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Abstract

The epigenetic landscape of oligodendrocyte lineage cells refers to the cell-specific modifications 

of DNA, chromatin, and RNA that define a unique gene expression pattern of functionally 

specialized cells. Here, we focus on the epigenetic changes occurring as progenitors differentiate 

into myelin-forming cells and respond to the local environment. First, modifications of DNA, 

RNA, nucleosomal histones, key principles of chromatin organization, topologically associating 

domains, and local remodeling will be reviewed. Then, the relationship between epigenetic 

modulators and RNA processing will be explored. Finally, the reciprocal relationship between 

the epigenome as a determinant of the mechanical properties of cell nuclei and the target of 

mechanotransduction will be discussed. The overall goal is to provide an interpretative key on how 

epigenetic changes may account for the heterogeneity of the transcriptional profiles identified in 

this lineage.

Keywords

brain; chromatin; development; histone; myelin; transcription

INTRODUCTION

While all the cells of an organism share the same genetic information, functional 

specialization is achieved by the establishment of a cell-specific transcriptional program. 

The spatial organization of the genome within nuclear territories, its relationship with the 

nuclear lamina, together with modifications of nucleic acids and histone proteins, and 

the state of compaction of chromatin, collectively define the epigenomic landscape of a 
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cell. Parts of the genome containing genes not compatible with specialized cell functions 

are rendered inaccessible, while other regions regulating functional specificity are made 

accessible and become either poised for transcription or transcriptionally competent.

In the nuclei of eukaryotic cells, the DNA is wrapped around protein octamers called 

histones, which define the nucleosome, the basic unit of chromatin. The amino acids 

in the N terminal tails of these proteins undergo several post-translational modifications, 

including lysine acetylation, methylation or ubiquitination, serine phosphorylation, and 

arginine methylation or citrullination. These histone marks result from the concerted actions 

of enzymatic histone writers (responsible for the deposition of the modification) and erasers 

(responsible for the removal of the modification). The modified amino acids are recognized 

by specialized reader proteins via specific recognition domains, including bromodomains 

that recognize lysine acetylation or chromo-domains that recognize methylated residues. 

DNA can also be modified by the addition of a methyl group at the 5′ cytosine 

residue (5mC), resulting in transcriptional repression, or by the oxidation of the methyl 

group (5hmC), leading to hydroxymethylation, associated with transcriptional activation. 

The dynamic regulation of histone and DNA modifications is associated with distinct 

transcriptional states allowing for transcriptionally competent euchromatin or repressed 

heterochromatin. Eukaryotic cell nuclei also possess higher-order organization in large 

domains of repressed or active chromatin within specific topological domains.

DNA methylation masking transcription factor recognition sites, repressive histone 

modifications, chromatin compaction, and recruitment to the nuclear lamina act by hindering 

the access of transcription factors to DNA, reducing or diminishing the ability of cells 

to respond to external cues (Figure 1). Gene-poor or -silenced genomic regions are 

recruited to the nuclear periphery where they interact within the nuclear lamina, forming 

lamina-associated domains (LADs),1,2 while gene-rich transcriptionally active regions tend 

to arrange around transcription factors to form transcriptional “factories” and cluster 

into topologically associating domains (TADs)3–5 (Figure 2). While these domains and 

associated modifications are generally stable, they also have the potential to be reversed, and 

this implies that the epigenetic landscape is not static, but allows for adaptation to external 

conditions.

Here, we will first discuss some generalities on mechanisms of repression and activation, 

then address the role of histone and DNA modifications during oligodendrocyte lineage 

progression, followed by a discussion of their crosstalk with mechanisms of RNA processing 

and we conclude with a review of the role of nuclear chromatin and lamina in determining 

the mechanical properties of the nuclei and also as a point of convergence of physical forces 

in the regulation of gene expression.

General concepts of epigenetic regulation of gene expression

Acetylation of lysine residues in the histone tails is considered a modification permissive 

for transcription, as it neutralizes the positive charge of the amino acid, loosens the 

interaction with negatively charged DNA, and facilitates the access of transcription factors. 

This modification is modulated by the opposing actions of writer histone acetyltransferases 

(HATs) and eraser histone deacetylases (HDACs) and is, therefore, suitable for the dynamic 
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regulation of genes.6,7 Histone methylation is a more complex event, catalyzed by enzymes 

that transfer one or more methyl groups on specific lysine or arginine residues.8 The 

transcriptional outcome is dependent on the number of methyl groups added to lysine 

residues (mono-, di-, or tri-methylation), as well as the position of a given lysine 

residue within the histone tails. For instance, lysine K4 in histone H3 is associated with 

transcriptional activation. In its monomethylated state (H3K4me1), this modification is 

found in active enhancers, while its trimethylated state (H3K4me3) marks transcriptionally 

active promoters.9,10 This modification is placed by the enzymatic writers MLL1/KMT2A 

and MLL4/KMT2B and reversed by the enzymatic erasers KDM5A/JARID1B and KDM5B/

JARID1A. Dimethylation of arginine residues, catalyzed by protein methyl transferases 

PRMTs, has been shown to play an important role in transcriptional activation or repression, 

depending on the position of the arginine residue and whether the deposition of the methyl 

groups is symmetrically or asymmetrically placed.11 While specific erasers for arginine 

methylated marks have not been identified, the activity of deiminase enzymes (PADI) 

responsible for the conversion of arginine into citrulline has been proposed to reverse the 

transcriptional consequences of arginine methylation on histones.12

The trimethylation of K9 and K27 residues in histone H3 results in transcriptional 

repression. The enzymes responsible for H3K27me3 deposition are part of the Polycomb 

group PRC2 (e.g., EZH1 and EZH2), which deposit the mark at transcriptionally inactive 

promoters.13 Recognition of the H3K27me3 mark by distinct chromo-domain binding 

proteins can lead to poised expression or stable repression, depending on whether the 

recruited PRC1 complexes (RING1A and B) induce ubiquitination of specific lysine 

residues in histone H2A (and result in poised expression of genes) or recruit NURD 

repressive complexes and lead to heterochromatin formation.14 Thus, even though erasers 

for the H3K27me3 mark exist (i.e., UTX/KDM6A and JMJD3/KDM6B), the activity of the 

PRC2 complex results in long-term repression due to chromatin compaction.

H3K9me3 marks are deposited by specific histone writers (e.g., SUV39H1/2) and removed 

by erasers, such as KDM3A/JMJD1 and KDM4/JMJD2. Both writers and erasers are highly 

expressed in the oligodendrocyte lineage,15–17 thereby suggesting that this modification 

may play an essential role in regulating transient repression. In addition, H3K9me3 marks 

have been shown to be recognized by specific readers (such as HP1-α)18 and contribute to 

chromatin compaction and recruitment to the nuclear periphery.

DNA methylation catalyzed by methyltransferases (DNMTs) plays an essential role in many 

biological processes, including transcription and cellular differentiation. DNA methylation 

preferentially occurs at exon-boundaries, characterized by high CpG density.19,20 It has 

been shown that DNA methylation cooperates with other histone modifications to further 

stabilize repression. For instance, the 5mC mark is recognized by a family of proteins 

carrying conserved methyl-CpG binding domains (e.g., MECP2), which recruits other 

histone modifiers and further alters the local chromatin conformation.21–23 Importantly, 

MECP2 was reported to also regulate alternative exon splicing by recruiting HDACs and 

altering the kinetics of RNA pol II elongation.24 A relationship between DNA methylation 

and splicing was also reported in the oligodendrocyte lineage,25 as cell-specific deletion of 
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Dnmt1 in progenitors impaired the alternative splicing of several transcripts regulating lipid 

metabolism, myelination, and cell cycle.25

While DNA methylation at promoters has been associated with transcriptional repression, 

and a true demethylase has not been identified, it has been shown that methylated 

cytosines are targeted by enzymes called ten-eleven translocases (TETs) and converted 

to hydroxymethyl cytosines which can be oxidized to formyl cytosine and then carboxyl 

cytosine, which is eventually excised by the DNA repair complex.26

Gene silencing is further stabilized by establishing contacts between heterochromatin and 

the nuclear lamina. These genomic regions forming stable interactions with the nuclear 

lamina have been identified as LADs.27,28 The nuclear lamina in oligodendrocyte lineage 

cells consists of intermediate filaments called lamins. Lamin A and lamin C are expressed 

in mature oligodendrocytes, and lamin B1 is expressed in oligodendrocyte progenitor cells 

(OPCs). These proteins can directly bind to chromatin via specific interactors and also 

associate with the cytoskeleton through the linker of nucleoskeleton and cytoskeleton 

(LINC) protein complex (see below), thereby enabling the direct transduction of physical 

forces from the exterior of the cell to its genome.29

HISTONE AND DNA MODIFICATIONS RESPONSIBLE FOR THE 

ACQUISITION OF THE OLIGODENDROCYTE LINEAGE IDENTITY

Although neural stem cells (NSCs) are multipotential and able to generate neurons and 

glia within the developing nervous system, they are neurogenic at mid-gestation and 

gliogenic at late gestation. This section aims to review the mechanisms regulating the 

switch from neurogenic to gliogenic transcriptional competence of NSCs and then delve 

into the transcriptional and epigenetic mechanisms responsible for the transition from 

oligodendrocyte progenitors to oligodendrocytes.

Epigenetic landscape of NSCs during the neurogenic to gliogenic transition

The neurogenic to gliogenic switch of NSC during embryonic development, despite the 

exposure to the same external factors, implies the involvement of epigenetic mechanisms 

regulating their responsiveness to these external cues. At least two mechanisms have been 

described: DNA methylation and histone post-translational modifications (Figure 1A). DNA 

methylation has been shown to prevent the binding of transcription factors to astrocytic 

genes during the neurogenic phase by altering their recognition site and keeping astrocytic 

genes repressed.30,31 At the same time, neurogenic genes are poised for transcription due to 

the coexistence of the transcriptionally competent histone H3K27 acetylation and repressive 

H2AK119 ubiquitination, mediated by the recruitment of the PRC1 complex (RING1B) to 

H3K27me3 marks at specific genomic sites.32

The switch to the gliogenic phase is characterized by the activation of astrocytic genes and 

stable ubiquitin-independent repression of neurogenic genes (Figure 1A). Late gestation is 

characterized by the expression of the transcription factor NFIA,33 previously identified as a 

critical astrogliogenic factor,34,35 which releases the DNA methylation block by dislodging 

the DNA methyltransferase DNMT1 and allows transcription factors like STATs and 
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SMADs to recruit HATs and activate astrocytic genes.36 Consistent with this mechanism, 

mice with genetic ablation of Dnmt1 in NSC30,31 and those with forced expression of 

NFIA37 are characterized by precocious astrogenesis. Neurogenic genes lose the H3K27 

acetylation and become stably repressed due to the concerted activity of the PRC2 complex, 

which imposes the repressive H3K27me3 mark and the PRC1 complex, containing PHC2, 

which promotes clustering and further recruits repressive NURD complexes containing 

HDAC1 and other repressors, ultimately effecting heterochromatin formation.32 In support 

of the importance of the PRC2 complex in lineage commitment, oligodendrocyte-lineage 

cells lacking PRC2 components, such as EZH2 or EED, were characterized by a gene 

expression pattern reminiscent of the astrocytic phenotype and severe hypomyelination.38,39 

The decision of NSC and glial-restricted precursors to become either astrocytes or 

oligodendrocytes occurs in late embryogenesis when the epigenomic landscape organizes 

the cell-specific pattern of gene expression in response to external cues. The presence of 

Notch or BMP, for instance, promotes an astrocytic pattern of gene expression, whereas 

noggin or Sonic hedgehog favors the establishment of the oligodendrocytic transcriptome.40 

Therefore, late embryonic NSCs are characterized by a remarkable susceptibility to external 

signals due to a receptive epigenomic configuration, underlying the importance of both 

extracellular and intracellular contexts for attaining specific developmental outcomes.41–43

Epigenetic landscape of OPCs: Repression of neurogenic genes

OPCs are electrically active cells44–47 that receive direct synaptic inputs from excitatory 

and inhibitory neurons48–51 and respond to neuronal activity with proliferation52–54 or 

differentiation.55,56 It is, therefore, not surprising that they retain the expression of several 

neurotransmitter receptors and ion channels, characteristically defined as neuronal genes. 

Despite the expression of these neuronal genes and initial reports that neurons can be 

generated from OPC in specific conditions57 and in selective brain regions,58 it is now clear 

that oligodendrocyte progenitors are not neurogenic59 as neurogenic genes are silenced in 

these cells, as described above (Figure 1B). The concept that OPCs behave as multipotential 

cells with the ability to generate neurons was suggested by initial in vitro studies, with 

cells cultured in the presence of growth factors60 or HDAC inhibitors.57 However, with the 

exception of a few reports in selected brain regions,58 in vivo fate mapping studies did 

not support OPCs as neurogenic cells.61–63 Consistent with the inability of OPCs to form 

neurons in vivo, their epigenomic landscape is characterized by the presence of widespread 

PRC2-dependent repressive H3K27me3 marks on neurogenic genes, which remain unaltered 

throughout the process of differentiation.64 The presence of these marks on neurogenic 

genes is also in agreement with the previously reported presence of the PRC2 enzymatic 

complex EZH2 on genes promoting neuronal fate, during the transition from embryonic 

stem cells to OPCs.65,66 Nevertheless, a more recent study showed that OLIG2+ cells 

lacking Ezh2 expression can still generate oligodendrocyte precursors, indicating that the 

absence of PRC2 activity per se is not sufficient to transition into a neuronal fate.38 Thus, 

the loss of neurogenic potential of OPCs is consistent with the silencing of neurogenic genes 

during embryonic development, using a mechanism of repression involving both PRC2-

dependent histone methylation and PRC1-dependent recruitment of HDACs.67 In specific 

regions of the central nervous system (e.g., ventral areas of the neural tube), however, 

OPCs share the same precursors with interneurons.68 Due to this common origin, it is not 
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surprising that their epigenome reflects this shared origin of interneuron-specific genes in 

OPCs that are mostly characterized by unmodified histones, which render them responsive 

to direct reprogramming into neuronal cells upon transfection of neurogenic transcription 

factors.69

As OPCs differentiate into oligodendrocytes, they progressively lose synaptic contacts and 

become electrically inert,49 a process which is accompanied by the downregulation of a 

large number of broadly defined neuronal genes, including neurotransmitter receptors and 

ion channels25,64 (Figure 1B).

Epigenetic landscape of OPCs: Repression of astrocytic genes

The prolonged exposure of cultured OPCs to morphogenic factors and mitogens70 or HDAC 

inhibitors60 favored the expression of astrocytic and neuronal genes in these cells. However, 

in vivo, only some OPCs in the ventral gray matter can generate astrocytes during the 

embryonic period.63 This suggests that the epigenomic landscape of cultured OPCs is 

different from that of brain OPCs, whose lineage becomes progressively more restricted 

over time. DNA methylation is not used as one of the mechanisms for lineage restriction, 

as the ablation of Dnmt1 in OPCs does not result in lineage switch or even misexpression 

of astrocytic or neuronal genes.25 Rather, it is accompanied by dysregulation of genes 

regulating cell division, subsequent defective proliferation, downregulation of transcription 

factors important for oligodendrogliogenesis (e.g., Ascl1, Sox10, and Myrf), and defective 

RNA splicing events (related to exon skipping) ultimately leading to decreased survival.25 

In contrast, ablation of the enzymes responsible for PRC2-dependent repression in OPCs 

resulted in the upregulation of Notch pathway-related genes, including the astrogliogenic 

factor NFIA,38 and increased astrogliogenesis. Since the astrogliogenic function of NFIA 

in OPCs is antagonized by OLIG2,34,71 it is not surprising that increased generation of 

protoplasmic astrocytes in the dorsal forebrain during embryonic development could also 

be detected after deletion of Olig2 in OPCs. Importantly, the ability of OPCs to form 

astrocytes was not stable over time, but rather it became less effective with aging.72 NFIA 

astrogliogenic function in OPCs is also antagonized by SOX1035,71 and HDAC3 activity.73 

In glial progenitor cells, NFIA cooperates with SOX9 to generate astrocytes.71,73,74 As 

OPCs become committed to the oligodendrocyte lineage, the increasing levels of SOX10 can 

act by directly antagonizing NFIA (Figure 1B) and indirectly upregulating the levels of the 

microRNA miR-338 reduces SOX9 levels.75 The genetic deletion of Sox10 also increases 

the generation of astrocytes at the expense of oligodendrocytes.71 Ablation of Hdac3 induces 

a very similar phenotype to that of Olig2 deletion,73 thereby suggesting the cooperation 

between transcription factors and epigenomic modulators in regulating the oligodendrocytic/

astrocytic switch.

From NSC to oligodendrocyte lineage cells and back: The role of pioneer transcription 
factors

It is important to clarify here that progressive lineage restriction occurs during normal 

development and requires the establishment of repressive DNA methylation and chromatin 

compaction, as delineated above. However, although the transcriptional program defining 

cell identity is stable, it is possible, in specific circumstances, to reactivate silent genes by 
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altering the epigenomic landscape. The discovery that somatic cells could be reprogrammed 

into pluripotent stem cells by the transfection of four transcription factors (e.g., OCT4, 

SOX2, KLF4, and MYC) suggested that their expression was sufficient to erase the 

epigenetic landscape responsible for cell specialization.76 A deeperunderstanding of this 

mechanism of action led to the concept of pioneer transcription factors. These proteins are 

characterized by the ability to bind only to partial transcription factor recognition motifs 

displayed on the surface of nucleosomes, and either alone or in tandem, they are capable of 

affecting the epigenetic landscape by inducing nucleosomal remodeling independent of ATP 

or affecting DNA methylation.77 Thus, specific transcription factors have the dual ability to 

both establish or dismantle the epigenetic landscape.

In an attempt to define the key transcription factors responsible for the transition from 

NSCs to OPCs, an elegant study78 focused on three transcription factors, differentially 

expressed between human NSCs (already expressing OLIG2) and OPCs (e.g., ASCL1, 

SOX10, and NKX2.2) and analyzed the transcriptional profile induced in NSCs by 

overexpressing each of them separately and in combination. While the combined expression 

led to oligodendrocyte lineage cell generation, the expression of ASCL1 induced both 

oligodendrocyte and neuronal genes.78 This result is consistent with the role of ASCL1 as a 

pioneering transcription factor with the ability to reactivate neuronal genes even within the 

context of a repressive chromatin state, and also explains previous studies on its role as both 

neurogenic and oligodendrogliogenic factors.79–81

Intriguingly, the expression of SOX10 alone was sufficient to induce a gene expression 

pattern that resembled that of primary human OPCs, in terms of repressed and activated 

genes.78 Since SOX10 is an HMG transcription factor and a member of the SOX family, it 

is conceivable that, like SOX2, it may play the role of “pioneer” in opening genes required 

for myelin production within the heterochromatic nuclei of differentiating OPCs. Consistent 

with its role as a pioneer transcription factor, a recent study reported that expression of 

OLIG2, ASCL1, SOX10, and NKX2.2 is sufficient to reprogram human dermal fibroblasts 

into oligodendrocyte lineage cells.82

Epigenetic landscape of differentiating oligodendrocyte progenitors: Repressive events 
regulating cell cycle, electrical properties, and transcriptional inhibitors of myelin genes

The transition from OPCs to mature oligodendrocytes is characterized by a series of 

functional changes. This section will summarize the current knowledge of the changes in 

the epigenetic landscape occurring during this transition (Figure 1B,C). They include (1) exit 

from the cell cycle; (2) loss of migratory capacity associated with morphological changes 

(from bipolar to multiprocess bearing cell); (3) loss of electrical responsiveness to neuronal 

stimulation; and (4) generation of large quantities of lipid and specialized proteins to be 

assembled into a membrane structure called myelin. These processes are not concurrent but 

rather sequential, with the early repressive events referring to regulatory RNA processes 

and downregulation of genes encoding for positive regulators of proliferation and negative 

regulators of myelin gene expression.83

We have previously discussed how OPCs are electrically active cells with the ability 

to respond to neurotransmitters by activating ionotropic receptors and voltage-gated 
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ion channels.44,49,84,85 They receive synaptic neuronal contacts and are proliferative, 

migratory, electrically active cells whose genomic distribution of the repressive methylation 

mark H3K27me3 is localized on neurogenic genes and not present on genes regulating 

the expression of neurotransmitter receptors, ion channels, and synaptic transmission.64 

However, as the OPCs start to differentiate into oligodendrocytes, eventually forming 

myelin to provide axonal insulation, it is of paramount importance that genes regulating 

their electrical properties are silenced.25,49 This occurs by the deposition of the repressive 

histone mark H3K9me3 at genomic loci responsible for the expression of ion channels and 

pathways related to synaptic transmission.64 Downregulation of the enzymatic writer for 

H3K9me3 (e.g., SUV39H1) during the differentiation process prevents the changes in the 

excitability of these cells.64 Thus, the OPCs adopt two distinct mechanisms of neuronal 

gene silencing: an early PRC2-dependent mechanism of repression of neurogenic genes and 

a later SUV39H1-dependent mechanism of inactivation of the electrical properties of the 

cells. H3K9me3 is also found on GABAergic genes as OPCs differentiate.64 The H3K9me3 

mark is recognized by specific chromodomain binding proteins, such as HP1-α, a protein 

that we previously reported to be enriched in white matter tracts during developmental 

myelination.86 In nuclear domains characterized by transcriptionally silent chromatin, HP1-

α has the ability to recruit genes to the nuclear periphery that are repressed due to this 

histone mark.

At the same time, additional mechanisms of transcriptional repression are in place to 

prevent the premature differentiation of OPCs into myelin-forming oligodendrocytes, 

as initially shown by our group first in cultured OPCs87 and then in developing 

and aging rodents86,88,89 and subsequently validated by several other groups.90–92 The 

initial discoveries identified reversible histone acetylation of specific lysine residues 

as histone marks in the nuclei of OPCs,86,87,89 which are favored by the presence 

of mitogens87 and differentially affected by astrogliogenic and oligodendrogliogenic 

signals.70 Additional crosstalk between epigenetic modifications, such as PRMT5-mediated 

symmetric arginine methylation and histone acetylation,93 and regulation of chromatin 

accessibility by arginine citrullination,94 further contribute to tighter regulation of this 

transcriptional network. The histone deacetylase HDAC1 was identified as the major 

enzyme responsible for the transcriptional repression occurring during the transition from 

OPCs to oligodendrocytes,86,95 and genetic approaches further validated this observation in 

mice and cultured cells.70,96

Repression occurs at genomic loci encoding for transcriptional repression of inhibitory 

bHLH transcription factors class V (e.g., ID2 and ID4) and class VI (e.g., HES5), which 

were shown to play a major role as inhibitors of myelin gene expression.97–100 Importantly, 

besides acetylation/deacetylation regulated by the opposing activity of HATs and HDACs, 

these genes were also shown to be regulated by PRMT5101 and complexes regulating the 

chromatin accessibility at their promoter region.102

It is worth noting that several of these genes, such as transcriptional inhibitors103 and cell 

cycle regulatory genes,25 are further silenced by additional mechanisms, including histone 

and DNA methylation and also recruitment to the nuclear lamina after being repressed by 

initial histone deacetylation.104
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The relationship between cell cycle exit and differentiation in OPCs was shown to be 

tightly connected to the major transition in the epigenomic landscape, as transcription 

factors involved in cell cycle regulation, such as members of the E2F and MYC family, act 

as major transcriptional switches. For instance, E2F1 and MYC were shown to modulate 

the recruitment of HATs to genomic locations encoding for chromatin components and 

regulatory enzymes, as well as transcriptional inhibitors of differentiation.105,106

Conditions favoring histone acetylation at the expense of deacetylation prevent the 

differentiation of OPCs. Those conditions include treatment of OPCs with HDAC 

inhibitors,86,87 exposure to BMPs70 and genetic ablation of the histone arginine 

methyltransferase PRMT5,93 the histone deacetylase HDAC1,96 or one of the transcription 

factors responsible for their recruitment, such as YY1.98 Conversely, silencing E2F1106 or 

MYC,105 or blocking the activity of histone acetylation readers,107 are capable of inducing 

the progression of OPCs toward the first stages of oligodendrocyte differentiation but not 

sufficient to induce the myelinating terminally differentiated phenotype.

An additional mechanism preventing premature differentiation of OPCs into myelinating 

oligodendrocytes is the association of lipid metabolism genes to the nuclear lamina.104 

Downregulation of LmnB1 as OPCs differentiate is guaranteed by miR23, and the inability 

to decrease the levels of this nuclear lamina protein results in nuclear structural defects, 

including the formation of atypical intranuclear membrane and decreased expression 

of myelin genes.108,109 Indeed, failure to decrease LMNB1 levels results in reduced 

Plp1 expression110 and overall decreased transcription of myelin genes.108,111 From a 

mechanistic perspective, the progressive decrease of LMNB1 during differentiation results 

in increased expression levels of genes encoding for key lipid enzymes, resulting from 

the release from the nuclear periphery.104 This also explained the dramatic dysmyelinating 

phenotype that was reported in transgenic mice overexpressing Lmnb1.112

Epigenetic landscape of oligodendrocyte progenitors differentiating into 
oligodendrocytes: Transcriptional activation of genes regulating cytoskeleton, lipids, and 
myelin proteins

The transcriptional signature of differentiated oligodendrocytes includes the activation 

of several genes necessary for the synthesis of myelin lipids and proteins as well as 

cytoskeletal remodelers necessary for axon wrapping, membrane extension, and transporters 

of ions and metabolites, which allow for the exchange of solutes at the neuro–glial 

interface. While the mechanisms of derepression defined above address the timing of 

myelin protein gene expression, a number of additional gene activation mechanisms need 

to occur to achieve the identity of myelinating oligodendrocytes. The program of activation 

includes the recruitment of ATP chromatin remodelers (such as BRG1) to enhancer regions 

containing SOX10 and OLIG2 binding sites in OPCs and to OLIG2 binding sites near 

the transcriptional start site for early differentiation genes (e.g., Cnp, Mbp, and Sirt2) and 

genes encoding for cytoskeletal elements in newly formed oligodendrocytes.113 The role 

of chromatin remodeling complexes at later stages of differentiation, however, appears less 

prominent, as indicated by the modest phenotype in mice with genetic ablation of Brg1 in 

differentiating oligodendrocytes.114 The binding of SOX10 to enhancer regions of genes 
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related to the actin cytoskeleton and metabolic regulation115 is essential for the progression 

of OPCs to oligodendrocytes, and SOX10 acts as an orchestrator of both repressive64 

and activating marks characterizing the epigenomic landscape as well as to aid in the 

recruitment of the chromodomain helicase DNA-binding (CHD) family of ATP-dependent 

chromatin remodelers. Among those, CHD8 was shown to open chromatin at promoter 

regions around the transcriptional start site and allow either for repression or activation 

of gene expression, the latter favored by the recruitment of the histone methyltransferase 

KMT2102 and responsible for the deposition of the activating H3K4me3 histone mark 

at the promoters of genes associated with oligodendrocyte differentiation (e.g., Olig1, 

Sox10, Nkx2.2, Tcf7l2, Myrf, Mbp, and Ugt8). CHD7, in contrast, was identified at later 

stages of differentiation to be recruited at SOX10 binding sites of genes modulating lipid 

homeostasis, cytoskeletal reorganization, myelin, and axonal ensheathment (e.g., Olig1, 

Nkx2.2, Myrf, and Sip1).116 An additional mechanism regulating chromatin accessibility 

in differentiated oligodendrocytes involves the removal of repressive arginine methylation 

mediated by PADI2, the enzyme responsible for converting arginine residues into citrulline 

at loci encoding for oligodendrocyte differentiation genes.94

Finally, DNA hydroxymethylation, mediated by TET enzymes, has been shown to induce 

the activation of genes regulating the crosstalk between myelinating oligodendrocytes and 

neurons. The global levels of brain hydroxymethylation increase during development and 

decline with age. This pattern correlates with decreased levels of the TET1, but not of 

the TET2 isoform in oligodendrocytes, thereby suggesting TET1 as the main enzyme 

responsible for DNA hydroxymethylation in the oligodendroglial lineage.117 The functional 

significance of TET1 was inferred by characterizing the phenotype of mice with lineage-

specific ablation of this gene,117,118 which revealed important phenotypic similarities but 

also significant differences, possibly due to the different regions of targeted ablation. 

While mice with lineage-specific ablation of Tet1 catalytic domain (encoded by exons 

11–13, Tet1Δ11–13) showed defects in developmental myelination, cell-cycle progression, 

OPC differentiation, and adult myelin repair,118 mice with cell-specific ablation of exon 

4 (Tet1Δ4) did not display defective differentiation but were characterized by impaired 

adult repair of demyelinated lesions due to misexpression of genes regulating axo–glial 

interaction.117 These findings are intriguing, as they suggest that the N-terminal domain 

of TET1 might exert a role which is independent of the enzymatic activity. In this regard, 

it is noted that in other cell types, the N-terminal domain of TET1 has been shown to 

modulate the levels of repressive histone mark H3K27me3 and repress the expression of 

developmental genes.119,120 Future studies are needed to provide a better understanding of 

the role of the distinct TET family members at the distinct stages of the oligodendrocyte 

lineage.

EPIGENETIC REGULATION OF GENE EXPRESSION MEDIATED BY RNAs

As OPCs differentiate into mature oligodendrocytes, their functional specialization is 

guaranteed by the presence of a set of diverse proteins encoded by the same gene due 

to alternative splicing of the pre-mRNA, which allows for exons and introns to be either 

retained or skipped121 and thereby allowing the developmental stage-specific expression 

of the same protein with different functional domains.122,123 These RNAs can also be 
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reversibly modified by specific enzymes (e.g., METTL3 and METTL14) and transported 

to distal sides of the cell to allow for local translation in response to external stimuli. It 

is clear that RNA processing plays a prominent role in the oligodendrocytes,83 and the 

detection of RNA splicing defects in mice with lineage-specific ablation of histone or DNA 

modifiers25,93 further highlights the existence of crosstalk between epigenetics and RNA 

processing. Additional modalities of epigenetic regulation of gene expression by RNAs 

include the study of methylation of adenosine residues in RNA, regulatory microRNAs 

(miRNA) (responsible for fine-tuning of transcript levels in response to external conditions), 

long noncoding RNAs (lncRNAs) (which may bind to chromatin reorganize genomic 

architecture), and circular RNAs (circRNAs)124 (Figure 2).

mRNA methylation

N6-Methyladenosine (m6A) mRNA methylation has recently been identified as a post-

transcriptional reversible chemical modification affecting gene expression.125 This mark 

is deposited by a multiprotein methyltransferase complex composed of METTL3 and 

METTL14 enzymes.126,127 While METTL14 acts as a scaffold for RNA-binding, the 

biochemical reaction is catalyzed by METTL3.

The m6A methyl RNA mark can be recognized by several reader proteins, including 

members of the YT521-B homology (YTH) domain family (such as YTHDC1), IGF2 

binding proteins (IGF2BPs), eukaryotic elongation factor (eIF3), HNRNPA2/B1,128,129 

and PRRC2A.130 The latter is of special interest, as gene ontology enrichment 

analysis of PRRC2A targeting m6A-methylated mRNAs revealed transcripts regulating 

various biological functions related to brain development, gliogenesis, oligodendrocyte 

differentiation, and myelination. Among the transcripts bearing the m6A modification and 

bound by PRRC2A is the Olig2 transcript, suggesting that the m6A RNA/PRCC2A pathway 

may play an important role in the regulation of this important transcription factor for 

the OL. Consistently, neural-cell-specific deletion of Prrc2a resulted in downregulation 

of gliogenesis and myelination-related genes, as well as hypomyelination and cognitive 

dysfunction.130 In addition, the PRRC2A paralogue, PRRC2C, has also been identified as an 

oligodendrocyte-specific substrate of the protein arginine methyltransferase PRMT5.131

Erasers of the m6A mark on RNA are specific m6A demethylases, such as ALKBH5 

(the ALKB homolog H5) and FTO (Fat mass and obesity-associated),132,133 the latter 

with the ability to recognize and remove the m6A mark from the Olig2 mRNA, leading 

to its degradation.130 Thus, m6A mRNA methylation can affect the mRNA stability 

and favor the interaction with RNA-binding proteins resulting in the formation of 

condensates or membrane-less compartments regulated by phase separation, such as stress 

granules.134–138m6A mRNA profiling in the oligodendrocyte lineage identified thousands of 

differentially modified mRNAs between OPCs and mature oligodendrocytes,137 with only 

23 transcripts showing the same pattern of m6A methylation at both stages. Oligodendrocyte 

lineage-specific ablation of Mettl14 did not affect the progenitor state, or the translation 

or subcellular distribution of Mbp transcripts.137 However, it impaired their differentiation 

of OPC into oligodendrocytes with consequent hypomyelination accompanied by aberrant 
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splicing of numerous transcripts, including Ptprz1 (protein tyrosine phosphate receptor type 

Z1) and Nfasc (neurofascin).137

MicroRNAs

MiRNAs are short, small noncoding RNAs (ncRNA) that negatively regulate their targets 

in a sequence-specific manner. miRNAs are derived from primary miRNAs (pri-miRNAs) 

cleaved by the nuclear Drosha complex into shorter precursor miRNAs (pre-miRNAs). 

Then, these molecules are translocated into the cytoplasm, where they are further processed 

into mature miRNAs by the endoribonuclease Dicer and incorporated into the RNA-induced 

silencing complex (RISC), which regulates their interactions with the mRNA targets.139 

The RISC–miRNA complex recognizes a complementary sequence in the 3’UTR of mRNA, 

inhibiting its translation with or without mRNA degradation.140

Ablation of Dicer in mice—generated by in vivo recombination—demonstrated the critical 

role of miRNAs in mouse development. Lineage-specific deletion of Dicer1 in the 

oligodendrocyte lineage resulted in delayed oligodendrocyte differentiation and myelin 

production in vivo and in vitro and late neurodegeneration.106,107,141–143

Several miRNAs were identified as differentially regulated at distinct stages of 

oligodendrocyte development.141,143–147 The levels of miR-219, miR-338, miR-138, 

miR-29, and miR-23, for instance, were shown to increase during the differentiation of 

OPCs and into oligodendrocytes.141,143,144,148,149 These miRNAs were found to decrease 

the differentiation inhibitors’ levels further, thereby resulting in a prodifferentiative effect.142 

For instance, miR-219 mRNA targets included mitogen receptors and transcriptional 

inhibitors (e.g., Pdgfrα, Sox6, and Hes5) as well as inhibitors of myelination (e.g., 

Lingo1 and Etv5).150 The overexpression of miR-219 and miR-338 in cultured primary 

OPCs lacking Dicer1 partially rescued oligodendrocyte differentiation by inducing myelin 

gene expression, including Mbp, Cnp, and Mog,141,143,150 and reducing the levels of 

Sox9.75 In contrast, miR-145–5p was shown to be downregulated during oligodendrocyte 

differentiation and exert an overall proliferative effect150. Downregulation of miR-145–

5p (anti-145) promoted differentiation of cultured OPCs,151 possibly due to the release 

of the brake on the levels of Myrf (Figure 2), a critical transcription factor regulating 

oligodendrocyte maturation, and also a downstream target of miR-145–5p.151 Additional 

miRNAs of functional relevance to the oligodendrocyte lineage include miR-23a, a 

prodifferentiation factor, which acts as a negative regulator of LmnB1108,146 while also 

favoring the expression of lncRNA (2700046G09Rik), and together with the lncRNA 

decrease PTEN levels.111

Long noncoding RNAs

LncRNAs are nonprotein-coding RNAs that are spliced, mostly polyadenylated, and longer 

than 200 nucleotides in length and are generally characterized by low expression levels and 

nuclear localization. Many lncRNAs exhibit cell type-specific expression and are primarily 

associated with distinct developmental stages.152 They modulate gene expression by binding 

to chromatin and changing the epigenetic landscape by modifying the genomic architecture. 
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Although both human and mouse genomes encode thousands of lncRNAs, only a few 

lncRNAs have been functionally characterized.

Recent transcriptomic studies identified cell type-specific lncRNAs in eight mouse brain 

cell types,121,153,154 including 355 lncRNAs as differentially expressed between NSCs and 

OPCs. Of those transcripts, 254 were upregulated during oligodendrogenesis, and 88 of 

them were characterized by the presence of OLIG2 binding sites within 10 kb of their 

transcription start site. Among them, lnc-OPC levels increased during the transition from 

NSCs to OPCs,155 and its ablation in NSC impaired the generation of OPCs.153 Additional 

lncRNAs were identified at later stages of oligodendrocyte lineage progression.155

Another study analyzing lncRNAs differentially expressed in cultured primary mouse OPCs, 

immature oligodendrocytes, and mature oligodendrocytes identified 1342 unique gene 

loci named lncOLs characterized by the presence of SOX10 binding sites and activating 

H3K27ac and H3K4me3 histone marks and exhibiting conservation across species.154 

A total of 301 lncRNAs were identified as differentially expressed in differentiating 

oligodendrocytes compared to OPCs. Of those, lncOL1 and lncOL4 were associated with 

neurogenesis and gliogenesis and their function was strongly linked with the expression of 

oligodendrocyte and myelin-specific genes, such as Nkx2-2, Mbp, Mog, and Plp1. Their 

expression was not detected in NSC at birth but peaked at postnatal day P14 as OPCs 

differentiated and then sharply declined. Targeted siRNA knockdown was sufficient to 

decrease Mbp, Plp1, and Cnp expression in cultured OPCs, while their overexpression 

increased the levels of Mbp, Mag, and Myrf.154 Consistent with the in vitro data, lncOL1-

deficient mice were also characterized by a low number of mature oligodendrocytes in the 

spinal cord and exhibited severely impaired myelination at postnatal day 21.154 lncOL1 
was detected both in cytoplasmic and nuclear compartments with the nuclear lncOL1 
detected in discrete puncta in association with chromatin.154 This was of interest as the 

RNA–protein prediction algorithm identified SUZ12, a subunit of the PRC2 complex, 

as a potential interactor with lncOL1.154 The functional consequence of the interaction 

between lncOL1 and SUZ12, as shown by immunoprecipitation, was further validated by 

the detection of increased transcript levels of target genes in lncOL1 knockout mice.154 

Collectively, these results suggest that lncRNAs modulate the epigenome by modifying 

chromatin transcriptional states in oligodendrocytes (Figure 2).

Circular RNAs

CircRNAs are single-stranded, stable, functional RNAs that have a closed-loop structure. 

They are produced by noncanonical splicing events known as back-splicing, where a 

downstream 5′ splice site is joined to an upstream 3′ splice site forming an exon-containing 

lariat precursor. CircRNAs are predominantly found in the cytoplasm, and the lack of a 

5′ cap and 3′ tail makes these molecules escape degradation and have a longer half-life 

than linear RNAs. They play important roles in regulating miRNA activity, alternative 

splicing, RNA binding protein sequestration, and transcription through interactions with 

RNA polymerase II.156–159 Unlike miRNAs and lncRNAs, a subset of circRNAs is reported 

to be translated into proteins.
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Similar to linear isoforms, multiple circRNAs variants can be generated from a single 

gene by alternative splicing, containing different combinations of exons and/or introns.160 

For instance, circCFAP299 has two isoforms in human oligodendroglioma cells; the short 

isoform is favored during differentiation, suggesting a distinct functional role for the unique 

exon in the long isoform, including interactions with RNA-binding proteins.161 In addition 

to the isoform switch, the circular transcriptome profile also changes at different stages of 

differentiation in oligodendroglioma cells.161 For instance, circVPS13C, whose mutation 

results in mitochondrial dysfunction, is upregulated in differentiated cells.

MECHANOTRANSDUCTION ALLOWS CHROMATIN AND NUCLEAR LAMINA 

TO ADJUST IN RESPONSE TO PHYSICAL FORCES

Over the last decade, it is becoming well-accepted that mechanotransduction is very 

important for the epigenetic regulation of gene expression because cells respond to the 

stiffness or elasticity of substrates they come in contact with as well as strain and 

compression forces. Mechanotransduction can, therefore, modify histone marks and change 

the association of chromatin with the nuclear lamina.162 Several reports have highlighted 

the biological response of oligodendrocyte lineage cells exposed to distinct mechanical 

stimuli.163–167 In addition, the dynamic state of chromatin condensation has been related 

to changes in the mechanical properties of the nuclei of OPC as they differentiate into 

mature oligodendrocytes.168 The nuclei of OPCs are relatively elastic and oscillating,169 

characterized by the presence of loose euchromatin and by a nuclear lamina predominantly 

formed by LMNB1, conferring a level of softness and elasticity, which is compatible 

with the migratory and proliferative ability of these cells. The nuclei of differentiated 

oligodendrocytes, in contrast, are much more rigid, characterized by high levels of 

heterochromatin especially distributed along the nuclear periphery, where the nuclear lamina 

is now characterized by the presence of LMNA. These features allow the protection of the 

genetic material of highly specialized cells and are compatible with the highly branched 

morphology of the mature oligodendrocytes that make contact with several axons and wrap 

them with their membrane, providing both insulation and metabolic support.168 In this 

section, we will first discuss general mechanisms of mechanotransduction and then provide 

an outlook of potential pathways connecting mechanosensing to the regulation of gene 

expression in oligodendrocyte lineage cells (Figure 3).

Chromatin remodeling complexes and HDACs respond to actomyosin contractility

Studies on the differentiation properties of stem cells plated on substrates with diverse 

ranges of softness and stiffness suggested that the mechanical properties of the substrate 

were capable of inducing specialized patterns of gene expression. For instance, very 

rigid surfaces induced expression of bone and ossification genes, soft surfaces induced 

brain-specific genes, and substrates of intermediate stiffness induced muscle-specific 

genes.170 Within the normal brain parenchyma, however, more subtle regional and temporal 

differences in stiffness between gray (softer) and white matter could be correlated to the 

amount of myelin in distinct regions.171–173 Gray matter stiffness increased from prenatal 

to postnatal periods (from 0.3 to 0.7 kPa), and white matter stiffness remained substantially 

higher (up to 10 kPa)174 and increased with aging.166,175 Fine-tuning of substrate elasticity 
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using hydrogels allowed to define the range of stiffness promoting neuronal (0.1–0.5 kPa) 

versus glial (1–10 kPa) specification.176 Among the glial cells, OPCs were studied by 

several groups and were shown to respond by increasing proliferation and migration on 

stiffer substrates and differentiation on softer ones, suggesting that these cells respond to 

external mechanical stimuli.165–168

There is evidence that the growth of OPC on softer substrates reduced actomyosin 

contractility and led to myosin-dependent translocation of HDAC3 from the cytoplasm to 

the nucleus, leading to increased deacetylation and compaction of the chromatin177 and 

differentiation. Reduced actomyosin contractility also resulted in a reduction of polymerized 

actin and a shift from F to G actin, which is critical for the process of myelination.178,179 

The role of deploy-merized nuclear actin as a modulator of chromatin in response to 

mechanical cues has been reported in HeLa cells since nuclear actin can bind to all 

three RNA polymerases,180 interact with transcription factors, and suppress class I HDAC 

activity.181 Globular actin in the nucleus also has the ability to bind to specific components 

of the BRG1 chromatin–remodeling complexes,182 thereby suggesting a direct link between 

cytoskeletal remodeling and transcriptional competence of chromatin.183 BRG1, in the 

SWI/SNF complex, has been shown to have spatiotemporal relevance to the development 

of oligodendrocytes in the early brain by regulating the expression of the key transcription 

factor, OLIG2,184 remodeling chromatin,113 and modulating differentiation.114

Mechanotransduction in response to tension: Piezo1, YAP, and regulation of nuclear pores

As the brain develops, oligodendrocyte lineage cells are also exposed to different types of 

tensile forces, including those created on migratory OPCs by blood pulsation, cerebrospinal 

fluid flow, axonal growth, and those affecting the several branches of newly differentiated 

oligodendrocytes—each contacting axons in all directions. The tensile strain was reported 

to decrease nuclear oscillations in OPCs and increase their rigidity.169 This was consistent 

with the increased deacetylation of histone H3K14185 and also with the results of studies 

supporting increased H3K9me3 and the formation of heterochromatin.164 The molecular 

players responsible for the relationship between tensile strain and epigenome modulators 

remain to be defined, but several potential mechanisms have been proposed, including 

the induction of transient calcium waves via the membrane protein Piezo1 and the 

nuclear accumulation of the coactivator Yes associated protein1 (YAP) and transcription 

factors, which are due to stretching of the nuclear pores. Piezo1 is a propeller-shaped 

trans-membrane protein that responds to changes in membrane tension by opening a cation 

channel that causes an influx of calcium ions into the cell.186–188 It is expressed in 

neurons, astrocytes, and microglial cells at low levels. In the oligodendrocyte lineage cells, 

Piezo1 is highly expressed in OPCs, where its activation decreases both proliferation and 

migration.166,189

The transcriptional coactivators YAP and TAZ with the PDZ domain encoded by the 

gene WWTR1 are part of the Hippo (named after the Hpo/MTS1/2 kinase) pathway 

cascade, which regulates organ size by modulating cell proliferation and apoptosis (Figure 

3). In the unphosphorylated state, the coactivators YAP and TAZ are nuclear and favor 

proliferation due to the transcription of cell cycle genes. In conditions that favor low 
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actomyosin contractility (such as softer substrates), YAP is phosphorylated by nuclear 

kinases LATS1/2 and becomes cytosolic and unable to activate transcription of proliferative 

genes, thereby contributing to cell cycle exit.190 Mechanical stimulation, including shear 

stress, or cytoskeletal tension results in the transmission of physical forces to the nuclear 

envelope and stretching of the nuclear pores191,192 to allow for YAP nuclear localization and 

accumulation and activation of proliferation genes.190,193

Chromatin at the nuclear envelope

A major hallmark of differentiation is the accumulation of constitutive and facultative 

heterochromatin at the nuclear periphery, which confers rigidity to the nucleus of 

differentiated oligodendrocytes. An intricate array of proteins play a major role in organizing 

the epigenome. These proteins include those that span the nuclear envelope (e.g., SYNE/

nesprins and SUN proteins), a mesh of intermediate filaments called lamins (e.g., lamin 

B1 and lamin A/C) at the inner nuclear membrane, and proteins involved in regulating 

the organization of chromatin and its association with the nuclear envelope. Indeed, a 

large number of proteins containing lamina association domains, as well as readers of 

acetylated and methylated histone marks (e.g., LAP2A, LBR, and emerin) serve as bridge 

and anchor chromatin to the nuclear lamina. This recruitment allows the creation of lamin-

associated domains consisting of heterochromatic regions characterized by low rates of 

gene expression and silenced genes.1 The transition from OPC to mature oligodendrocytes 

shows clear changes in the mechanical properties of the nucleus, from a softer nucleus 

to one that is more rigid,168 and this coincides with the progressive accumulation of 

peripheral heterochromatin. The mechanical properties of the nucleus also respond to 

changes in substrate rigidity by changes in the composition of the nuclear lamina via 

upregulation of specific lamins and phosphorylation of emerin.194,195 Oligodendrocyte 

progenitors, for instance, express LMNB1 and progressively upregulate the levels of LMNA 

during differentiation and when cultured on stiffer substrates, thereby differentially affecting 

heterochromatin recruitment to the nuclear envelope.104,194

As the brain grows and the skull sutures close, the oligodendrocyte lineage cells undergo 

rapid expansion to adjust to the extensive requirement for myelination across distinct 

brain regions. These events lead to an overall increased cell density, which is sensed by 

the cells via a complex that connects the plasma membrane through the nucleus via the 

LINC complex (Figure 3). In the adult brain, in inflammatory conditions characterized by 

increased blood–brain barrier permeability, immune cells can enter into the parenchyma 

creating local crowding conditions. These physical constraints exert physical forces on the 

cells, which can be studied by culturing cells in the presence of inert microspheres196 

or using a compression device.164 Both conditions were shown to induce changes in 

histone repressive marks and heterochromatin recruitment to the nuclear envelope.164 These 

nuclear changes and the effect on differentiation have been shown to be mediated by the 

SYNE–SUN–actin complex, as silencing of the KASH-domain containing LINC complex 

component SYNE1 prevented the mechanisms of differentiation of OPCs induced by 

mechanotransduction, without altering biochemical-induced differentiation.164
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Tethering of heterochromatin to the periphery of the nucleus has been shown in retinal cells, 

keratinocytes, and fibroblasts to depend upon both LBR and lamin A.197 Future studies will 

be needed to further clarify the role of nuclear lamins in regulating chromatin organization 

in oligodendrocyte lineage cells.

CONCLUDING REMARKS

This review highlights the complexity and current understanding of the epigenomic 

landscape in oligodendrocyte lineage cells, providing a perspective on the multiplicity of 

events that regulate gene expression and underlie the transcriptional heterogeneity of OPCs 

as described by many labs. Importantly, stable modifications of gene expression allow for 

the expression of genes responsible for the functional specialization of cells. However, 

chronic conditions and pathological states may allow for a reorganization of the landscape 

and allow for the expression of genes that are silenced in physiological conditions (e.g., 

immune genes). While some of the key eraser enzymes and pioneer transcription factors 

have been identified, it will be important to understand how distinct pathological conditions 

lead to pathological transcriptional states.

In addition, it is important to realize that we have just started to identify responsible histone, 

DNA, and RNA modifications, and much remains to be explored. Our current models are 

biased by the use of experimental genetic approaches using conditional mouse lines and 

developmental myelination as readout. This approach has been successful in the definition 

of enzymatic activities and transcriptional networks involved in the process. However, it 

has possibly led to over-generalization, and future work will need to take into consideration 

the functional role of time and stage of differentiation on topological domains. Novel 

approaches need to be considered in order to explore the relative role of protein readers 

of epigenetic marks and the relative contribution of the biophysical state of chromatin and 

membrane-less organelles at each stage of lineage progression.
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FIGURE 1. 
Regulation of gene expression during the major transitions from neural stem cell 

to oligodendrocyte. Histone and DNA modifications and relative enzymatic activities 

regulating the expression of the indicated gene categories during the transition 

from neurogenic to gliogenic stem cell (panel A). Repressive histone modifications 

and transcriptional inhibitors responsible for the maintenance of the undifferentiated, 

proliferative, and electrically active state of oligodendrocyte progenitor cells (OPCs) and for 

the transition to newly formed oligodendrocyte (NFO) (panel B). Schematic representation 

of the histone modifications and chromatin remodeling events regulating the differentiation 

from progenitor (OPC) to newly formed oligodendrocyte (NFO) to mature oligodendrocyte 

(mOL) (panel C). Created with BioRender.
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FIGURE 2. 
The epigenomic landscape of an oligodendrocyte. Depicted here is a schematic 

representation of the 3D nuclear organization of the genome, including lamina-associated 

domain (LAD) and topologically associating domain (TAD), which together with histone 

and DNA modifications and chromatin remodelers, define the cell-specific unique 

epigenomic landscape. RNA processing, modification, and trafficking are shown in shaded 

gray boxes. Epigenetic regulation of gene expression by microRNA, long noncoding RNA, 

and circRNAs is shown in separate boxes. Created with BioRender. Abbreviations: circRNA, 

circular RNA; mRNA, messenger RNA.
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FIGURE 3. 
Major pathways of mechanotransduction signal epigenetic changes in response to tension. 

The figure shows the main pathways responsible for the transmission of the signal from 

the outside of the cell to the nucleus. Boxes represent modalities of response to tensile 

stretches. Created with BioRender. Abbreviations: LAD, lamina-associated domain; LINC, 

linker of nucleoskeleton and cytoskeleton; NPC, nuclear pore complex; TAD, topologicallly 

associating domain.
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