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Introduction 

Due to the increased risk of end-stage renal disease and its 

devastating effects on the cardiovascular system, chronic 

kidney disease (CKD) is associated with high morbidity 

and mortality. There is a growing global burden of CKD, 

affecting 10% of adults worldwide; meanwhile, the global 

mortality rate attributed to CKD has increased by 41.5% 

in the last three decades [1,2]. Tubulointerstitial fibrosis, a 

defining feature of CKD, is characterized by extracellular 

matrix (ECM) accumulation and renal scarring, which lead 

to both structural and functional deterioration of the kid-

neys. The fibrogenesis process includes inflammatory cell 

infiltration, excessive fibroblast activation, overwhelming 

The increasing prevalence of chronic kidney disease (CKD) is a major global public health concern. Despite the complicated patho-
genesis of CKD, renal fibrosis represents the most common pathological condition, comprised of progressive accumulation of extra-
cellular matrix in the diseased kidney. Over the last several decades, tremendous progress in understanding the mechanism of renal 
fibrosis has been achieved, and corresponding potential therapeutic strategies targeting fibrosis-related signaling pathways are 
emerging. Importantly, extracellular vesicles (EVs) contribute significantly to renal inflammation and fibrosis by mediating cellular 
communication. Increasing evidence suggests the potential of EV-based therapy in renal inflammation and fibrosis, which may repre-
sent a future direction for CKD therapy. 
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ECM deposition, tubular atrophy, and renal microvascu-

lature rarefaction. Recent advances in single-cell RNA se-

quencing (scRNA-seq) have enabled tremendous progress 

in understanding the mechanisms behind renal fibrosis. 

In past decades, clinically available pharmacological 

interventions for delaying CKD progression have been pri-

marily restricted to renin-angiotensin-aldosterone system 

inhibitors. Transforming growth factor β (TGF-β) is the 

master regulator of fibrosis, and new agents that target the 

TGF-β signaling pathway are continually emerging. Partic-

ularly, there is mounting evidence supporting the critical 

role of extracellular vesicles (EVs) in renal physiology and 

pathology. EVs are considered key mediators of cellular 

communication participating in renal fibrosis progression. 
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Importantly, EVs are promising therapeutic vectors due to 

their intrinsic contents and natural nanocarrier properties 

for small-molecule drugs as well as genetic therapies. 

The purpose of this review is to provide new insights into 

the mechanisms of renal fibrosis, as well as prospective 

therapeutic approaches targeting pathological signaling 

and cellular events. The important role of EVs will be em-

phasized regarding the mechanisms and therapy of renal 

fibrosis.  

Pathogenesis of renal fibrosis 

An overview of the complex interplays and critical events 

involved in renal fibrosis progression is shown in Fig. 1. 

Maladaptive repair of tubule epithelial cells 

Tubule epithelial cells (TECs) undergo adaptive and mal-

adaptive repair after injury, which is crucial for determin-

ing whether kidney injury will be repaired or progress to 

CKD [3]. In most circumstances, however, residual inflam-

matory and fibrotic processes continue to propel disease 

progression despite recovery of renal function to baseline 

after acute injury [4]. In acute kidney injury (AKI), various 

damage-associated molecular patterns released from in-

jured TECs interact with pattern recognition receptors on 

TECs, leading to production of proinflammatory cytokines 

and chemokines by the TECs and massive immune cell 

infiltration [5]. In turn, activated immune cells, especially 

Figure 1. Schematic elucidation of cellular and signaling events in renal fibrosis. Renal tubule injury acts as a driving force in fi-
brosis progression through communication with immune cells, peritubular capillary (PTC), and interstitial stroma cells via soluble or 
extracellular vesicle (EV) signaling. Persistent or severe injury leads to maladaptive repair of tubular epithelial cells (TECs) and subse-
quent EMT or pEMT, contributing to renal fibrosis. PTC rarefaction generates a hypoxic environment that promotes tubular atrophy. The 
phenotypic heterogeneity and functional plasticity elucidate the versatile roles of macrophages during inflammation, tissue repair, and 
fibrosis. Excessive accumulation of ECM components contributes to overactivation of myofibroblasts originating from multiple cellular 
sources and provides a substrate for latent transforming growth factor β (TGF-β) activation. Endogenous EVs play a notable role in deliv-
ery of messages in cellular communication, while exogenous EVs are being developed as new therapeutic agents for renal fibrosis.
AKI, acute kidney injury; ECM, extracellular matrix; EMT, epithelial-mesenchymal transition; EndoMT, endothelial-mesenchymal transi-
tion; MSC, mesenchymal stem cell; pEMT, partial epithelial-mesenchymal transition.
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macrophages, induce further TEC injury and necrosis [5,6]. 

Unresolved or excessive tubulointerstitial inflammation 

can lead to persistent kidney injury, which plays a central 

role in maladaptive repair of TECs. 

A process of epithelial-mesenchymal transition (EMT) 

after injury has long been recognized and contributes to re-

nal fibrosis as epithelial cells switch to mesenchymal cells 

[7]. However, whether epithelial cells undergo complete 

EMT and become matrix-producing cells depends on the 

condition of tissues and persistence of cytokine produc-

tion [7]. Nevertheless, it has been demonstrated that de-

differentiated TECs remained adherent to the membrane 

and express markers of both epithelial and mesenchymal 

cells, a phenomenon called partial EMT (pEMT), contrib-

uting to renal fibrogenesis [8]. Importantly, injured and 

dedifferentiated proximal tubular cells are responsible for 

tissue repair other than fixed tubular progenitor cells, and 

proliferation of proximal tubules might be regulated by the 

EGFR-FOXM1 signaling pathway [9]. 

Recently, several scRNA-seq analyses further verified 

that maladaptive repair of TECs accelerates renal fibrosis. 

The scRNA-seq of a mouse AKI model identified a dis-

tinct proinflammatory and profibrotic role of failed-repair 

proximal tubule cells [10]. Another study found that mal-

adaptive repair of proximal tubules could accelerate pro-

gressive interstitial fibrosis, which consequently promotes 

pericyte activation, peritubular capillary (PTC) loss, and 

matrix deposition [4]. In addition, new clusters of proxi-

mal tubular cells (present only following injury) with the 

ability to transfer pathological signaling to fibroblasts and 

macrophages were identified [11]. However, the underlying 

cellular and molecular mechanisms of maladaptive repair 

remain to be fully elucidated. 

Peritubular capillary rarefaction 

PTC rarefaction along with tubular atrophy is commonly 

detected in renal fibrosis. The level of PTC loss correlates 

with the severity of fibrosis [12]. Animal experiments have 

confirmed in CKD models such as the remnant kidney 

model [13] and unilateral ureteral obstruction (UUO) [14] 

that capillary density was negatively correlated with fibro-

sis. An antiangiogenic environment including deprivation 

of endothelial cell survival factors, upregulation of anti-an-

giogenic factors, dysfunction of endothelial cells, and loss 

of endothelial cell integrity contributes to the rarefaction of 

PTC [15]. In addition, pericyte disintegration and loss after 

kidney injury promoted instability of blood vessel structure 

and further capillary rarefaction. To date, the mechanism 

of PTC rarefaction is not clearly identified. However, in-

flammatory macrophages can block expression of tubular 

vascular endothelial growth factor A by infiltration and 

secretion of inflammatory cytokines, especially interleukin 

(IL) 1β and tumor necrosis factor α [16]. This blockage is 

regarded as a core event for PTC rarefaction. Additionally, 

as a key feature in ischemic kidney injury, the endothe-

lial-to-mesenchymal transition (EndoMT) is depicted as 

the transition from typical endothelial cells to a profibrotic 

phenotype [17], which results in PTC rarefaction and CKD 

progression.  

The versatile roles of macrophages  

The phenotypic heterogeneity and functional plasticity 

elucidate the versatile roles of macrophages during tissue 

repair and fibrosis. Lineage tracing studies indicate that 

self-renewed kidney resident macrophages (KRMs) in adult 

kidneys largely originate from yolk sac erythro-myeloid 

progenitors (EMPs), fetal liver EMPs, and hematopoietic 

stem cells [18]. Once injury occurs, circulating monocytes 

from bone marrow infiltrate the kidney in inflammatory 

microenvironments [19]. A recent study demonstrated 

that KRMs and monocyte-derived infiltrated macrophages 

(IMs) play complementary functions in reducing tissue in-

flammation and fostering tissue repair [20]. 

Traditionally, IMs in kidney disease are grouped into ei-

ther classically activated M1 macrophages associated with 

the TH1-like response or alternatively activated M2 mac-

rophages that contribute to the TH2-like response. Specifi-

cally, M2 macrophages can be subdivided into three types 

based on diverse stimuli and functions [21]. Accumulation 

and activation of macrophages are directly related to kid-

ney injury and fibrosis severity, and excessive profibrotic 

mediators secreted from M2 macrophages could drive my-

ofibroblast proliferation and profibrotic signaling pathways 

[22]. Recent studies have illustrated that Ly6Chigh mono-

cytes accumulate in the inflammatory kidney and differen-

tiate into three subpopulations, including the proinflam-

matory CD11b+/Ly6Chigh population presented at the onset 

of renal injury, the CD11b+/Ly6Cint population dominant in 
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the renal repair phase, and the profibrotic CD11b+/Ly6Clow 

population that emerges in renal fibrosis [23]. 

In scRNA-seq analysis, macrophage diversity can be 

deciphered unbiasedly or macrophage clusters can be ex-

plored according to phenotype and cell function, showing 

the complexity of macrophages [24]. For example, recent 

scRNA-seq research identified a unique population of 

S100A9hiLy6Chi IMs mediating the initiation and amplifi-

cation of inflammation in AKI, and blockade of S100a8/

a9 signaling exhibited renal protective effects in an isch-

emia-reperfusion injury (IRI) model [20]. Therefore, a 

precise understanding of the dynamics and functional 

characteristics of macrophages under different microenvi-

ronments could offer specific therapeutic targets for kidney 

diseases. 

Activation of matrix-producing cells 

Excessive ECM accumulation is the key characteristic of 

renal fibrosis, and studies have been conducted to define 

the cellular sources contributing to pathological deposition 

of ECM. Myofibroblasts are commonly regarded as the pre-

dominant matrix-producing cell in diseased kidneys [25]. 

Renal resident fibroblasts can transdifferentiate into myo-

fibroblasts with reduced production of fibroblast-derived 

erythropoietin, leading to renal anemia and consequent 

CKD progression [26]. 

Traditionally, α-smooth muscle actin is considered the 

marker for myofibroblasts, while a recent scRNA-seq study 

proposed Postn as another identifier for myofibroblasts 

with high ECM production [27]. Interestingly, there is high 

heterogeneity of myofibroblasts in terms of cell origin and 

function, similar to diverse macrophages in diseased kid-

neys. scRNA-seq applied in human kidney fibrosis revealed 

that myofibroblasts mainly originate from diverse resi-

dent mesenchymal cells, primarily distinct fibroblast and 

pericyte populations, far more than from fibrocytes [27]. 

Mesenchymal stem cells (MSCs) were previously proposed 

as contributors of myofibroblasts [28], and new evidence 

suggested that Gli1+ MSC-like cells represent a myofibro-

blast pool in response to injury and contribute to fibrosis 

development [29,30]. Although EMT and EndoMT are 

mechanisms involved in renal fibrosis, myofibroblasts from 

transdifferentiated renal tubular cells or endothelial cells 

have been reported to account for only a small fraction [27]. 

Overall, myofibroblasts are responsible for excessive ECM 

synthesis and deposition, and further research is needed to 

clarify the full map of matrix-producing cells during fibro-

sis development. 

Myofibroblasts produce collagen fibers when activated, 

resulting in excessive ECM deposition. The remodeling of 

ECM is in an equilibrium process. The ongoing ECM pro-

tein synthesis and degradation are orchestrated by matrix 

metalloproteinases (MMPs) and tissue inhibitors of MMPs 

(TIMPs), both of which are considered key enzymes re-

sponsible for remodeling of ECM. Thus, dysregulation of 

MMP/TIMP activity is associated with progression of renal 

fibrosis [31]. Interestingly, the mechanical structure of 

ECM is not simply a scaffold, but rather a substrate to bind 

growth factors, particularly latent TGF-β1. ECM is capable 

of activating TGF-β1 by supplying the necessary mechan-

ical resistance. The latent TGF-β–binding protein (LTBP) 

covalently binds the latency-associated peptide (LAP) to-

gether with TGF-β to form the large latent complex. LTBPs 

interact with ECM components and localize latent TGF-β 

in the ECM. When integrins on the cell surface attach to the 

Arg-Gly-Asp (RGD) binding site of LAP, TGF-β1 is released 

and activated through tension generated between integ-

rins and ECM [32]. Moreover, activation of latent TGF-β is 

enhanced as ECM stiffness increases, leading to increased 

TGF-β signaling [33,34]. 

Inflammation and fibrosis signaling activated by extracel-
lular vesicles 

EVs are small membrane vesicles of two major subtypes: 

exosomes (40 to 160 nm), which originate from endo-

somes, and ectosomes (50 nm to 1 μm), which are derived 

from direct plasma membrane budding [35]. Increasing 

evidence supports the idea that EVs selectively transfer 

specific signals to regulate organ development, immune re-

sponses, and disease. Therefore, understanding the signals 

transferred by EVs may help shed light on the mechanisms 

of renal fibrosis. 

As the primary component of the tubulointerstitium, 

TECs are particularly vulnerable to injury, which acceler-

ates renal disease progression. The secreted proinflamma-

tory mediators then guide inflammatory cells, including 

monocytes/ macrophages, dendritic cells, neutrophils, 

lymphocytes, and mast cells, to the injured sites to provoke 
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inflammation and cell death [6,36]. Recent studies support 

a notable role of EVs in renal inflammation via mediation 

of tubular-macrophage crosstalk. After injury, TECs in-

crease the secretion of EVs carrying proinflammatory-re-

lated cargoes, such as CC-chemokine ligand 2 (CCL2) mes-

senger RNA (mRNA) and functional microRNA (miRNAs: 

miRNA-23a, miRNA-19b-3p, etc.), which are transferred to 

initiate macrophage activation and migration and augment 

tubulointerstitial inflammation [37–39]. In addition, EVs 

are essential signal messengers in the proximal-to-distal 

tubular communication in pathological conditions [40]. 

Moreover, EVs could also participate in renal fibrosis 

via communication with interstitial fibroblasts. Injured 

TEC-derived exosomes enriched with TGF-β1 mRNA pro-

mote fibroblast activation [41]. Furthermore, increasing 

reports suggest that EVs containing various miRNAs (miR-

196b-5p, miR-150, and miR-21) can activate fibroblasts and 

intensify renal fibrosis [42–44]. Recently, tubular cell-de-

rived exosomal osteopontin was identified as responsible 

for activation of fibroblasts and promotion of renal fibrosis 

development [45]. 

Therefore, EVs released from injured renal cells are load-

ed with signal molecules of inflammation and fibrosis, 

which favor amplification of unresolved and prolonged 

inflammatory proteins and further serve as a crucial trigger 

of tissue fibrogenesis. 

Therapy of renal fibrosis 

Emerging transforming growth factor-β–targeted treat-
ment 

Fibrosis is the ultimate common pathway for CKD in spite 

of the underlying etiology, and antifibrotic agents are cru-

cial for treatment of CKD. Here, we mainly discuss emerg-

ing therapeutic options targeting TGF-β in renal fibrosis 

and CKD. 

TGF-β is linked with fibrosis of various organs. Previ-

ous evidence demonstrated that TGF-β participates in 

pathological fibrosis processes, including mediating ECM 

dysregulation, transdifferentiation of intrinsic cells, and 

mesangial cell proliferation. Therefore, TGF-β signaling 

represents a critical target for renal fibrosis. 

Pirfenidone is a small synthetic inhibitor that blocks 

the TGF-β promotor and has antifibrotic and anti-inflam-

matory properties. It has been widely used for idiopathic 

pulmonary fibrosis treatment in clinical studies [46]. In 

many animal models of renal disease, pirfenidone also 

exerts similar effects [47], however, its potential in clinical 

settings remains to be investigated. The ongoing TOP-CKD 

trial (NCT04258397), the largest pirfenidone phase II study 

enrolling 200 participants, is estimated to be completed by 

December 2024. Similarly, pentoxifylline, a clinically avail-

able drug, was reported to downregulate TGF-β1 expres-

sion, delay progression of CKD, and reduce cardiovascular 

risk [48]. 

Compared to TGF-β deficiency probably causing severe 

immune dysregulation, antibody neutralization of TGF-β 

is recognized to have higher security with fewer adverse ef-

fects. Multiple preclinical investigations have revealed that 

direct TGF-β neutralization could halt the development of 

fibrosis. Fresolimumab and LY2382770, human monoclo-

nal antibodies that neutralize TGF-β1, have been evaluated 

in phase II trials in patients with steroid-resistant focal seg-

mental glomerulosclerosis (FSGS) and diabetic nephrop-

athy, respectively [49,50]. Unfortunately, neither achieved 

the expected clinical outcome, which may need to be 

confirmed by larger and more robust studies. Since integ-

rin αvβ6 can activate latent TGF-β, targeted integrin αvβ6 

blockade by antibodies or small molecules offers an option 

for inhibition of TGF-β-induced fibrosis. The monoclonal 

antibody STX-100 (BG00011), which specifically blocks 

integrin αvβ6, has shown potential as an antifibrotic medi-

cation [51]. A phase II study with STX-100 (NCT00878761) 

administered to individuals with chronic allograft dysfunc-

tion, however, resulted in discontinuation for unknown 

reasons. 

To avoid adverse events caused by a complete blockade 

of TGF-β, selective blockers of the TGF-β downstream sig-

naling pathway have attracted increasing attention. Further 

basic research and clinical trials are required to discover a 

precise approach to TGF-β inhibition. 

Potential application of extracellular vesicles in renal fi-
brosis therapy 

Increasing evidence suggests that pathological signaling de-

livered by EVs could be essential for tubulointerstitial com-

munication in renal inflammation and fibrosis [38]. There-

fore, inhibition of endogenous damage-associated EVs is 
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a potential therapeutic strategy. Moreover, the therapeutic 

functions of MSC-derived EVs have given rise to increasing 

interest due to their intrinsic contents. Notably, EVs could 

also act as a natural “Trojan horse” to deliver a variety of 

drugs to treat kidney diseases. Schematic EV-based thera-

peutic strategies for renal fibrosis are shown in Fig. 2. 

Inhibition of pathogenic extracellular vesicles 

EVs are secreted by parent cells and travel to neighbor-

ing or remote sites to exert their function, a process that 

could be inhibited by targeting the release and uptake of 

EVs. Pharmacologically, a number of agents have been 

demonstrated to inhibit EV secretion through different 

Figure 2. EV-based therapeutic strategies for renal fibrosis. (A) Due to the pathological effects of EVs in renal inflammation and 
fibrosis, inhibition of EV secretion or uptake is a potential strategy for kidney diseases. (B) EVs derived from stem cells or healthy renal 
intrinsic cells could act as direct natural therapeutics. EVs can also be used as delivery vehicles for a variety of drugs, including nucleic 
acids, proteins, and small molecules. EV-based treatments have shown therapeutic effects on renal fibrosis through inhibition of apop-
tosis, inflammation, and fibrosis and promotion of autophagy, angiogenesis, and proliferation.
EVs, extracellular vesicles; EPO, erythropoietin; GDNF, glial-derived neurotrophic factor; IL, interleukin; miRNA, microRNA; mRNA, mes-
senger RNA; MSCs, mesenchymal stem cells; MVB, multivesicular body; RBC, red blood cell; srIκB, super-repressor IκB; TECs, tubular 
epithelial cells.
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mechanisms. Manumycin A, the most widely used farnes-

yltransferase inhibitor, is necessary for exosome synthesis 

in the endosomal sorting complex required for transport 

(ESCRT)-dependent pathway and has been shown in an in 

vitro model to block exosome release to support the repair 

of damaged renal epithelium [52,53]. GW4869 is a blockade 

of neutral sphingomyelinase (nSMase), which mediates 

ESCRT-independent intraluminal vesicle formation, and 

has been widely reported as a pharmacological agent to 

inhibit exosome release in various cancers as well as kid-

ney diseases. Reduced exosome secretion after GW4869 

treatment inhibited fibroblast activation and ECM depo-

sition in unilateral IRI in mice [54]. Phosphatidylserine 

externalization plays a crucial role in membrane budding 

and formation of microvesicles (MVs). The pantothenic 

acid derivative pantethine was demonstrated to impair MV 

release by preventing the transfer of phosphatidylserine. 

In an experimental model, mice treated orally with D-pan-

tethine showed alleviation of fibrosis, and such a protective 

function might be associated with reduction of endotheli-

al-derived MVs in circulation [55]. Calpain could be acti-

vated by calcium to regulate cytoskeleton remodeling and 

then increase MV release. As a calpain inhibitor, calpeptin 

treatment could reduce bleomycin-induced pulmonary 

fibrosis by inhibiting EMT-related markers and the TGF-β1 

signaling pathway, which might be related to MV reduction 

[56]. 

EVs are significant intercellular communication me-

diators that interact with recipient cells in an autocrine, 

paracrine, or endocrine manner [57] through three mecha-

nisms: membrane fusion, receptor (direct) interaction, and 

internalization [58]. Hence, they may provide an alternative 

method to inhibit exosome function by blocking uptake. 

Heparan sulfate proteoglycans (HSPGs) participate in the 

internalization of cancer cell-derived exosomes, which de-

pend on intact HSPG synthesis and HS sulfation in target 

cells. Heparin as an HS mimetic inhibits exosome uptake 

dose dependently [59]. In addition, Bonsergent et al. [60] 

found that EV uptake is a slow process by quantification 

analysis, and content delivery can be inhibited by bafilo-

mycin A1 and IFIMT protein overexpression in a pH-de-

pendent manner. 

Due to the heterogeneity of EVs and recipient cells, fur-

ther investigation is warranted to clarify the precise mecha-

nism of formation and uptake of EVs for developing precise 

therapeutic strategies targeting pathogenic EVs. 

Utilization of mesenchymal stem cell-extracellular vesicles 

as therapeutic agents 

Remarkable therapeutic effects of anti-inflammation, anti-

fibrosis, and proregeneration have been demonstrated by 

MSCs for treatment of kidney disease. However, there are 

safety issues related to immune responses, toxicity, and 

carcinogenicity [61]. MSCs function in a paracrine or endo-

crine manner and are coordinated by secretomes, growth 

factors, cytokines, and EVs [62]. Compared to MSCs, EVs de-

rived from MSCs are characterized by higher safety, lower 

immunogenicity, easier preservation, and genetic stability. 

A growing number of studies are exploring the poten-

tial properties of MSC-EVs in CKD models. Intravenous 

administration of EVs derived from bone marrow MSCs 

(BM-MSC) ameliorated tubular necrosis and interstitial 

fibrosis and improved renal function in a mouse model of 

aristolochic acid-induced nephropathy [63]. EVs originated 

from BM-MSCs and human liver stem-like cells also atten-

uated fibrosis in diabetic nephropathy due to modulation 

of fibrosis-related gene expression by miRNA cargoes [64]. 

In a clinical pilot study involving 40 CKD patients with 

eGFR between 15 and 60 mL/min/1.73 m2, both intrave-

nous and intraarterial administration of cell-free MSC-EVs 

from umbilical cord blood regulated immune response 

and improved renal function [65]. EVs containing miR-26a-

5p from adipose-derived MSCs protected against diabetic 

nephropathy by targeting toll-like receptor 4 [66]. Addition-

ally, exosomes of human umbilical cord MSCs have been 

shown to promote nuclear YAP shuttle to cytoplasm and to 

reduce matrix accumulation by transporting casein kinase 

1 δ and β-TRCP to target cells [67]. Interestingly, human 

urine-derived stem cell exosomes protected against dia-

betic nephropathy by reducing apoptosis of podocytes and 

enhancing angiogenesis and cell survival [68]. 

In conclusion, MSC-EVs may become an alternative 

therapeutic tool for kidney disease, and further research 

should be conducted to promote the transition of MSC-EVs 

to clinical application. 

Extracellular vesicles as therapeutic delivery vehicles 
As natural membrane structures, EV capacity to transfer 

biomolecules to recipient cells has attracted considerable 

attention for its potential to overcome limitations of lipo-
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Table 1. Therapeutic applications of EVs in kidney disease
Functional agent EV origin Animal model Efficacy Reference
Nucleic acid
 miR-34c-5p BM-MSC UUO Reduced pericyte, fibroblast, and macrophage 

activation and renal fibrosis
[74]

I/R
 miR-186-5p agomir MSC UUO Inhibited ECM accumulation and EMT process [76]
 miR-125a AD-MSC DN Reduced mesangial hyperplasia, expansion of 

mesangial matrix, and kidney fibrosis
[77]

 miR-26a-5p HEK293 cell UUO Suppressed muscle wasting and renal fibrosis by 
targeting FoxO1 and CTGF

[78]

 let-7i-5p antagomir BM-MSC UUO Reduced renal fibrosis by activating the TSC1/ 
mTOR pathway

[79]

 miR-16-5p Urine-derived stem cells DN Improved diabetic nephropathy and inhibited 
podocyte apoptosis by reducing VEGF-A

[80]

 miR-29 Primary mouse satellite  
cell

UUO Ameliorated skeletal muscle atrophy and attenu-
ated kidney fibrosis

[81]

 miR-20b-3p AD-MSC Ethylene glycol-induced 
hyperoxaluria

Reduced cell autophagy and inflammatory re-
sponses

[82]

 miR-let7c BM-MSC UUO Attenuated kidney injury and reduced ECM accu-
mulation and fibrotic-related gene expression

[83]

 siP65 and siSnai1 Red blood cell I/R-induced AKI or UUO Alleviated tubulointerstitial inflammation and 
fibrosis and abrogated the transition to CKD

[75]

 Oct-4 mRNA UC-MSC I/R Increased the therapeutic effects of MSC-EVs to 
attenuate kidney fibrosis

[84]

Protein
 Klotho Urine/fibroblast AKI generated by  

glycerol injection
Accelerated renal recovery, stimulated tubular 

cell proliferation, and reduced inflammation; 
reduced renal retention and tissue injury; pro-
moted amelioration of renal function

[85]

 IL-10 protein RAW264.7 cell I/R-induced AKI Ameliorated renal tubular injury and inflamma-
tion and prevented AKI-to-CKD transition

[73]

 GDNF AD-MSC UUO Ameliorated peritubular capillary loss in tubu-
lointerstitial fibrosis

[86]

 Super-repressor IκBα HEK293T cell CLP-induced sepsis Attenuated mortality, acute organ injury, and 
inflammation by inhibiting the NF-κB pathway

[87]

 Super-repressor IκBα HEK293T cell I/R-induced AKI Alleviated renal damage and ameliorated inflam-
mation and apoptosis

[88]

 CD26 TCMK1 cell I/R-induced AKI Protected against kidney injury by maintaining 
proliferation and dissipating inflammation

[89]

 Erythropoietin Kidney MSC Model of CKD and  
renal anemia

Improved hemoglobin levels and renal function in 
CKD mice and exerted antifibrotic and anti-in-
flammatory effects

[90]

Small molecule
 Dexamethasone RAW264.7 cell LPS- or ADR-induced 

nephropathy
Suppressed renal inflammation and fibrosis 

without apparent glucocorticoid adverse effects
[72]

AD, adipose mesenchymal stem cell; ADR, adriamycin; AKI, acute kidney injury; BM, bone marrow; CKD, chronic kidney disease; CLP, cecal ligation and 
puncture; CTGF, connective tissue growth factor; DN, diabetic nephropathy; ECM, extracellular matrix; EMT, epithelial-mesenchymal transition; EV, extra-
cellular vesicle; GDNF, glial-derived neurotrophic factor; I/R, ischemia/reperfusion; LPS, lipopolysaccharide; mRNA, messenger RNA; MSC, mesenchymal 
stem cell; mTOR, mammalian target of rapamycin; NF-κB, nuclear factor κB; UC, umbilical cord; UUO, unilateral ureteral obstruction; VEGF-A, vascular en-
dothelial growth factor A.
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somes and other synthetic drug delivery systems. EV-based 

therapies offer many outstanding advantages due to the 

natural lipid structure and modifiable membrane prop-

erties achieved through manipulation of parent cells to 

improve stability as well as by targeting specific tissues and 

cells [69]. 

Endogenous and exogenous loading are two principal 

approaches to integrate therapeutic drugs into exosomes 

[70]. The technical methodology can be found in another 

published review [71]. Here, we summarize the studies re-

garding application of EVs as a therapeutic agent delivery 

system in renal disease (Table 1) [72–90]. 

Molecular drugs 
EVs have been extensively used as delivery vectors for 

small molecules in recent studies. Curcumin carried by 

exosomes had excellent biological function in terms of 

solubility, stability, and bioavailability. Curcumin encap-

sulated by exosomes exerted anti-inflammatory effects in 

lipopolysaccharide-induced brain inflammation and my-

elin oligodendrocyte glycoprotein peptide-induced exper-

imental autoimmune encephalomyelitis [91]. Additionally, 

exosome-loaded doxorubicin showed less accumulation in 

off-target tissues and was less cardiotoxic than unmodified 

doxorubicin [92,93]. 

Dexamethasone-loaded macrophage-derived MVs ex-

hibited superior anti-inflammatory and antifibrotic activ-

ity without apparent glucocorticoid adverse effects [72], 

suggesting the possibility of EVs for drug transfer in renal 

disease. 

Therapeutic proteins 
Exosomes have an intrinsic capacity to cross biological 

barriers. Macrophage-derived exosomes without modi-

fication can penetrate the blood-brain barrier to transfer 

brain-derived neurotrophic factor to the central nervous 

system [94]. Recently, we successfully constructed IL-10-

loaded EVs by engineering macrophages to target the in-

jured kidney, which significantly improved renal tubular 

injury and inflammation and prevented the transition to 

CKD [73]. Concerning the stability and validity of large mo-

lecular cargoes, however, there are technical obstacles to 

efficiently load proteins into EVs. Increasing attempts had 

been made to solve this problem; for example, Leidal et al. 

[95] successfully loaded RNA-binding proteins into EVs via 

LC3-conjugation machinery. 

Genetic materials 
Natural EVs can carry both coding RNAs (mRNAs) and 

noncoding RNAs (long noncoding RNAs, miRNAs, and cir-

cular RNAs), which suggests outstanding ability in transfer-

ring diverse RNAs for therapeutic purposes [96]. Particular-

ly, miRNAs in engineered EVs have been widely studied in 

kidney diseases. For example, BM-MSC-derived exosomes 

inhibited core fucosylation by delivering miR-34c-5p to re-

duce activation of pericytes, fibroblasts, macrophages, and 

renal interstitial fibrosis [74]. Furthermore, mRNAs loaded 

in EVs could be applied for personalized tumor vaccines 

[97] and the coronavirus disease 2019 pandemic [98]. In 

addition, EVs loaded with small interfering RNA (siRNA) 

could also be a promising strategy to mediate gene silenc-

ing for cancer therapy [99]. Engineered red blood cell-de-

rived EVs modified with peptide targeting KIM-1 have been 

constructed and successfully delivered siRNAs against P65 

and Snai1 into injured kidneys. Dual inhibition of P65 and 

Snai1 expression significantly alleviated kidney inflamma-

tion and fibrosis in mouse models of IRI and UUO [75]. 

Conclusion and perspectives 

In recent years, it has been shown that maladaptive repair 

of TECs, PTC rarefaction, activation and proliferation of 

myofibroblasts, diverse functions of macrophages, ECM 

hemostasis, and EV-mediated cellular communications are 

important in tubulointerstitial inflammation and fibrosis. 

However, the accurate mechanism of renal fibrosis remains 

to be fully clarified. By combination and integration of sin-

gle-cell and multiomics techniques, it is now possible to 

better understand disease mechanisms [100–102]. In addi-

tion, EV-mediated cellular communication also provides a 

new insight into the pathogenesis process of renal fibrosis. 

Despite the development of therapeutic agents ranging 

from chemical compounds to gene therapies against renal 

fibrosis, clinical translation from bench to bedside is often 

limited due to the slow progression of disease and hetero-

geneity of patients as well as lack of noninvasive biomark-

ers for renal fibrosis [103]. Recent research showed that 

positron emission tomography imaging of collagen and 

molecular imaging of fibrosis may allow efficient, nonin-

vasive, quantitative, and longitudinal results [104]. Urinary 
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EVs released from intrinsic renal cells hold the potential to 

predict and monitor CKD progression as a “fluid biopsy” 

approach; for instance, miR-29 in urine EVs has been iden-

tified as a biomarker of renal fibrosis [105]. 

EV-based treatments are promising approaches to realize 

targeted therapy. However, clinical application of EVs in 

kidney disease is far from practical. Low production of EVs 

greatly hinders their clinical application, which encourages 

advances in stimulating EV shedding and production, but 

the properties and functions of EVs should be evaluated 

further. In addition, engineered EVs, including EVs from 

genetically engineered cells, post-modified EVs (drug 

loaded, surface modified), and EV-inspired liposomes 

have been developed to enhance therapeutic activity [106]. 

MSC-EVs and EVs from other sources have been tested 

for safety and efficacy in numerous ongoing clinical trials 

for diseases including diabetes, SARS-CoV-2 pneumonia, 

Alzheimer’s disease, and various tumors [106]. Due to the 

heterogeneity of EVs, it is urgent to establish a good unified 

standard to achieve large-scale and efficient production of 

clinical-grade EVs for clinical application. Therapeutic EV 

production is a complex process in which minor changes 

can have significant impacts on product quality and effica-

cy [106]. Furthermore, administration route, dosage, and 

biological distribution of EVs in vivo should be considered 

before EV products are applied in patients. The underlying 

mechanisms of EV production, secretion, and uptake are 

not fully clarified at present. Robust studies of basic EV bi-

ology are needed to enable clinical translation. Emerging 

advanced technologies such as super resolution microsco-

py, single extracellular vesicle assay, and nanoflow cytom-

etry could be useful tools to achieve deep understanding of 

EV biology [107]. 

Overall, with progress in understanding the mechanisms 

of renal fibrosis as well as the emerging therapeutic strate-

gies, particularly EV-based therapies, we look forward to a 

new era of precise and targeted treatments for renal fibrosis. 
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