplementary Section 1.3) and
quantified their epigenomic and sequence grammar feature similar-
ities as described above using the matched ENCODE epigenome
datasets and motif scans of the JASPAR database. All the ortholo-
gous cCREs exhibited markedly higher epigenome similarities than
randomly matched human and mouse cCREs, supporting a broad
level of epigenome conservation between the orthologous regulatory
elements (Fig. 3a). Moreover, promoter-like signatures, proximal
enhancer-like signatures, and distal enhancer-like signatures exhib-
ited monotonically decreasing epigenome conservation which fur-
ther highlighted the affinity of the epigenomic feature similarity to
capture different classes of regulatory elements. This decrease in the
epigenomic feature similarity score going from promoters to distal
enhancers can be attributed to the rapid divergence of enhancers
compared to promoters during regulatory evolution (Cheng et al.
2014, Villar et al. 2015). Similarly, Fig. 3b illustrates that the se-
quence grammar similarity captures the degree of sequence conser-
vation across all cCRE categories since UCSC liftOver-defined
orthologues are based on pairwise sequence alignment results. We
also observed that cosine similarity yielded better stability than the
Jaccard similarity for binary features which further justified this
choice (Supplementary Section 1.3).

2.2.4 Parameter tuning with the training module

To tune the parameters of AdaLiftOver, we performed leave-one-
out cross-validation (LOOCV) with the 67 matched ENCODE epi-
genome datasets. Specifically, for each fold of the cross-validation,
we ensured that the datasets from the same tissue as the validation
dataset were excluded from the training set (e.g. when mapping
heart H3K4me3 peaks, all other epigenome data from heart were
excluded from the epigenomic feature similarity calculations). We
applied AdaLiftOver with a grid of window sizes from 0 to 5 kb and
in increments of 400 bp. After mapping mouse query regions, i.e.
peaks, we labeled the candidate target regions in the human genome

Figure 2 The AdaLiftOver workflow. The cartoon icons denote any two species

with chain files. Top: query regions in the query genome; Bottom: target regions in

the target genome. Inputs: genomic coordinates of the query regions, the UCSC

chain file from the query genome to the target genome, and the matched epigenome

datasets. Step 1: AdaLiftOver defaults to the UCSC liftOver if the query regions

map successfully (I). If a query region does not map, AdaLiftOver extends the query

region in a local window and applies the UCSC liftOver to this extended query re-

gion (II). AdaLiftOver merges small gaps among the resulting orthologous regions

and generates candidate target regions based on these merged orthologous regions

(indicated by translucent connection bands) with the same width as the query re-

gion. Step 2: AdaLiftOver uses local binary epigenomic and sequence grammar fea-

ture vectors to compute the similarity scores between the query region and each of

the corresponding candidate target regions. Step 3: AdaLiftOver scores the candi-

date target regions with a logistic model (b0 ¼ �3; b1 ¼ 4; b2 ¼ 5) based on their

two similarity scores. The users can threshold these scores and rank the candidate

target regions based on their probabilities of mapping to the query region. With

score threshold of 0.4 or k¼1, AdaLiftOver picks the rightmost candidate target re-

gion with estimated probability of mapping as 0.98. Outputs: For each query re-

gion, AdaLiftOver outputs a scored and filtered list of candidate target regions that

are most similar to the query region in terms of regulatory information
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as positives if they overlapped with the corresponding human epi-
genome peaks and as negatives otherwise (Fig. 3c). Further details
on the generation of gold standard positive and negative ortholo-
gous pairs are provided in Supplementary Section 1.5. To learn the
optimal weights of epigenomic and sequence grammar feature sim-
ilarities, we fitted a logistic regression model with the two similar-
ity features (Supplementary Section 1.5) and computed the area
under receiver operating characteristic (ROC) and precision recall
(PR) curves for this logistic fit. Optimizing the area under the
ROC and PR curves yielded �2 kb as the optimal window size
(AUROC: 0.820 6 0.0113, AUPR: 0.604 6 0.0371; Supplementary
Section 1.5). We used 2 kb as the size of the local window in

generating candidate target regions for the rest of this manuscript.
In contrast to the stable local window size, the optimal logistic re-
gression coefficients exhibited larger variability across different
folds of the cross-validation. Therefore, we leveraged the averaged
coefficient estimates as the weights for the two similarities in the
logistic function (Supplementary Section 1.5). To facilitate training
with other model organism data, we implemented an AdaLiftOver
training module which allows users to estimate the logistic regres-
sion coefficients and experiment with thresholds for the logistic
probability score.

To further investigate the robustness of the default parameters of
AdaLiftOver set by the LOOCV experiments with the ENCODE
repertoire, we applied AdaLiftOver on 46 676 mouse pancreatic
islet ATAC-seq peaks (Dong et al. 2021) with widths between
150 bp and 3 kb as the query regions and performed the following
experiment. After generating the candidate target regions at a grid
of window sizes, we evaluated them by fitting the logistic regression
with labeled data where the candidate target regions overlapping the
gold standard human islet ATAC-seq peaks (Greenwald et al. 2019)
were labeled as 1 and the rest as 0. First, we observed that the opti-
mal window size of 2 kb from the LOOCV experiments agreed well
with the optimal window size in this experiment (Supplementary
Fig. S5). Next, we scored the candidate target regions generated at
local window size of 2 kb with (1) the default parameters from the
LOOCV experiments for the logistic regression and (2) parameters
from the refitted logistic regression by labeling the candidate target
regions as above. Overall, we observed that performance with
parameters (#2 above) tuned on this experiment agreed well with
the parameters (#1 above) trained with the LOOCV experiments of
the 67 ENCODE epigenome datasets (Fig. 3d and e; AUROC: #1
above 0.880, #2 above 0.879; AUPR: #1 above 0.879, #2 above
0.878). This further justified the default parameter setting in
AdaLiftOver. All the ROC and PR calculations were conducted
with the R package PRROC (Grau et al. 2015).

2.2.5 Enrichment analysis of mapped regions

To provide support for the mapped regions in the case studies we
presented, we asked whether they resided within genomic regions
with relevant epigenomic/genic features in the mapped genome
more than expected by chance. The null distributions for quantify-
ing these enrichments were adjusted for background genomic factors
such as chromosomes and the PhyloP scores of the mapped regions
(Supplementary Section 1.8).

3 Results

3.1 Large-scale evaluation of AdaLiftOver for generating

candidate human epigenome datasets from model or-

ganism data
3.1.1 Evaluation with large-scale TF ChIP-seq data from matched

human and mouse cell lines

We benchmarked AdaLiftOver against other orthologous mapping
methods for a large collection of epigenome datasets from the
ENCODE project. We utilized 55 human-mouse matched TF
ChIP-seq peak sets (Cheng et al. 2014) from erythroid and lympho-
blast cells (Supplementary Section 1.6). Specifically, we applied
AdaLiftOver to 55 mouse ChIP-seq datasets with an average of
22 679 peaks. Due to the scalability issue of EpiAlignment, we
applied EpiAlignment only on the 8 pairs of samples displayed in
Fig. 4a. AdaLiftOver achieves the best precision while maintaining,
on average, 4456 true positives compared to UCSC liftOver’s
4313 true positives (Fig. 4a and Supplementary Table S4) for all
pairs of matched datasets. With an average precision of 0.372,
AdaLiftOver boosts the precision by >50% compared to UCSC
liftOver (Fig. 4b).

Mapping with AdaLiftOver in the above settings did not include
any epigenome datasets from the tissues/cell types relevant to
the query regions. Next, we asked whether including epigenomic
feature from the relevant tissue/cell type impacted the performance.

Figure 3 (a and b) Regulatory information similarity between orthologous cCREs.

X-axis: six cCRE categories. A null distribution for each of the similarity scores is

estimated by randomly permuting cCREs 10, 000 times. Observed similarity scores

were transformed into z-scores using the mean and variance estimates of these null

distributions. (a) The z-scores of the epigenomic feature similarity across the six

cCRE categories. (b) The z-scores of the sequence grammar similarity across the 6

cCRE categories. (c) An illustration of labeling candidate target regions of a mouse

query region with the corresponding human epigenome peaks. Positive and negative

classes are represented by 1 and 0, respectively. The translucent connection bands

represent candidate orthologous mappings. (d and e) The ROC and the PR curves

with a local window size of 2 kb in the islet ATAC-seq study. Left panel: with the

default parameters from the LOOCV experiments; Right panel: with the parameters

from the refitted logistic regression. The color denotes the threshold for the logistic

probability score
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Specifically, we leveraged two pairs of matched ENCODE DNase-
seq and ATAC-seq datasets from erythroid and lymphoblast cells
(Supplementary Section 1.6). We observed that AdaLiftOver has a
better performance with the default 67 out-of-sample epigenome
datasets than using the relevant open chromation regions alone
(Fig. 4c). This demonstrates the practical robustness of
AdaLiftOver. As expected and revealed by Fig. 4c, combining all
datasets (both the default repertoire and the epigenome dataset from
the relevant tissue/cell type) yielded the best performance.

3.1.2 Benchmarking across multiple species with matched

epigenome datasets

Next, to go beyond human and mouse which are relatively closely
related species, we mapped between human and six other species,
namely, chicken (Kern et al. 2021), cow (Kern et al. 2021), horse
(Kingsley et al. 2019), pig (Zhao et al. 2021), rat (Rintisch et al.
2014, Trevi~no et al. 2020, Lien et al. 2020), and zebrafish (Yang
et al. 2020), and benchmarked AdaLiftOver in these settings.
Details of number of tissues and the epigenome datasets utilized are
provided in Supplementary Tables S6–S11 for the additional species
and in Supplementary Tables S2 and S5 for mouse. Similar to the
LOOCV experiments with the ENCODE human–mouse matched
datasets in the Materials and Methods section, we performed
LOOCV experiments (i.e. leave a single peak set out) with the
matched datasets. In these experiments, we made sure to exclude
the epigenomic data from the same tissue as the left-out data from
the training set. EpiAlignment was excluded from this large-scale
benchmarking study because of its lack of scalability.

Figure 4d summarizes the improvement in precision by
AdaLiftOver compared to UCSC liftOver across all the LOOCV
experiments and species (Supplementary Fig. S8a displays the aver-
age precision values). These results demonstrate that AdaLiftOver
significantly improves precision when compared to liftOver, while
bnMapper performs similarly or sometimes worse than liftOver
across a wide range of model organisms. We observe that for some
species such as zebrafish, AdaLiftOver achieves the best precision

while maintaining, on average, 3994 true positives compared to
UCSC liftOver’s 3238 true positives (Supplementary Table S6) for
all pairs of matched datasets. In summary, with an average precision
of 0.60–0.82 across the species, AdaLiftOver boosts the precision by
an average of 17–951% compared to UCSC liftOver (Fig. 4d).

A key advantage of AdaLiftOver is its ability to score and priori-
tize the regions that can be mapped to the model organism genome.
Figure 4e displays precision as a function of proportion of mappable
queries by each method (AdaLiftOver with default thresholds). We
observe that for some species such as cow, AdaLiftOver identifies a
smaller proportion of the query regions as mapping with high scores
at a markedly higher precision compared to liftOver and bnMapper.
We further investigated this by asking how the precision of
AdaLiftOver varied as the logistic probability threshold is lowered
to reach similar levels of proportion of mapped queries as liftOver.
Figure 5 reveals that, as the logistic probability threshold is lowered,
AdaLiftOver’s precision consistently stays higher than those of
bnMapper and liftOver, highlighting its ability to prioritize the map-
ping regions. Furthermore, this analysis revealed that a threshold of
0.1 for the logistic probability of mapping yields increased precision
compared to other methods, with minimal sacrifice in proportion of
mappable queries. For species such as zebrafish and cow, using a
smaller threshold of 0.05 results in >20% increase in precision with-
out sacrificing the proportion. The results of this large-scale bench-
marking are collectively further summarized in Supplementary
Table S12.

Application of AdaLiftOver relies on the availability of matching
epigenomic data in addition to the chain files of the species. We
assessed the influence of the number of matching epigenomic data-
sets used in the training of AdaLiftOver. Utilizing the zebrafish
ATAC-seq brain dataset as the query, we randomly sampled 3–27
samples from the zebrafish dataset collection, excluding those from
the same tissue as the query data, and trained AdaLiftOver with
these increasing numbers of datasets. We found that AdaLiftOver
consistently outperformed bnMapper and UCSC liftOver, even with
only three matching epigenome datasets in training. Furthermore,

Figure 4 (a) Comparison of the ranks of the four orthologous mapping methods in terms of their precision over eight pairs of matched human-mouse TF ChIP-seq datasets that

included results from EpiAlignment. (b) Percentage increase in precision of the methods compared to the state-of-the-art UCSC liftOver over 55 pairs of matched cell line

human-mouse TF ChIP-seq datasets. (c) Comparison of performances of AdaLiftOver under three different configurations of epigenome dataset repertoire. Y-axis: area under

the receiver operating characteristic curve. unmatched: model training by the default 67 pairs of ENCODE datasets excluding the relevant cell type; matched: model training

by the open chromatin regions from the same cell type only; combined: model training with a weighted combination between the previous two where the relevant cell type

receives 10� more weight. The P-values are computed from Mann–Whitney U tests. (d) Percentage increase in precision of AdaLiftOver and bnMapper compared to the state-

of-the-art UCSC liftOver over 7 species. (e) Comparison of three orthologous mapping methods over 7 species. Y-axis: precision is defined as the (# of mapped regions with

label 1)/(# of mapped regions). X-axis denotes the proportion of mappable query regions
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the precision steadily improved as the number of epigenome datasets
increased (Supplementary Fig. S8b).

3.1.3 AdaLiftOver prioritization of strictly sequence-based support

between orthologous regions

We further utilized human and zebrafish brain ATAC-seq peak sets
to explore to what extent regulatory information can overturn
sequence-based support in mapping of orthologous regions. We con-
sidered two group of query regions in mapping of human brain
ATAC-seq peaks to zebrafish:

Group I: query regions that map to target genome uniquely based

on sequence conservation (e.g. with the UCSC liftOver).

Group II: query regions that map to multiple regions in the target

genome (multi-mapper).

Then, we investigated the AdaLiftOver mapping scores of these
regions. For regions in Group II, we looked at the differences be-
tween the maximum and minimum mapping scores after filtering
scores <0.4 for all the regions (not to overcrowd the figure).
Supplementary Fig. S9a summarizes the scores and illustrates the
variation in the AdaLiftOver scores for these regions. First, for
regions in Group I, we observe that 16.4% of them have mapping
scores <0.5. This indicates that while these regions can be mapped
strictly based on sequence-based conservation, the epigenomic pro-
files in the two species do not support regulatory conservation. This
constitutes an example of overriding of sequence conservation.
Second, when a query region can be mapped to multiple regions,
these regions can achieve markedly different AdaLiftOver scores
based on their regulatory grammar and epigenomic conservation
(Supplementary Fig. S9b). This illustrates the ability of AdaLiftOver
to resolve multiple mapping issues.

3.2 AdaLiftOver enables orthologous mapping for

human GWAS SNPs
We considered three sets of GWAS SNPs to evaluate AdaLiftOver
and the existing methods. The evaluations are largely based on eval-
uating whether the mapped regions were enriched in biologically

relevant genomic regions (i.e. peaks from epigenome datasets of rele-
vant cell types that were not utilized in mapping, neighborhood of
GWAS phenotype-relevant genes) in the mapped genome.

3.2.1 Case study I: Schizophrenia GWAS SNPs

To evaluate the performances of AdaLiftOver and other methods
for mapping GWAS SNPs to model organism mouse, we investi-
gated the 1648 fine-mapped Schizophrenia (SCZ) GWAS SNPs pri-
oritized by Hook and McCallion (2020). We further utilized the
large collection of mouse ATAC-seq data from 25 different brain
cell populations out of 6 cell types (Hook and McCallion 2020) to
evaluate the mapping results by their enrichment in the relevant cell
populations. UCSC liftOver maps 715 (43.3%) GWAS SNPs where
1.47–19.1% of them overlap with each of the 25 mouse ATAC-seq
datasets. In comparison, AdaLiftOver maps 612 (37.5%) GWAS
SNPs and achieves a higher average precision of 8.07%. Figure 6a
illustrates that AdaLiftOver displays a similar trend with stronger
enrichment patterns than UCSC liftOver for the relevant cell popula-
tions. Consistent with the S-LDSC enrichment results by Hook and
McCallion (2020), we find that SCZ GWAS SNPs are enriched in
chromatin accessible regions of all the excitatory neurons and all the
inhibitory neurons except PV and VIP (Supplementary Section 1.8).
AdaLiftOver largely preserves the biological information of the SCZ
GWAS SNPs after cross-species mapping.

3.2.2 Case study II: hematopoiesis GWAS SNPs

To further evaluate AdaLiftOver and other methods in the GWAS
SNPs setting, we leveraged human fine-mapped GWAS data for four
hematopoietic traits: mean corpuscular volume (MCV), mean plate-
let volume (MPV), monocyte count (Mono), and lymphocyte count
(Lymph) (Ulirsch et al. 2019). We mapped these SNPs to the mouse
genome and performed enrichment analysis with the mouse
ATAC-seq peaks from 10 blood cell types (Xiang et al. 2020). The
enrichment analysis demonstrates that SNPs for MCV are enriched
in chromatin accessible regions of ERY, MEP, CMP, and GMP cells;
SNPs for Lymph are enriched for NK, CD4, CD8, and B cells
(Fig. 6b, Supplementary Section 1.9). These observations are largely
consistent with the g-chromVAR (Ulirsch et al. 2019) with the
exception of MPV and Mono traits (Supplementary Section 1.9).

Figure 5 Precision versus proportion of mappable query regions for AdaLiftOver across seven species. These points are obtained by thresholding the logistic probability of map-

ping from AdaLiftOver. liftOver and bnMapper both generate single mapping results without a thresholdable parameter
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For these set of mappings, AdaLiftOver and UCSC liftOver perform
similarly in terms of enrichments of their mappings in relevant cell
types.

3.2.3 Case study III: bone mineral density GWAS SNPs

We next showcase how AdaLiftOver can be utilized to map UK
Biobank SNPs (Sudlow et al. 2015) to mouse for further investiga-
tion. In a study of osteoporosis, Swan et al. (2020) reported 200
mouse genes as significantly altering bone mineral density (BMD)
using BMD measures obtained from a large pool of mice genetically
modified for deletion of individual genes. Swan et al. (2020) identi-
fied 52 human orthologues of these mouse BMD genes within a
250-kb distance range of UK Biobank BMD GWAS SNPs. To fur-
ther leverage this knockout mouse resource, we mapped 3125 fine-
mapped BMD GWAS SNPs (Morris et al. 2019, the UK Biobank
with PIP �0.1) to the mouse genome and evaluated their enrichment
for BMD genes. We used 3601 body mass index GWAS SNPs from
the UK Biobank as negative controls. Compared to other methods,
AdaLiftOver achieves the best enrichment results and is capable of
identifying the most number of BMD genes (30/52) as relevant for
human BMD GWAS SNPs (Fig. 6c and Supplementary Section
1.10). In order to associate more BMD genes with human GWAS
SNPs, we then interrogated a larger set of 116 402 GWAS SNPs

from the UK Biobank (PIP �0.001). As a result, AdaLiftOver maps
to 90 BMD genes with 65.2% increase in precision compared to
UCSC liftOver (Supplementary Section 1.10). Figure 6d–f illustrates
an example where UCSC liftOver does not map any SNPs to the
vicinity of the mouse BMD gene Foxo3 gene but AdaLiftOver is
able to rescue Fox3 with mapping of a BMD GWAS SNP. The SNP
rs9486902 resides at the promoter region of human gene FOXO3
while it is located in a gap among human-mouse chain segments
leading to a miss by UCSC liftOver. AdaLiftOver is able to identify
a mouse orthologue at the promoter region of Foxo3 that has similar
epigenomic features (Fig. 6e) and sequence grammar (Fig. 6f). In
particular, these human and mouse orthologous regions anchored
by the FOXO3 and Foxo3 genes share common transcription factor
binding site motifs that are relevant for BMD. Specifically, ARNT
co-binds with Ahr which negatively influences osteoblast prolifer-
ation (Yu et al. 2014). FOXN3 interacts with Menin, the product of
MEN1, which influences bone metabolism (Kaji 2012). Nr2e3, as a
nuclear receptor (Oh et al. 2008), is related to human disorders
including reduced BMD (Achermann and Jameson 2003,
Achermann et al. 2017). Overall, 25.3% of these UK Biobank (PIP
�0.001) GWAS SNPs can be mapped; however, the majority of
them (92.7%) are mapped to ‘desert’ regions that are 250 kb away
from the 200 BMD gene promoters, emphasizing the necessity for

Figure 6 (a) Enrichment analysis for fine-mapped Schizophrenia GWAS SNPs with respect to ATAC-seq peaks from 25 cell populations. (b) Enrichment analysis for fine-

mapped GWAS SNPs from three traits (Lymph and MCV are hematopoietic traits, Alzheimer is a control trait) with respect to 10 hematopoietic ATAC-seq peaks. Lymph:

lymphocyte count; MCV: mean corpuscular volume. (c) Enrichment analysis for fine-mapped BMD GWAS SNPs with respect to 52 mouse BMD genes. BMI: body mass index

(control trait). The numbers of BMD genes mapped are labeled on the top of each bar. (d–f) AdaLiftOver rescues and maps a BMD GWAS rs9486902 at the FOXO3 promoter

in human to Foxo3 promoter in mouse. (d) The human GWAS and AdaLiftOver-derived mouse orthologue are highlighted and linked by a dashed line. The GWAS SNP

rs9486902 fails to map using UCSC liftOver. (e and f) The binary epigenomic and sequence grammar feature profiles of the GWAS SNP and its AdaLiftOver orthologue. Light

and dark shading denote 1 (overlap) and 0 (not overlap), respectively
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follow-up with 3D genome profiling assays such as pcHi-C (Mifsud
et al. 2015) and its variants.

4 Discussion

We developed AdaLiftOver to enable mapping and prioritizing of
non-coding regions between human and model organism genomes.
AdaLiftOver takes as input UCSC chain files and matched epige-
nome datasets of the species to map query regions. It goes beyond
traditional sequence alignment of comparative genomics for lifting
over between genomes and simultaneously incorporates compara-
tive epigenomics and sequence grammar similarity. To the best of
our knowledge, this is the first systematic benchmark study of differ-
ent orthologous mapping methods with comprehensive real bio-
logical data applications. Compared to other methods, AdaLiftOver
is more accurate and robust, and offers a computationally inexpen-
sive way of generating hard-to-obtain functional genomic datasets
in other genomes by incorporating epigenomic and sequence gram-
mar features. Table 1 further summarizes the flexibility, scalability,
and running time of AdaLiftOver compared to existing methods.

We found that the majority of orthologues of GWAS SNPs tend
to have an enriched but low overlapping percentage with related
open chromatin regions in mouse. We expect this result to improve
as the epigenomic features leveraged span more cell types and dy-
namic conditions. In particular, developmental and disease trajecto-
ries revealed by single cell ATAC-seq might provide more
enrichment for orthologues of GWAS SNPs. With a more compre-
hensive epigenome space, AdaLiftOver can serve as a versatile ap-
proach for pinpointing potential GWAS orthologues in a model
organism and can facilitate high-throughput perturbation experi-
ments. Currently, AdaLiftOver is restricted to binary features due to
the space requirements and time complexity. We expect a more
computationally efficient implementation of AdaLiftOver to incorp-
orate features at other scales.

Supplementary data

Supplementary data is available at Bioinformatics online.
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