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Integrative modeling of tumor genomes and
epigenomes for enhanced cancer diagnosis
by cell-free DNA

Mingyun Bae1,16, Gyuhee Kim1,16, Tae-Rim Lee2, Jin Mo Ahn2, Hyunwook Park1,
Sook Ryun Park3, Ki Byung Song4, Eunsung Jun4, Dongryul Oh5, Jeong-Won Lee6,
Young Sik Park7, Ki-Won Song8, Jeong-Sik Byeon9, Bo Hyun Kim10,
Joo Hyuk Sohn11,12, Min Hwan Kim11, Gun Min Kim11, Eui Kyu Chie13,
Hyun-Cheol Kang13, Sun-Young Kong14, Sang Myung Woo10, Jeong Eon Lee15,
Jai Min Ryu15, Junnam Lee2, Dasom Kim2, Chang-Seok Ki2, Eun-Hae Cho 2 &
Jung Kyoon Choi 1

Multi-cancer early detection remains a key challenge in cell-free DNA (cfDNA)-
based liquid biopsy. Here, we perform cfDNA whole-genome sequencing to
generate two test datasets covering 2125 patient samples of 9 cancer types and
1241 normal control samples, and also a reference dataset for background
variant filtering based on 20,529 low-depth healthy samples. An external
cfDNA dataset consisting of 208 cancer and 214 normal control samples is
used for additional evaluation. Accuracy for cancer detection and tissue-of-
origin localization is achieved using our algorithm, which incorporates cancer
type-specific profiles of mutation distribution and chromatin organization in
tumor tissues as model references. Our integrative model detects early-stage
cancers, including those of pancreatic origin, with high sensitivity that is
comparable to that of late-stage detection. Model interpretation reveals the
contribution of cancer type-specific genomic and epigenomic features. Our
methodologies may lay the groundwork for accurate cfDNA-based cancer
diagnosis, especially at early stages.

Noninvasive screening by cell-free DNA (cfDNA) holds great promise
for multi-cancer early detection1. Circulating tumor DNA (ctDNA)
reflects tumor-specific genetic and epigenetic alterations2–7. Also,
ctDNA fragments are physically shorter than normal cfDNA fragments8.
Hence, multiple approaches have been applied to detect cancer using
these specific characteristics of ctDNA. In addition to targeted
approaches relying on deep sequencing of recurrent mutations2,
genome-wide methods have also been developed on the basis of DNA
methylation patterns6,7 and genomic fragmentation patterns coupled
with copy number variations (CNVs)9 or with chromatin signatures10.

Whole-genome sequencing (WGS) has been found to be more
sensitive than targeted deep sequencing in detecting low-burden

diseases. Zviran et al.11 suggested that ultrasensitive monitoring of
minimal residual diseases is possible by taking full advantage of the
cumulative signal of a large number of mutations. However, this
approach only tracks the initial mutation profile of the patient’s tumor
tissue, instead of identifying mutations de novo. To date, cfDNA WGS
has not been attempted for de novo cancer detection, mainly because
of inaccurate variant calling and filtering from cfDNA.

Unlike targeted deep sequencing of driver mutations, de novo
mutation calling from cfDNA can be of low confidence especially
without matched normal control. In this work, to compensate for the
lack ofmatched control, we leverage reference cfDNA sequencing data
from a large healthy cohort in the process of filtering out germline
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mutations and various types of artifacts. This enables us to capitalize
on information embedded in a large amount of passenger mutations.
Jiao et al.12 and Nguyen et al.13 demonstrated that the distribution of
passengermutations, calculated as regional mutation density, serve as
a powerful feature in predicting the origin of cancer. In a recent proof-
of-concept study, Wan et al.14 utilized mutation signatures derived
from cfDNA variants for the purpose of cancer detection. As pointed
out in this pilot study, the potential of using cfDNA mutation sig-
natures for de novo cancer detection has to be tested in a much larger
cohort of samples. Based on these studies, we hypothesize that local
mutationdensity (LMD) andmutation signatures canmake themostof
cfDNAWGS data. Specifically, we attempt to use cfDNAWGS formulti-
cancer detection with the ‘genome model’ that integrates large-scale
reference cfDNA data from our healthy cohort and tumor tissue
mutation data from the PCAWG project15. In doing so, we anticipate
that tumor-derived mutations can be captured by the genome model
when coupled with systematic cfDNA variant filtering and large-scale
reference database.

Genomic locality is expected for not only variant density but also
for ctDNA burden. cfDNA fragments from nucleosome-depleted
regions (NDRs) are more frequently degraded in the blood than
nucleosome-protected DNA, resulting in nucleosome footprints that
reflect tissue type-specific chromatin architecture16. Such signatures
from promoter NDRs were used to infer gene expression programs of
the tissues of origin17 or estimate ctDNA burden18. However, this epi-
genomic feature has not been explored across the whole genome
beyond promoter regions or used for multi-cancer detection by
cfDNA. In this work, we attempt to use cfDNA WGS for multi-cancer
detection with the ‘epigenome model’ that integrates pan-cancer
whole-genomechromatin profiles based on the Assay for Transposase-
Accessible Chromatin using sequencing (ATAC-seq)19. To this end, we
construct tissue-specific NDR profiles based on ATAC-seq data for
TCGA samples of various tumor types.

Previous cfDNA studies have focused on the distribution of read
fragments falling across NDRs. In this work, we hypothesize that the
sensitivity of cancer detection can be improved by considering frag-
ment length and read distribution simultaneously. In order to incor-
porate fragment length together with read distribution as a prediction
feature, we employ the V-plot that is widely used for the analysis of
nucleosome positioning based on ATAC-seq data20. In our epigenome
model, the V-plot is used to visualize the density of fragment length as
a function of the location of fragment centers. Convolutional neural
networks (CNNs) are used to process the V-plot profiles as three-
dimensional images.

Here, we test the genome model and epigenome model by using
cfDNA WGS data for 2125 patient samples of 9 cancer types and 1,241
normal control samples, totaling 3366 samples (Supplementary
Data 1). To enable the validation of the robustness of the models, we
perform sequencing on two different platforms at different depths in
two separate batches (SupplementaryData 2) and also employ the data
for 422 publicly available samples used for ‘DNA evaluation of frag-
ments for early interception’ (DELFI)9. The DELFI algorithm along with
other existingmethods are used to evaluate ourmodels.We showhow
our algorithm enables accurate early cancer detection and tissue-of-
origin localization by incorporating cancer type-specific profiles of
mutation distribution and chromatin organization in tumor tissues as
model references.

Results
Model development
The genome model employed a thorough variant filtering process
(Fig. 1). In particular, we performed low-pass WGS on 20,529 healthy
normal cfDNA samples. This dataset served as a normal reference
panel for filtering potential biological and technical noise against
genuine tumor-derived DNA, including clonal hematopoiesis (CH)

variants, germline variants, and sequencing artifacts. Additional
germline and artifact filtering was performed on the basis of the public
databases. This process tended to filter out variants called from heal-
thy samples while retaining those from patient samples (Supplemen-
tary Fig. 1A).

The LMD values were estimated by using 2754 PCAWG15 samples
(Supplementary Data 3) across thewhole genome for each cancer type
as a reference for the local variant density (LVD) calculated fromcfDNA
(Fig. 1). Cancer type-specific high LMD regions and low LMD regions
were identified (Supplementary Fig. 1B and Supplementary Data 4).
Without variant filtering, the cfDNA LVD did not agree with the LMD
distribution in matching tissues (Supplementary Fig. 1C left). In con-
trast, our filtering process resulted in selective detection of cfDNA
variants in high LMD regions of the matching cancer type (Supple-
mentary Fig. 1C right). Based on the filtered variants, 2,726 LVD fea-
tures and 150 variant type features were computed. Deep neural
networks were employed for predictive modeling of these genomic
features (Fig. 1 left).

To construct the NDR profiles for the epigenome model, we tes-
ted the two peak callers, namely HMMRATAC21 and MACS222, by using
ATAC-seq data from theGM12878 andK562 cell lines for which a range
of histone modification data was also available. As a result, we found
that HMMRATAC was capable of calling more distinct NDR peaks than
MACS2 was (Supplementary Fig. 2A). We also examined whether the
identifiedNDRs exhibit the expectedV-plot patterns20. As a result, NDR
identification based on HMMRATAC, but not MACS2, produced the
expected patterns of sequencing fragments according to the distance
from the peak midpoint (Supplementary Fig. 2B). In addition, the
bimodal distribution of various types of histone modification sup-
ported nucleosome depletion at the NDRs identified using HMMRA-
TAC in contrast to those identified byMACS2 (Supplementary Fig. 2C).
Finally, cell type-specific NDR patterns were confirmed between the
cell lines when HMMRATAC was used but not when MACS2 was used
(Supplementary Fig. 2D).

The epigenome model was developed on the basis of the chro-
matin accessibility landscape of 431 samples (Fig. 1 and Supplementary
Data 5). The ATAC-seq data of 410 TCGA samples from 23 cancer
types19 were employed to profile cancer type-specific cfDNA depletion
patterns. To account for confounding effects of cfDNA fromperipheral
blood mononuclear cells (PBMCs), ATAC-seq profiles of major PBMC
types were utilized. The peak calling and processing pipeline was
applied to identify tissue-specific NDRs (Supplementary Fig. 2E, F and
Supplementary Data 6–7). The cfDNA read data were transformed into
three-dimensional V-plot20 images to visualize the fragment size as a
function of the coordinates relative to the NDRs. CNNswere employed
for predictive modeling of the image data (Fig. 1 right).

Model evaluation
To test our algorithms, we generated cfDNA WGS data for a total of
3366 samples on two different sequencing platforms (Supplementary
Data 2). The MGI and Illumina platform data were generated at an
average of 5× and 2.5× depth, respectively, in two separate batches.
Samples from the larger batch served as the training cohort, leaving
the remainingbatch for validation. In addition, the cfDNAWGSdata for
422 publicly available samples used for DELFI development9 were
adopted for further evaluation.

In addition to the individual performance of the genome model
and epigenome model, the effect of combining the two models was
also assessed. For the combined model, the average of the prediction
scores of the two models was obtained. For comparison with the
genome, epigenome, and combined models, we implemented pre-
dictions based on fragmentation patterns (DELFI)9, fragment size
profiles8, and copy number variations3 (Supplementary Data 8–9). The
score combining fragmentation with other features, which was pro-
vided from the DELFI publication9, was also compared.
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Fig. 1 | Schematic of the concept and pipeline of our models. Schematic of the
genome model (left) and epigenome model (right) developed based on the
integration of reference tissue data for mutation distribution and chromatin
architecture, respectively. For illustration, a breast cancer cfDNA sample is
used. For the genomemodel, various variant filtering steps were incorporated.
In addition to systematic filtering by our healthy cfDNA-based reference panel,
additional processes involving public databases and technical methods were
employed. The LVD and variant types were obtained from the filtered set of
variants to be used as input to the genome model. To evaluate LVD patterns,

cancer type-specific LMD was calculated from 2,754 tissue WGS samples. For
the epigenome model, tissue-specific NDRs were identified by processing
ATAC-seq data for 431 samples obtained from public databases. cfDNA frag-
mentation at the identified NDRs was fed into CNNs as three-dimensional V-
plot images. Three different cfDNA WGS datasets, totaling 3788 samples, were
used to test the genome and epigenome algorithms. Our data were prepared in
two separate batches, representing the training and validation cohorts. BRCA
Breast cancer, LIHC Liver hepatocellular carcinoma, LUAD Lung
adenocarcinoma.
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We trained and evaluated our algorithms in each training cohort
using stratifiedfive-fold cross-validation (Supplementary Fig. 3A, B). The
hyperparameters that were fixed through a hyperparameter optimiza-
tion process were used for 30 iterations of model training in different
randomstates. From the repetitions of training, themodelwith the least
validation loss valuewas selected. Therewas no significant difference in
the validation loss among the iterations (Supplementary Figs. 4–5). In
addition, theMGI validation cohort and Illumina validation cohort were
used to verify the robustness of our models (Supplementary Fig. 3C).

The genome model outperformed all other methods in both MGI
cohorts (Fig. 2A, Table 1 and Supplementary Data 8). For the Illumina
data, the genome model and epigenome model showed the best per-
formance on the training and validation cohorts, respectively (Fig. 2B).
The limited accuracy of the genome model in the Illumina validation
cohort may be attributed to relatively low sequencing coverage. In
both datasets, the effect of combining the twomodels was compelling
in the training cohort but notwell pronounced in the validation cohort,
probably due to an insufficient sample size. Nonetheless, the com-
bined model maintained robust performance with a consistent ROC-
AUC >0.9 for all examined cohorts. The DELFI dataset9 also supported
the superiority of our models (Supplementary Fig. 6A, B); the score
reported by the authors9 was comparable to the epigenomemodel but
outperformed by the genome and combined models.

The sensitivity of cancer detection was examined across stages
and cancer types (Fig. 2C, D and Supplementary Fig. 7). Whereas other
methods performed better for stage III–IV cancers, our methods,
especially the genome and combined models, detected stage I–II can-
cers with a high sensitivity comparable to that of late-stage detection.
At 95% specificity, the combinedmodel had a sensitivity of 91.1% on the
MGI data and 79.6% on the Illumina data for stage I cancers (Fig. 2C, D).
Similar patterns were maintained at 98% and 99% specificity (Supple-
mentary Fig. 7). Cancer typeswith large amounts of data, such asbreast
and liver cancers, showed high sensitivity in general. Pancreatic cancer
was accurately detected even with a relatively small sample size,
especially owing to the epigenome model. The DELFI dataset9 also
proved the superiority of our models in early cancer detection (Sup-
plementary Fig. 6C). At 95% specificity, the combined model had a
sensitivity of 98.2% for stage I cancers on this dataset.

The accuracy of localizing the tissue of origin was evaluated for
tumor types with n > 30 (Fig. 3, Supplementary Fig. 8, and Supple-
mentary Data 9). For both the MGI (Fig. 3A) and Illumina (Fig. 3B)
cohorts, the genome and epigenome models outperformed the
existing methods, and further improvements were observed when the
twomodelswere combined.Again, cancer typeswith a largenumber of
samples tended to perform better; the localization of pancreatic can-
cer was relatively more accurate than expected based on the data size
(Fig. 3A right, 3B right, and 3C). Similar results were observedwhen the
sameevaluationprocesswas repeated for a subset of samples correctly
identified from the cancer detection model (Supplementary Fig. 9).

We performed further validation for our models. First, we tested
whether the prediction scores of the combinedmodel, genomemodel,
and epigenome model actually correlated the tumor fraction of each
sample measured in cfDNA (Supplementary Fig. 10A, B). Second, we
performed a type of external validation by testing a model trained on
one cohort using data from the other cohorts with different sequen-
cing platforms and experimental procedures. Specifically, the perfor-
mance of the model trained on the MGI data was measured on the
Illumina training cohort, Illumina validation cohort, and DELFI cohort
(Supplementary Fig. 10C left). Likewise, the performance of themodel
trained on the Illumina data wasmeasured on theMGI training cohort,
MGI validation cohort, and DELFI cohort (Supplementary Fig. 10C
right). In all cases, a consistent ROC-AUC>0.8 was obtained. Also, the
normal and tumor samples of the MGI cohort were clearly segregated
by the prediction scores trained with the Illumina cohort, and vice
versa (Supplementary Fig. 10D). Third, we checked the robustness of

our model against low read depth by applying downsampling to the
WGS data. Although the 1× downsampling resulted in a slightly lower
ROC-AUC, comparable levels of performance were obtained between
the original 5× and downsampled 3× data with the combined model,
genome model, and epigenome model (Supplementary Fig. 10E, F).

Model interpretation
We wanted to assess how the reference tumor tissue data and refer-
ence normal cfDNA data contributed to model performance. First, the
effect of variant filtering based on our normal reference panel con-
sisting of 20,529 healthy cfDNA genomes (Fig. 1) was assessed. This
filtering process significantly improved the accuracy of cancer detec-
tion (Fig. 4A left) and localization (Fig. 4A right) by the genomemodel,
thereby indicating that marking potential non-tumor variants was
essential for accurate LVD estimation. Fully using LVD features across
the whole genome was most optimal (red plots in Fig. 4B). However,
the genome model with selected high or low LMD regions out-
performed its counterpart with the same number of random regions
with respect to both cancer detection (Fig. 4B left) and localization
(Fig. 4B right). These findings indicate that the genome model is cap-
able of capturing the biological aspects of themutation distribution in
the original tumor tissues from the cfDNA variant data. Unlike the
genome model, the epigenome model could be developed only with
selected regions (Fig. 1). The epigenome model using fragmentation
data from tissue-specific NDRs resulted in higher accuracy than its
counterpart using fragmentation data from the same number of ran-
dom regions with respect to both cancer detection (Fig. 4C left) and
localization (Fig. 4C right).

We then used feature attribution to measure how much each
feature in a prediction model contributes to the predictions for each
given instance. For the genome model for cancer detection, we com-
pared the tissue LMD values between the LVD regions with positive
attribution and thosewith negative attribution. As a result, higher LMD
values were observed for the regions that were assigned positive
attribution in both the MGI cohort (Fig. 5A) and the Illumina cohort
(Supplementary Fig. 11A), implying that cfDNA mutations identified in
genomic regionswith highmutation rates in tumor tissues increase the
likelihood of predicting the given sample as cancer.

In the genome model for tumor-site localization, we compared
the attribution scores between cancer type-specific LMD high versus
low regions (Fig. 5B andSupplementaryFig. 11B, C). Positive attribution
assigned to high LMD regions (red plot in Fig. 5B and Supplementary
Fig. 11B) indicates that high LVD values of cfDNA samples in these
regions of a given cancer type increased the likelihood of the model
predicting these samples as the corresponding cancer type. In con-
trast, when cfDNA samples have high LVD values in low LMDregions of
a given cancer type, the genome model tended to not predict these
samples as the given cancer type, resulting in negative attribution
scores (blue plot in Fig. 5B and Supplementary Fig. 11B). The biased
distribution of attribution was not observed for high and low LMD
regions of the cancer types that did not match the given prediction
label (Fig. 5C and Supplementary Fig. 11D).

Finally, the attribution values assigned to each feature of the
genome model were used to cluster the cfDNA samples across the
cohorts. The samples were clustered by the label (i.e., tumor or nor-
mal) rather than by the cohort in both the cancer detection model
(Fig. 5D left) and cancer localizationmodel (Fig. 5D right). These results
confirm that the genome model learned biological differences
between tumor and normal cfDNA but not technical biases attributed
to different sequencing platforms or experimental procedures.

We alsoexaminedhow the epigenome features contributed to the
model in terms of attribution. For the cancer detection epigenome
model, we averaged the attribution values along the z axis of the CNN
input images (i.e., across the V-plots for tissue types) (Fig. 6A and
Supplementary Fig. 12A). When plotted for visual inspection, the
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average attribution values were biased to shorter fragments specifi-
cally in cancer cfDNA samples of the MGI cohort (Fig. 6A, B) and the
Illumina cohort (Supplementary Fig. 12A, B).

The same analysis was performed for the epigenome model for
cancer localization. A periodic distribution of high and low attribution

values was observed according to the distance from the NDR center,
more distinctly with the MGI data (Fig. 6C) and rather weakly with the
Illumina data (Supplementary Fig. 12C). This periodicity of model
attribution seems to reflect regular spacing between positioned
nucleosomes surrounding the NDR. While depletion of cfDNA reads at
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Fig. 2 | Performance of cancer detection. AROCcurve for differentmodels on the
MGI training cohorts. A total of 1396 cancer and 417 normal control samples were
used for training, and 59 cancer and 96 normal control samples were used for
validation as the MGI validation cohort. B ROC curve for different models on the
Illumina training cohort. A total of 573 cancer and670normal control sampleswere
used for training, and 97 cancer and 58 normal control samples were used for
validation as the Illumina validation cohort. C, D Sensitivity values with the 95%

confidence interval at 95% specificity broken down by the tumor stage (left) and
cancer type (right) for the C MGI training cohort and D Illumina training cohort.
Confidence interval for sensitivity value was calculated from 1000 bootstraping
samplings. A–D Our genome, epigenome, and combined models were compared
with predictions based on fragmentation patterns9 (fragpattern), fragment size
profiles8 (fragsize), and copy number variations3 (cnv). NA Stage information not
available, CI Confidence interval. Source data are provided as a Source Data file.
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the NDRs of a particular cancer type should increase the likelihood of
assigning the given sample to the corresponding cancer type, enrich-
ment of cfDNA reads at the NDRs of a particular cancer type is sup-
posed to decrease the prediction probability for the given cancer type.
As expected, negative attribution scores were assigned to reads
mapping to the NDRs of a matching cancer type (red line in Fig. 6D, E
and Supplementary Fig. 12D, E).

Finally, the attribution values assigned to each feature of the
epigenome model were used to cluster the cfDNA samples across the
cohorts. As a result, the samples tend to cluster by the label (i.e., tumor
or normal) rather than by the data source for both cancer detection
(Fig. 6F left) and tissue-of-origin localization (Fig. 6F right). Taken
together, similarly as the genome model, our epigenome model
appears to learn biological differences between tumor and normal
cfDNA but not technical biases due to different sequencing platforms
or experimental procedures.

Discussion
Early detection of cancers of various types is an important part of
cancer medicine since cancer has a better prognosis and survival rate
when diagnosed and treated earlier23,24. In most cases, especially in
pancreatic cancers, diagnostic tests are performed after symptoms
arise, and the proper treatment times are often missed. Solutions for
this urgent unmet need of multi-cancer early detection and localiza-
tion are being actively pursued by using cfDNA-based noninvasive
cancer screening1.

Recent studies have demonstrated the power of screening cfDNA
at the whole-genome scale9,11. Ultrasensitive detection of minimal
residual disease was made possible by capitalizing on genome-wide
cumulative signals when informed by original tumor profiles11. How-
ever, de novo detection of cancer, especially at early stages, remains
challenging; the sensitivity of the DELFI algorithm for stage I diseases
at 95% specificity was reported to be 73%9 but was even lower when
applied to our larger cohorts (below 50%). To exploit the full potential
of whole-genomic cfDNA screening, we developed an analytical strat-
egy empowered by a large amount of training and reference data from
cfDNA and tissue samples. Integrative modeling that incorporates the
knowledge of how tumor genomes and epigenomes leave their foot-
prints in cfDNA shows unprecedented accuracy of cancer detection at
a sensitivity of 91.1% and98.1% (at 95%specificity) for stage I cancers on
the MGI and DELFI dataset, respectively.

Our study has several implications. First, we demonstrate how
integrating large-scale reference datasets including the genome and
epigenome data from tumor tissues and the normal cfDNA data for
variant filtering can increases the sensitivity of cancer detection. In
particular, this work involves an attempt to analyze cfDNA data based
onmodelingof cancer type-specific LMDandNDRprofilesderived from
large-scale public data in tumor tissues. Second, we propose genomic
and epigenomic features that are effective for cfDNA-based cancer
diagnosis. The genomic features based on LMD and mutation sig-
natures, which proved to be useful in previous tissue-based cancer type

classification, were applied to cfDNA analysis in this work. Our epigen-
omemodel employed the V-plot for the integrative analysis of fragment
density and length in NDRs. Third, as feature modeling is critical in
developing our models, we provide comprehensive characterization of
contributing features insteadof leaving themodels as blackboxes.Most
of previous cfDNA-based predictionmodels examined the properties of
input features, but did not investigate which features were actually
learned duringmodel training and thus contributedmost to prediction.
In this work, we not only determined which features played an impor-
tant role inmodel development and performance, but also investigated
the relevance of the features to the tumor biology in terms of genetic
and epigenetic characteristics of cancer.

In terms of further improvement in accuracy, we have observed
three potential factors that appear to affect the performance of our
models. The fact that the genome model generally performs better
than the epigenome model may be attributed to the amount of refer-
ence tissue data. Increasing the number of cases for ATAC-seq or other
epigenome data may provide a more accurate reference for the chro-
matin architecture. However, the compelling performance of the epi-
genome model with pancreatic cancer emphasizes the importance of
making themost of tumor biology. Another factor is the data size used
for model training. In both cancer detection and localization, cancer
types with large sample sizes, such as breast and liver cancers, are
diagnosedwith the highest accuracy. Data size per sample alsomatters.
The overall trend that better performance is achieved on the MGI data
compared with the Illumina data implies that higher read depths con-
tribute to prediction accuracy. Hence, when coupled with integrative
modeling based on tumor biology, an increasing amount of reference
and training data for cfDNA analysis has the potential to realize ultra-
sensitive early cancer detection and accurate cancer diagnosis.

Methods
Characteristics of patient and healthy samples
Plasma samples form healthy individuals and patients with breast,
hepatic, lung, ovarian, colorectal, pancreatic, bile duct, esophagus, or
head and neck cancer were obtained from GC Genome, Samsung
Medical Center, Seoul National University Hospital, Asan Medical
Center, National Cancer Center, and Yonsei Cancer Center. All the
healthy and patient samples were obtained under Institutional Review
Board approved protocolswith informed consent from all participants
for research use at participating institutions (IRB 2021-161-1184, IRBC
2021-02-070, IRB 2021-0596, IRB 2021-0399, IRB 2021-0399, and IRB
2020-09-002 for patient samples; GCL IRB 2017-1008-03, GCL IRB
2020-1002-04, andGCL IRB2021-1049-02 for healthy samples). Plasma
samples from healthy individuals were obtained if they had no pre-
vious history of cancer and negative routine health screening ques-
tionnaire. Clinical information for all samples used in model training
and evaluation are listed in Supplementary Data 2. Normal reference
samples were obtained from noninvasive prenatal screening under
Institutional Review Board approved protocol (GCL-2021-1060-01)
with anonymization.

Table 1 | Model performance of cancer detection

Models MGI platform Illumina platform

Training Cohort Vadliation Cohort Training Cohort Vadliation Cohort

auc 95% CI auc 95% CI auc 95% CI auc 95% CI

Combined 0.984 0.978–0.988 0.902 0.85–0.944 0.946 0.933–0.958 0.926 0.882–0.962

Genome 0.967 0.956–0.976 0.99 0.978–0.998 0.931 0.916–0.944 0.865 0.807–0.915

Epigenome 0.938 0.926–0.949 0.842 0.772–0.899 0.877 0.857–0.896 0.918 0.871–0.958

CNV 0.921 0.908–0.933 0.692 0.608–0.778 0.856 0.833–0.877 0.898 0.847–0.942

Fragpattern 0.904 0.889–0.917 0.756 0.676–0.827 0.801 0.776–0.826 0.898 0.839–0.946

Fragsize 0.835 0.813–0.86 0.852 0.788–0.91 0.866 0.846–0.887 0.904 0.848–0.953
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cfDNA preparation and sequencing library construction
From each sample, 10mL of whole blood was collected in Cell-Free
DNA BCT tubes (Streck, US). The collected blood samples were cen-
trifuged to separate plasma and cellular components, and plasma was
processed immediately or within 24 h.

For sequencing on an MGI platform, cfDNA was extracted from
0.6mL plasma and eluted in a final volume of 56μL, using a plasma

circulating DNA Kit (Tiangen, China) according to the manufacturer’s
instructions. Extracted cfDNA was processed for library construction
starting with a 2–6 ng input, using the MGIEasy Cell-free DNA Library
Prep Kit (MGI, China) according to the manufacturer’s instructions.
The concentration of the library was quantified using the dsDNA HS
Qubit Assay (Invitrogen, US). The size of the library was determined
using a D1000 screentape assay with 2200 Tapestation (Agilent
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Fig. 3 | Performanceof tissue-of-origin localization.AAverage accuracy (left) and
accuracy (right) on each cancer type for different models on the MGI training
cohort. B Average accuracy (left) and accuracy (right) on each cancer type for
different models on the Illumina training cohort. C Confusion matrix for localiza-
tion using the combinedmodel on theMGI cohort (left) and Illumina cohort (right).
The y-axis represents the actual site, and the x-axis represents the predicted site.

The numbers in the cells of thematrix represent the proportion of samples of each
cancer type localized to respective tumor sites. A–C Our genome, epigenome, and
combined models were compared with predictions based on fragmentation
patterns9 (fragpattern), fragment size profiles8 (fragsize), and copy number
variations3 (cnv). Source data are provided as a Source Data file.
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Technologies, US). The sequencing libraries were pooled, and up to 20
libraries per batch were multiplexed.

For sequencing on an Illumina platform, cfDNA was extracted
from 0.4mL plasma applied with an automated KingFisher system
(Thermo-Fisher Scientific, US) and eluted in a final volume of 22μL,
using anApostleMiniMax High Efficiency cfDNA Isolation Kit (Apostle,
US) according to themanufacturer’s instructions. Extracted cfDNAwas
processed for library construction starting with a 0.1–7 ng input, using
the Swift 2 S® Sonic DNA Library Kit (IDT, US) according to the man-
ufacturer’s instructions. The concentration of the library was quanti-
fied using the dsDNA HS Qubit Assay (Invitrogen, US). The size of the
library was determined using a D1000 screentape assay with 2200
Tapestation (Agilent Technologies, US). The sequencing libraries were
pooled, and up to 240 libraries per batch were multiplexed.

Processing of the MGI and Illumina cohort and reference
cfDNA data
The prepared libraries for the MGI cohort samples were subjected to
100bp paired end runs on a DNBSEQ-G400 sequencing instrument
(MGI, China). The libraries for the Illumina cohort samples were
sequenced with 100bp paired end reads using a NovaSeq 6000 S4
Reagent Kit v1.5 (Illumina, US). The fastq files were aligned to the
human hg19 genome using BWA-MEM 0.7.5a. Duplicate marking was
performed with the aligned bam files using the Genome Analysis
Toolkit (GATK)25. Additional processing was conducted differently for
the genomeandepigenomemodel asdescribed in the “Genomemodel
input processing and training” and “Epigenome model input proces-
sing and training” sections.

The cfDNA libraries of 20,529 normal reference samples were
sequenced at an average of 0.3 × 75 bp single ends using NextSeq 500

High Output Kit v2.5 (Illumina, US) or 0.6 × 100bp paired ends on
DNBSEQ-G400RS (MGI, China). The fastq files were trimmed using the
Trim Galore tool in Cutadapt26 with the -clip_R1 10 -clip_R2 10 -length
20 options. The reads were aligned to the human hg19 genome using
BWA-MEM 0.7.5a. The aligned bam files were processed using the
GATK pipeline of data preprocessing for variant discovery, including
duplicate marking, indel realignment, and base quality score
recalibration25. Because of the low depth and large sample size of the
Illumina dataset, duplicates were removed by adding the —REMOVE_-
DUPLICATES true optionwhen performing duplicate marking, and the
low mapping quality reads were removed using the SAMtools -q60
option, instead of performing base quality score recalibration and
indel realignment. The Illumina bam files were merged in a batch size
of 1000 samples using the merge function in SAMtools, and the
merged bamfiles were subjected to variant calling.Mutect225 was used
to call variants in the tumor-only mode with the -flr2-max-depth 1000
-initial-tumor-lod 0.1 options for the merged Illumina bam files and
-max-mnp-distance 0 option for the individual MGI bam files. After
variant calling, we combined all of the variants called from themerged
bamfiles to construct the Illumina normal panel, and implemented the
GATK pipeline of creating a somatic panel of normals to construct the
MGI normal panel. Finally, the Illumina andMGI panelswere combined
to create a normal cfDNA reference panel.

Identification of cancer type-specific LMD high/low regions
We obtained the variant call dataset for tumor tissues from the ICGC
portal of the PCAWGproject15 (https://dcc.icgc.org/releases/PCAWG/).
All samples listed in the PCAWG exclusion list or in the PCAWG
microsatellite instability list were excluded. The remaining 2754 sam-
ples were used to identify cancer type-specific LMD high and low
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with tissue-specificNDRs.A–C Five-fold cross-validationwasperformed to examine
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detection, Localization cancer localization. Source data are provided as a Source
Data file.
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regions. The LMD was calculated in 1Mb running windows across the
genome for each sample. Cancer types were defined as the organ of
origin. Specific LMD high or low regions were identified using quasi-
likelihood F-tests on the trimmed mean of the M-value (TMM)-nor-
malized counts27. High or low LMD regions were selected at an FDR of
0.05 and sorted based on the fold change. For each cancer type, the
top 25 regions with mutation enrichment and the top 25 regions with
mutationdepletionwere identified as the cancer type-specific high and
low LMD regions, respectively.

Genome model input processing and training
The cfDNA bam files were processed using the GATK data preproces-
sing pipeline for variant discovery25. The GATK data preprocessing
pipeline includes duplicate marking, indel realignment, and base
quality score recalibration. SAMtools with the -f 2 -F 2308 -q 30options
was used to filter out supplementary, unmapped, and low mapping
quality reads, leaving only properly paired reads. Additionally, the
SAMtools view option was used to extract canonical chromosomes.

For variant calling, we ran VarScan opting for at least one variant
supporting read, at least 3× depth at a variant position, and an average
base quality of at least 3028. After variant calling, single nucleotide
variants were extracted while filtering out those in the blacklisted
regions29. The variants present in the cfDNA normal reference panel
were removed. Additional germline variants were also removed using
the dbSNP, 1000 Genomes, HapMap, ExAC, and gnomAD databases.
Additional artifact filtering processes were implemented. First, var-
iants with a variant allele frequency of 100% were eliminated. Second,
discordant readswere discardedby checkingwhether the variant allele
was found on only the forward or reverse reads. Third, multi-
nucleotide variants were discarded. Finally, variants at the ends of a
read were removed considering the possibility of sequencing errors.
The read end was defined as 10 bp from the beginning or end of
each read.

On thebasis of thefiltered variants, the LVDwas calculated in 1Mb
running windows across the genome for each sample. The number of
variants in each bin was divided by the total number of variants in the
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sample. After discarding regions inwhichno variantwas found inmore
than 50% of samples, 2,726 genomics regions were left to be used as
features of the genome model. For variant-type features, 6 types of
single nucleotide substitutions (C>A, C>G, C>T, T>A, T>C, and T>G),
48 types of dinucleotides consisting of each substitution and either
the 5′- or 3′-flanking base, and 96 types of trinucleotides consisting of
each substitution and both the 5′- or 3′-flanking bases were used. The
frequency of each of the 150 variant types was computed by dividing
by the total number of variants per sample. In total, 2726 LVD values
and 150 variant-type frequencies were used as features for the
genome model.

The genome model was constructed using TensorFlow deep
neural networks to train the cancer detection and localizationmodels.
The genome model consisted of dense layers, batch normalization,
activation, and dropout. For the cancer detection model, the output
layer employed the sigmoid function and the loss function based on
binary cross-entropy. For the tissue-of-origin localization model, the
output layer employed the softmax function and the loss function
using categorical cross-entropy. Optimization of the genome model
was performed by the AdamW optimizer. Because of the imbalanced
number of samples, the initial weight of the output layer wasmodified
by calculating the class weight using Scipy30.

Bayesian optimization was used with 200 trials to find the best
hyperparameter set to maximize the performance on the validation
set. The list of the hyperparameters is provided in Supplementary
Data 10. Toprevent overfitting, the early stoppingmethodwas applied
with a patience of 50. After finding the best hyperparameter set, the
genomemodel was trained 30 times with different random states, and
themodel with the lowest loss value on the validation set was selected
as the final model.

Processing cell line data to establish the epigenome model
pipeline
The GM12878 ATAC-seq data were downloaded from the GEO data-
base, and the SRA file was converted into the fastq format. The K562
ATAC-seq data were downloaded from the ENCODE portal in the fastq
format. The ATAC-seq fastq datasets underwent an adapter trimming
process using Trim Galore, and were aligned using BWA with the
default options. Duplicatemarking was performed using GATK425, and
theduplicate readswere removedusing SAMtools. Supplementary and
low mapping quality reads were removed using SAMtools with the -f 2
-F 2048 -q 30 options, leaving only properly paired reads. Peak calling
was performed for the filtered ATAC-seq reads using HMMRATAC21

with the default options or MACS222 with the -shift −75 -extsize 150
-nomodel -nolambda -call-summits -q 0.05 -B —SPMR options. In total,
10,9360 peaks and 24,937 peaks were called by MACS222 and
HMMRATAC21, respectively, in GM12878, and 17,5733 peaks and 35,708
peakswere calledbyMACS222 andHMMRATAC21, respectively, inK562.
To identify differentialNDRs between theGM12878 andK562 cell lines,
the HMMRATAC21 peaks were intersected to find non-overlapping
peaks. A total of 13,132 peaks were called as GM12878-specific NDRs,
and 23,515 peaks were called as K562-specific NDRs.

The ChIP-seq and MNase-seq data in the GM12878 and K562 cell
lines were downloaded from the ENCODE data portal in bam format. To
remove duplicates, supplementary reads, and low mapping quality
reads, the same filtering process using GATK425 and SAMtools was per-
formed as described above. The filtered ChIP-seq and MNase-seq reads
were extended to 150bp. To refine nucleosome positioning, theMNase-
seq reads were resized to 75 bp from the midpoint of the 150bp read.

Identification of tissue-specific NDRs
The ATAC-seq data for tumor and normal tissues or PBMCs were
obtained fromTCGA, ENCODE, andGEOdatabases. FromTCGAportal,
410 samples of 23 cancer types (ACC, BLCA, BRCA, CESC, CHOL,
COAD, ESCA, GBM, HNSC, KIRC, KIRP, LGG, LIHC, LUAD, LUSC, MESO,

PCPG, PRAD, SKCM, STAD, TGCT, THCA, and UCEC) were down-
loaded. Because TCGA ATAC-seq data were aligned to the hg38 gen-
ome assembly, TCGA bam files were converted into the fastq format
and realigned to hg19 using BWA-MEM. Filtering duplicates, supple-
mentary reads, and low mapping quality (<30) reads were carried out
as tested using the cell line data. Using the filtered ATAC-seq reads, the
NDR peaks were called using HMMRATAC21. Samples with less than
30,000 NDRs were excluded, leaving 266 of 410 samples for further
analyses. The CESC cancer type was excluded because we were left
with only one sample. From the ENCODE project, 17 ATAC-seq bam
files for two normal tissues (pancreas and ovary) were downloaded.
The NDR peaks were called using HMMRATAC21. Among the 17 sam-
ples, 15 samples with more than 30,000 NDRs were left for further
analyses. In addition, 26 ATAC-seq bam files for five PBMC types (CD4
T cells, CD8T cells, B cells,monocytes, andNK cells)were downloaded
from the GEO database. The bam files were merged according to cell
types to compensate for low sequencing depths. After merging the
bam files, the NDR peaks were called using HMMRATAC21.

Following the peak processing and filtering pipeline, tissue-
specific NDRs were identified by using the 25 filtered samples. The
NDR peaks called from each sample were merged, and peaks with the
strongest signal were selected among overlapping peaks, resulting in
61,5401meta-peaks. The ATAC-seq reads thatwere shorter than 150 bp
and overlapped with the midpoint of the meta-peaks were counted to
construct a read count matrix. The matrix was normalized using the
TMM function of edgeR27 and subjected to the limma-voom
algorithm31 of edgeR for the selection of the 10,000 tissue-specific
NDRs with the lowest P value. NDR-wise min-max normalization30 was
applied for visualization of the tissue specificity of the selected NDRs
by a heatmap.

Epigenome model input processing and training
The process of filtering duplicate, supplementary, low mapping qual-
ity, and unpaired cfDNA fragments was performed as tested using the
cell line data. Each fragmentwas cut in half centering on itsmidpoint in
a similar manner that MNase-seq reads are processed for nucleosome
positioning analysis. For each tissue type, the cfDNA fragments were
aligned to the identified tissue-specific 10,000 NDRs, and a two-
dimensional V-plot was constructed to plot fragment size as a function
of the distance from the NDRs. The y-axis representing fragment size
contained 100 1-bp bins ranging from 100 bp to 200bp. The x-axis,
representing the distance from the NDRs, was made up of 250 4-bp
bins covering ±1000bp from the NDR midpoint. Finally, the two-
dimensional V-plot for each tissue type was added to the channel axis
to create a three-dimensional (100, 250, 25) V-plot image as input to
the epigenome model. To correct for read depth bias, min-max
normalization30 was applied to the vector of individual pixels of the
V-plot image for each sample.

The TensorFlow CNN architecture was employed for the devel-
opment of the epigenome model. The epigenome model was
designed with two convolutional layers and one fully connected
layer. On the first convolutional layer, a normalized three-
dimensional V-plot image was convoluted with 250 kernels, fol-
lowed by batch normalization, ReLU activation, and dropout. The
second convolution layer employed one kernel for convolution fol-
lowed by batch normalization, ReLU activation, and dropout. Fol-
lowing the convolution steps, the flattened nodes were connected to
fully connected layers. For the cancer detection model, the output
layer was composed of one node with the sigmoid function, and
binary cross-entropy was used for the loss function. For the tissue-of-
origin localization model, the output layer was composed of the
number of tumor sites with the softmax function, and categorical
cross-entropy was used for the loss function. Because of the imbal-
anced number of samples, the initial weight of the output layer was
modified by calculating the class weight using Scipy30.
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Bayesian optimization was used with 200 trials to find the best
hyperparameter set to maximize the performance on the validation
set. The list of the hyperparameters is provided in Supplementary
Data 10. Toprevent overfitting, the early stoppingmethodwas applied
with a patience of 50. After finding the best hyperparameter set, the
epigenome model was trained 30 times with different random states,
and the model with the lowest loss value on the validation set was
selected as the final model.

Cnv, fragpattern, and fragsize model input processing and
training
The whole genome was split into non-overlapping 5Mb windows. To
filter out the blacklisted regions including telomeres and centromeres,
the windows containing N nucleotides or with low GC contents were
discarded. To construct the cnv model, read coverage at each bin was
obtained and normalized using the z score. The input data for the
fragpattern model were processed, as previously described9. Briefly,
locally weighted scatterplot smoothing (LOWESS) regression analysis
was separately applied for short (100–150bp) and long (151–220bp)
fragmentswith a span settingof0.75. The LOWESSestimateof coverage
was subtracted from the original measurement to separately obtain
residuals for the short and long fragments. The genome-wide median
short and long estimates of coverage were added back. The corrected
values of total and short fragment coverage were z-score normalized
across all bins for each sample. For the input of the fragsize model8,
cfDNA fragments were broken down by length, increasing by 2bp from
0 to 250bp. The 125 features were normalized using the z score.

For training of the cnv, fragpattern, and fragsizemodels, gradient
boosting decision trees were implemented by XGBoost32. Hyperpara-
meters, including n_estimators, learning_rate, max_depth, min_child_-
weight, and colsample_bytree, were searched using a random search
method with three-fold cross-validation. The XGBoost model was fit-
ted using the log loss evaluationmetrics, and the lowest loss model on
the validation set was selected as the final model. The binary:logistic
objective function was used for cancer detection, and the multi:-
softmax objective function was used for tissue-of-origin localization.

Processing of the DELFI cohort data
Weused theDELFIdatasetwith 1-2× cfDNAWGSof214 healthy samples
and 208 cancer patients to validate our algorithm. Cancer patient
samples include breast (n = 54), pancreatic (n = 34), ovarian (n = 28),
colorectal (n = 27), gastric (n = 27), lung (n = 12), and bile duct cancer
(n = 26). Following the approval of their DataAccess Committee (DAC),
duplicate marked bam files of the DELFI dataset were obtained from
EuropeanGenome-PhenomeArchive (EGA). Genome, epigenome, cnv,
fragpattern, and fragsize input features were processed using dupli-
cate marked bam as described in the sections “Genome model input
processing and training”, “Epigenome model input processing and
training” and “Cnv, fragpattern, and fragsize model input processing
and training”.

Model training using the training cohort
Each training cohort (MGI, Illumina and DELFI cohort) for the MGI and
Illumina sequencing platforms was partitioned into five groups for the
application of the stratified five-fold cross-validation. At each iteration,
four groups in the training set were further divided into three training
sets and one validation set. Using thismethod, all sampleswere given a
test prediction score from eachmodel. Using the test prediction score
of all training cohort samples, we calculated the ROC-AUC score for
cancer detection and the accuracy score for tissue-of-origin localiza-
tion. The confidence interval for sensitivity was calculated from 1000
bootstrap samplings with replicates at 95%, 98%, and 99% specificity.
The cancer localizationmodelwas developed by using either all cancer
samples in the training cohorts or the cancer samples correctly iden-
tified by the combined cancer detection model with 98% specificity.

The number of correctly predicted samples was 1188 out of 1359 for
the MGI cohort and 644 out of 940 samples for the Illumina cohort.

Model prediction using the validation cohort
To validate the robustness of the models, validation cohorts were
generated using independent batches from the training cohorts. The
combined, genome, epigenome, cnv, fragpattern, and fragsize algo-
rithms were used to predict validation cohorts. The average of five
prediction values was used as the final prediction score. Using the final
prediction score, we calculated the ROC-AUC score. Also, the con-
fidence interval for sensitivity was calculated from 1000 bootstrap
samplings with replicates at 95% specificity.

Model interpretation using integrated gradients
The attribution score, a per-feature score based on the feature’s con-
tribution to the model’s output when making a prediction, was cal-
culated using an integrated gradient method33 that considers all
gradients from the baseline input to the real input. TensorFlow was
used to implement the integrated gradient method. To calculate the
attribution scores, a zero array was used as the baseline input. From
the baseline to each input array, 50 interpolated arrays were gener-
ated. The gradients of each interpolated array were obtained and
averaged to calculate the attribution scores.

From the cancer detection genomemodel, cancer samples with a
test prediction score > 0.8 and normal control samples with a test
prediction score <0.2 were selected from the MGI training cohort and
Illumina training cohort, respectively. As a result, 601 cancer samples
and 306 normal control samples from theMGI training cohort and 391
cancer samples and 519 normal samples from the Illumina training
cohort were used for interpretation analysis. The attribution scorewas
calculated as described above. Positive attribution features of cancer
were defined as top 100 regions with positive attribution value in
cancer patient predictions and negative attribution value in normal
sample predictions. Also, negative attribution features of cancer were
defined as top 100 regions with negative attribution value in cancer
patient predictions and positive attribution value in normal sample
predictions. We tested whether positive attribution features of cancer
actually had high LMD values in the PCAWG tissue data, and negative
attribution features of cancer had low LMD values in the PCAWG
tissue data.

For the genome model for cancer localization, cancer samples
whose localization was predicted correctly with a test prediction score
> 0.6 were selected from theMGI training cohort and illumina training
cohort, respectively, for interpretation analysis. As a result, 640 breast
cancer, 166 liver cancer, 130 esophageal cancer, 134 ovary cancer, 59
pancreatic cancer, and 34 lung cancer cfDNA samples from the MGI
training cohortwere selected. 99 liver cancer, 25 esophageal cancer, 53
ovary cancer, 41 pancreatic cancer, and 20 colon cancer were selected
from the Illumina training cohort. The attribution score was calculated
as described above. To evaluate the attribution of the reference LMD
values obtained from the PCAWG data, the sample-wise attribution
scores were compared among the high LMD regions, low LMD regions,
and other LMD regions of each cancer type. We tested whether high
LMD regions had positive attribution whereas low LMD regions had
negative attribution, specifically for the PCAWG cancer type matching
with the given cfDNA sample but not for the other PCAWG cancer
types unmatching with the given cfDNA sample.

From the cancer detection epigenome model, cancer samples
with a test prediction score >0.8 and normal control samples with a
test prediction score <0.2 were selected from the MGI training cohort
and Illumina training cohort, respectively, for interpretation analysis.
As a result, 1152 cancer samples and 164 normal control samples from
the MGI training cohort were selected. A total of 312 cancer samples
and401normal control samples from the Illumina training cohortwere
selected. To display attribution values as 2D image, the absolute value
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of the attribution array (sample size, 100, 250, 25) was averaged along
the axes 0 and 2 for the normal control and cancer patients, respec-
tively. To examine the effect of fragment size, the absolute value of the
attribution array (sample size, 100, 250, 25) was averaged along the
axes 0, 2, and 3 separately for the normal control and cancer samples,
respectively. Min-max normalization30 was applied across fragment
size to compare its distribution between the normal control and can-
cer samples. To draw a heatmap, we used normalized attribution
values of fragment length and NDR position. Normalized attribution
values of the fragment length were processed by averaging the attri-
bution arrays (sample sizes, 100, 250, 25) along axes 2 and 3, and
normalized attribution values of the NDR position were processed by
averaging the attribution arrays (sample sizes, 100, 250, 25) along
axes 1 and 3.

For the epigenomemodel for cancer localization, cancer samples
whose localizationwaspredicted correctlywere selected from theMGI
training cohort and Illumina training cohort, respectively. As a result,
591 breast cancer, 155 liver cancer, 71 esophageal cancer, 109 ovary
cancer, 26 pancreatic cancer, 3 lung cancer samples from the MGI
training cohort and 117 liver cancer, 20 esophageal cancer, 81 ovary
cancer, 79 pancreatic cancer from the Illumina training cohort were
used for interpretation analysis. To display attribution values as 2D
image, the attribution array (sample size, 100, 250, 25) was averaged
along the axes 0 and 2 for each cancer type, respectively. To examine
the effect of genomic distances from NDRs, the tissue-specific NDRs
were classified into NDRs of cancer types matching the given cfDNA
sample and those of cancer types unmatched with the given cfDNA
sample. The attribution array (sample size, 100, 250, 1) for thematched
NDRs and the attribution array (sample size, 100, 250, 24) for the
unmatched NDRs were averaged along the axes 0, 1, and 3 within each
cancer type. To draw a heatmap, we used normalized attribution
values of fragment length and NDR position. Normalized attribution
values of the fragment length were processed by averaging the attri-
bution arrays (sample sizes, 100, 250, 25) along axes 2 and 3, and
normalized attribution values of the NDR position were processed by
averaging the attribution arrays (sample sizes, 100, 250, 25) along
axes 1 and 3.

Tumor fraction estimation
Tumor fraction in cfDNAwas estimated by using ichorCNA3. The reads
with mapping quality > 30 reads were selected to compute read cov-
erage across 1Mb non-overlapping windows using the readCounter
function in the HMMcopy R package3. Next, 417 normal control sam-
ples in the MGI cohort and 728 normal control samples in the Illumina
cohort were used to create a normal reference dataset for each plat-
form. Tumor fraction was estimated using the ichorCNA algorithm
with the platform-specific normal reference dataset.

Downsampling analysis
The average depth of cfDNA WGS was calculated to perform down-
sampling. SAMtools depth was used to calculate the average depth of
cfDNA WGS. To make the desired depth of cfDNA WGS, required
downsampling ratio was calculated by dividing the desired depth by
the actual depth. Downsampling was performed using SAMtools view
with the -b -h and -s [downsampling ratio] options. Genome and epi-
genome input features were processed using downsampled bam as
described in the sections “Genome model input processing and
training” and “Epigenome model input processing and training”.

Statistics and reproducibility
We performed wilcoxon two-sided test for statistical analysis. For
study design, we did not use statistical method to predetermine
sample size. Also no data were excluded from the analyses. The
experiments were not randomized and the investigators were not
blinded to allocation during experiments and outcome assessment.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The 3366 cfDNA WGS data generated in this study have been
deposited in the European Genome-phenome Archive (EGA) [https://
ega-archive.org/datasets/EGAD00001009335]. Our data will be
made available under approval by the data access committee. There
are no restrictions on who will be granted access to this data. Access
will be provided within approximately one month and be available
for one year. DELFI cfDNA WGS data also can be obtained from EGA
[https://ega-archive.org/datasets/EGAD00001005339]. Tumor
somatic mutation MAF data were downloaded from PCAWG [https://
dcc.icgc.org/releases/PCAWG/consensus_snv_indel/final_consensus_
passonly.snv_mnv_indel.tcga.controlled.maf.gz, https://dcc.icgc.org/
releases/PCAWG/consensus_snv_indel/final_consensus_passonly.snv_
mnv_indel.icgc.controlled.maf.gz]. Tissue ATAC-seq bam files were
downloaded from TCGA [https://portal.gdc.cancer.gov/]. ATAC-seq
of GM12878 and K562 were downloaded from SRA [GM128782:
https://www.ncbi.nlm.nih.gov/sra/?term=SRR891268, K562: https://
www.ncbi.nlm.nih.gov/sra/?term=SRR8137174]. MNase-seq and his-
tone modification ChIP-seq data were downloaded from ENCODE
[GM12878 MNase-seq: https://www.encodeproject.org/files/ENCFF
000VLH/@@download/ENCFF000VLH.bam, K562 MNase-seq:
https://www.encodeproject.org/files/ENCFF000VMJ/@@download/
ENCFF000VMJ.bam, GM12878 H3K27ac: https://www.encodeproject.
org/files/ENCFF197QHX/@@download/ENCFF197QHX.bam, GM128
78 H3K9ac: https://www.encodeproject.org/files/ENCFF415YCS/@@
download/ENCFF415YCS.bam, GM12878 H3K4me1: https://www.
encodeproject.org/files/ENCFF753GZX/@@download/ENCFF753GZ
X.bam, GM12878 H3K4me2: https://www.encodeproject.org/files/
ENCFF794KPF/@@download/ENCFF794KPF.bam, GM12878 H3K4
me3: https://www.encodeproject.org/files/ENCFF375WTP/@@
download/ENCFF375WTP.bam]. Source data are provided with
this paper.

Code availability
Code for training and prediction of genome, epigenomemodel can be
accessed at https://github.com/kaistomics/cfWGS.
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