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Artificial intelligence to estimate 
the tear film breakup time 
and diagnose dry eye disease
Eisuke Shimizu 1,2,3*, Toshiki Ishikawa 1,2, Makoto Tanji 1,2, Naomichi Agata 2, 
Shintaro Nakayama 1,2, Yo Nakahara 2, Ryota Yokoiwa 2, Shinri Sato 1,3, Akiko Hanyuda 1, 
Yoko Ogawa 1, Masatoshi Hirayama 1, Kazuo Tsubota 1, Yasunori Sato 4, Jun Shimazaki 5 & 
Kazuno Negishi 1

The use of artificial intelligence (AI) in the diagnosis of dry eye disease (DED) remains limited due to 
the lack of standardized image formats and analysis models. To overcome these issues, we used the 
Smart Eye Camera (SEC), a video-recordable slit-lamp device, and collected videos of the anterior 
segment of the eye. This study aimed to evaluate the accuracy of the AI algorithm in estimating the 
tear film breakup time and apply this model for the diagnosis of DED according to the Asia Dry Eye 
Society (ADES) DED diagnostic criteria. Using the retrospectively corrected DED videos of 158 eyes 
from 79 patients, 22,172 frames were annotated by the DED specialist to label whether or not the 
frame had breakup. The AI algorithm was developed using the training dataset and machine learning. 
The DED criteria of the ADES was used to determine the diagnostic performance. The accuracy of 
tear film breakup time estimation was 0.789 (95% confidence interval (CI) 0.769–0.809), and the area 
under the receiver operating characteristic curve of this AI model was 0.877 (95% CI 0.861–0.893). The 
sensitivity and specificity of this AI model for the diagnosis of DED was 0.778 (95% CI 0.572–0.912) 
and 0.857 (95% CI 0.564–0.866), respectively. We successfully developed a novel AI-based diagnostic 
model for DED. Our diagnostic model has the potential to enable ophthalmology examination outside 
hospitals and clinics.

Dry eye disease (DED) is a leading cause of visiting an ophthalmologist. DED occurs in one out of six individuals 
in Japan, and the prevalence varies from 8.7 to 33.7% depending on the country and region1–4. Artificial intel-
ligence (AI) by machine learning has garnered attention in the field of ophthalmology, especially in the screening 
and diagnosis of retinal and optic nerve disorders. These algorithms use fundus or optical coherence tomography 
images, which are widely used and easy to operate5–10. Several DED-related AI studies have been conducted in 
the past. Cartes et al. reported the use of machine learning-based techniques to classify the tear film osmolarity in 
patients with DED11. Maruoka et al. created a deep learning algorithm for the detection of obstructive meibomian 
gland dysfunction (MGD) using in vivo laser confocal microscopy12. da Cruz et al. created a tear film lipid layer 
classification algorithm based on interferometry images13. However, these studies evaluated only an individual 
DED parameter; thus, an AI algorithm for criteria-based diagnosis of DED has not been reported yet. Despite 
the recent innovations in retinal and optic nerve disorders, the use of AI for DED diagnosis has not progressed 
due to various reasons. The first reason is the absence of a simple recording device. One of the key parameters 
involved in the diagnosis of DED is the tear film breakup time (TFBUT), which is evaluated using slit-lamp 
microscopes14. A conventional slit-lamp microscope is non-portable, and it is difficult to determine TFBUT 
using video data. Yedidya et al. first reported the use of the EyeScan portable imaging system for automatic DED 
detection in 200715,16. However, its performance did not supersede that of a conventional slit-lamp microscope. 
Therefore, key data, such as the TFBUT measurement video, were difficult to accumulate. The second reason is 
the lack of unified diagnostic criteria for DED. A recent Dry Eye Workshop (DEWS) characterized DED as a loss 
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of homeostasis of the tear film17. Moreover, it emphasized the importance of global consensus in DED criteria to 
improve future epidemiological studies18. However, since DEWS did not formulate unified diagnostic criteria, 
the subjective and objective findings to train AI remain unknown. Therefore, to resolve these problems and 
challenges in developing a DED diagnostic AI, our research group invented a portable and recordable slit-lamp 
device named “Smart Eye Camera” (SEC). SEC is a smartphone attachment that converts the smartphone light 
source to cobalt blue light and magnifies × 10 to record a video of the ocular surface19,20. Animal and clinical 
studies have demonstrated sufficient function in the diagnosis of DED compared with conventional slit-lamp 
microscopes19,20. Moreover, the application of simple DED diagnosis criteria, comprising subjective symptoms 
and an objective TFBUT by the Asia Dry Eye Society (ADES)21–23, has aided in creating an AI model.

Thus, the purpose of the study was to evaluate the accuracy of the world’s first DED diagnostic AI algorithm 
created using ocular surface videos and the ADES DED diagnosis criteria.

Methods
Study design.  The ocular blue light video data were collected retrospectively from two different institutes 
(Keio University Hospital and Yokohama Keiai Eye Clinic). All data were collected using a mobile recording slit-
light device20 between October 2020 and January 2021. The videos were assessed to confirm that the participant 
blinked at least thrice to observe the good quality of the tear film20. We excluded (1) images from individuals 
younger than 20 years of age, (2) images with severe corneal defects and/or corneal epithelitis, which makes 
the evaluation of the tear film difficult, and (3) images with poor quality. One case (two eyes) was excluded. 
Thus, videos of 158 eyes from 79 cases (all Japanese; 39 males and 40 females, 39 DED cases and 40 non-DED 
cases) were included in the study (Fig. 1). These videos were divided into 22,172 frames of static images. After 
the pre-processing in order to standardize the quality of each image and eliminate bad quality of the images 
(eliminate 5732 images), 90% of the data were randomly assigned to the training dataset, and the remaining 
10% were assigned to the test dataset. A single DED specialist (S.S.) annotated all of the frames at random and 
classified them as “breakup positive (+)” or “breakup negative (−)” (Fig. 2). The machine learning process used 
our training dataset (details provided in the Machine learning section) to develop a machine learning model 
that estimated the TFBUT of each case in the validation dataset. DED diagnosis performance was calculated 
using the results of TFBUT estimation, and the TFBUT record in the electronic medical records (EMR) using 
conventional slit-lamp microscope that was considered the gold standard. DED diagnosis was defined according 
to the revised ADES DED criteria21–23.

Mobile recording slit‑light device.  SEC (SLM-i07/SLM-i08SE, OUI Inc., Tokyo, Japan; 13B2X10198030
101/13B2X10198030201) was used to record the ocular blue light video as a diagnostic instrument for the study. 
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Figure 1.   The study flowchart. (A) Data collection using a recordable slit-lamp device called Smart Eye 
Camera. Data regarding 158 eyes from 79 cases were collected. (B) Pre-processing before machine learning. 
The video was sliced into frames of 0.2-ms intervals and organized into 22,172 frames. A total of 5732 frames 
were eliminated as they were not focused on the ocular surface and due to noise (eyelashes, light reflex), which 
impeded the model from learning. The remaining 16,440 frames were resized into 384 × 384 pixels. Annotation 
and machine learning process. Sorting of frames: 90% of the data were assigned to the training dataset, and 
the remaining 10% were assigned to test dataset. A DED specialist annotated all of the frames randomly and 
classified them into “breakup positive(+)” or “breakup negative(-)”.
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SEC is a smartphone attachment that has demonstrated sufficient diagnostic function compared with conven-
tional slit-lamp microscopes in an animal study20 and several clinical studies19,24–26. SEC uses the same method as 
an ordinary slit-lamp microscope to diagnose DED using the cobalt blue light method14. SEC exposes the ocular 
surface to blue light of 488 nm wavelength emitted by the smartphone light source to enhance the fluorescence 
of the dye19,20. The fluorescence-enhanced image is recorded via the video function of the smartphone with the 
convex lens above the camera. An iPhone 7 or iPhone SE2 (Apple Inc., Cupertino, CA, USA) was used, with 
the resolution of the video set as 720 × 1280 to 1080 × 1920 pixels and the frame rate set as 30 or 60 frames per 
second.

DED diagnosis.  The revised ADES DED diagnostic criteria were selected as the DED diagnostic criteria21–23. 
Cases with both positive subjective symptoms and a short TFBUT (5 s or less) were considered to have DED21–23. 
The ocular surface disease index (OSDI) questionnaire was used to evaluate the subjective symptoms, and an 
OSDI score over 13 was defined as positive subjective symptoms27,28. The TFBUT measurements were obtained 
after administering 2.0  µl of 0.5% sodium fluorescein solution to the inferior conjunctival sac29. Tears were 
excited to visualizable green by the 488-nm wavelength blue light. TFBUT was evaluated after three blinks to 
confirm that fluorescein had been distributed uniformly over the whole ocular surface. TFBUT was recorded 
from just after each blink until the first dry spots appeared. TFBUT was measured thrice and averaged. All pro-
cedures were performed in the darkroom.

Datasets and annotation.  Seventy-nine videos containing 4434 s (average, 56.1 s) were sliced by a frame 
rate of 200  ms and organized into 22,172 frames. The quality exclusion criteria of eliminating incompatible 
frames are follows (1) the frames that did not focus on the cornea, (2) the frames which contains noise (e.g. 
Blurred frames, frames which do not contains cornea due to blinking, and hair or/and eyelashes in front of 
the cornea which may bother annotation). Thus, 5732 frames were eliminated. Next, we cropped only corneal 
regions to the remaining 16,440 frames in order to standardize all of the frames, then the frames were resized 
into 384 × 384 pixels. A single DED specialist (S.S.) annotated all images at random after the standardization of 
the images. The specialist annotated each image based on whether the frame was eligible for machine learning 
and contained the black spot on the cornea (“breakup positive [+]” or “breakup negative [−]” Fig. 2). Conse-
quently, 5936 frames were classified as “breakup positive (+),” whereas 10,504 frames were classified as “breakup 
negative (−)”. After the annotating process, 90% of the data were randomly assigned to the training dataset for 
machine learning, whereas the remaining 10% were assigned to the test dataset for validation (training = 12,011 
frames, validation = 2830 frames, test = 1599 frames, and all = 16,440 frames; training = 57 videos, validation = 14 
videos, test = 8 videos, and all = 79 videos, respectively).

Machine learning.  We used Swin Transformer30 on ImageNet-22k31 as a deep learning model to develop 
the DED diagnostic AI. A central neural network (CNN) was used to detect the presence of breakup from the 
corneal image input to CNN. The training was executed with Adam as an optimizer32, and CossineAnnealingLR 
as a scheduler33. Moreover, augmentation [horizontal flip (0.5), transpose (0.5), and normalize with ImageNet 
mean/std (1)]34 was performed during the training to improve the accuracy. The validation dataset was divided 
by train vs. valid = 8 vs. 2. After the training, the output was exposed as a number from 0 to 1 to show the confi-
dence factor. Gradient-weighted class activation mapping (GradCAM) was used for visualization35. The method 
of the TFBUT automated calculation of our model are follows (1) recognition of eye opening is define as 0 s, (2) 
decision of breakup positive of negative in following frames, and when the frames were judged as breakup posi-

Figure 2.   Annotation criteria. (A) The frames containing one or more black spots (white arrow) are classified as 
“breakup positive(+)”. (B) The frames that did not contain any black spot are classified as “breakup negative(-)”.
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tive (3) the model automatically calculate the time from eye opening to break up positive. The model diagnosed 
the case as DED when the model estimated TFBUT as 5 s or less, and the input of OSDI was over 13.

Statistical analysis.  The sample size was determined based on the feasibility of accumulating cases during 
the study period since this was an exploratory study and it is difficult to set the number of cases in advance to 
confirm the accuracy of prediction. Spearman’s correlation coefficient was selected to evaluate the correlation 
between the TFBUT of the machine learning algorithm and the TFBUT of the EMR. To calculate the perfor-
mance of the breakup estimating function for the individual frames, the accuracy (ACC), an F1-score, and an 
area under the curve (AUC) of the receiver operating characteristic (ROC) curve were calculated. The accuracy 
was calculated according to a 2 × 2 table of true positives, true negatives, false positives, and false negatives36. 
The sensitivity, specificity, positive predictive value (PPV), and negative predictive value (NPV) were calculated 
to define the performance of the DED diagnostic function of the machine learning model. The AUC measure-
ment of the ROC curve was also defined to assess the more appropriate overall diagnostic function.36 Statistical 
analyses were performed using SPSS statistics software (ver. 25; International Business Machines Corporation, 
Armonk, New York, USA). Machine learning was conducted using Pytorch (Version 1.7.1.).

Ethical approval.  Our study adhered to the tenets of the Declaration of Helsinki. The trial was registered 
at the University hospital Medical Information Network Center (UMIN-CTR: UMIN000040321). The study 
protocols were approved by the Keio University School of Medicine Ethics Committee, Tokyo, Japan (IRB Num-
ber. 11000378, Approval Number. 20200021). The patient data with individual information were anonymized 
prior to the analysis. Patient consent was waived due to the law of the Japanese Ministry of Health, Labor and 
Welfare, and the IRB of Keio University School of Medicine approved a waiver or exemption for the collection 
of informed consent because of the retrospective study design and lack of personally identifiable information 
being published.

Results
Demographic data of the study.  All of the cases are Japanese, 20–92 years of age (mean 49.85 ± 17.95). 
Gender difference were 39 males and 40 females with the case of 39 DED cases and 40 non-DED cases.

Performance of the AI model in estimating the breakup of individual frames.  We evaluated 
the performance of the breakup-estimating function for individual frames. The ACC of our machine learning 
algorithm for individual frames was 0.789 (95% CI 0.769–0.809) (Fig. 3). The F1-score as a harmonic mean of 
precision and recall was 0.740 (95% CI 0.718–0.761) (Fig. 3). The AUC was 0.877 (95% CI 0.861–0.893) (Fig. 3). 
During visualizing with GradCAM, the breakup area was emphasized by the heatmap guide only in the “breakup 
positive(+)” frames, not in the “breakup negative(−)” frames (Fig. 4).

Figure 3.   Accuracy of the trained model. (A) A confusion matrix of the trained model for the breakup-
estimating function from individual frames. (B) The receiver operating characteristic curve of the trained model 
for the breakup-estimating function from the individual frames. (C) The accuracy was 0.789 (95% CI 0.769–
0.809), F1-score was 0.740 (95% CI 0.718–0.761), and the area under the curve was 0.877 (95% CI 0.861–0.893).
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Figure 4.   Visualization using GradCAM. (A) Visualization using Gradient-weighted class activation mapping 
(GradCAM) in a “breakup positive” frame. The raw image and GradCAM image with heatmap guidance. 
The black spots that display the breakup area are emphasized by the heatmap in the "raw image + GradCAM". 
(B) Visualization using GradCAM in a “breakup negative” frame. The raw image and GradCAM image with 
heatmap guidance. No emphasis on the cornea.

Table 1.   Performance of the machine learning model for dye eye disease diagnosis. PPV positive predictive 
value, NPV negative predictive value.

Value 95% CI

Sensitivity 0.778 0.572 0.912

Specificity 0.857 0.564 0.866

PPV 0.875 0.635 0.975

NPV 0.750 0.510 0.850

Figure 5.   Receiver operating characteristic curve for DED diagnosis by the AI model and EMR. The area under 
the curve of the receiver operating characteristic curve for DED diagnosis by the AI model and EMR was 0.813 
(95% CI 0.585–1.000).
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Performance of the machine learning model in the diagnosis of DED.  The diagnostic perfor-
mance for DED was assessed using TFBUT and OSDI. The sensitivity, specificity, PPV, and NPV of our model 
were 0.778 (95% CI 0.572–0.912), 0.857 (95% CI 0.564–0.866), 0.875 (95% CI 0.635–0.975), and 0.750 (95% CI 
0.510–0.850), respectively (Table 1). Moreover, AUC was 0.813 (95% CI 0.585–1.000; Fig. 5). A moderate cor-
relation was observed between the TFBUT determined using the machine learning algorithm and that retrieved 
from the EMR (r = 0.791, 95% CI 0.486–0.924). Moreover, our AI model need average 2.38 s from an input of the 
anterior-segment video to output of the TFBUT.

Discussion
The purpose of this study was to evaluate the performance of the world’s first AI algorithm for the diagnosis of 
DED using ocular surface video and the ADES DED diagnosis criteria. The DED diagnostic model was developed 
through the estimation of TFBUT and subjective symptoms using the OSDI questionnaire.

The current model showed high ACC and AUC (ACC: 0.789, AUC: 0.877) with a moderate F1-score (F1-score: 
0.740) in estimating the TFBUT validated by the individual frames. Moreover, the model demonstrated high 
sensitivity, specificity, and AUC (sensitivity: 0.778, specificity: 0.857, and AUC: 0.813) in DED diagnosis accord-
ing to the ADES criteria21–23.

We considered our algorithm to be of sufficient quality based on two different point of view. (1) the interob-
server reliability of TFBUT, and (2) the performance of similar imaging diagnostic models.

First, in terms of the interobserver reliability of TFBUT, Mou et al. reported that the reliability of the TFBUT 
in AUC was 0.695–0.792, and the correlation coefficient was 0.244–0.556 among the 147 DED and non-DED 
participants37. Moreover, Paugh et al. demonstrated an AUC of 0.917, sensitivity of 0.870, and specificity of 0.810 
using the same 2.0 μl of fluorescent solution in 174 cases38. Our model achieved a similar function; thus, it was 
considered to have sufficient quality.

Second, view point from the similar imaging diagnostic AI. Ludwig et al. presented a referral identification 
model for diabetic retinopathy with an AUC of 0.89, F1-score of 0.85, sensitivity of 0.89, and specificity of 0.83 
using 92,364 fundus camera images and fundus images taken by a smartphone39. Outside of the ophthalmology 
field, Faita et al. reported that their AI model achieved an ACC of 76.9%, AUC of 83.0%, sensitivity of 84.0%, 
and specificity of 70.0% in the differential diagnosis of malignant melanoma and melanocytic naevi based on 
the analysis of 39 ultrasonographic image samples40. Yang et al. reported that the coronavirus disease 2019 
(COVID-19) lesion localization method, an AI model, showed an ACC of 0.884, AUC of 0.883, F1-score of 0.640, 
sensitivity of 0.647, specificity of 0.929, and dice coefficient of 0.575 based on the analysis of 1230 chest computed 
tomography scans of COVID-19 pneumonia cases41. These AI models are not DED diagnostic models and do 
not provide exact TFBUT estimation. However, these imaging methods applied a similar logic for diagnosis. Our 
DED diagnostic model showed a performance comparable with that of similar models.

Several reasons may explain why our model achieved high performance with a small number of samples. 
First, each frame was standardized before training the model. All DED video data in our study were recorded 
using a single type of slit-lamp device, SEC19,20. However, the resolution of the video and recording distance 
were inconsistent. Moreover, some frames contained eyelashes, reflection of the light, and other noises that 
were unsuitable for developing a machine-learning model. Therefore, we excluded all frames (5732 out of 22,172 
frames) that failed to focus on the cornea and then standardized all frames to the same size and resolution. In 
a similar study, De Fauw et al. created a deep-learning diagnosis model that could be applied to multiple OCT 
devices and was trained using different types of OCT scans5. However, diversity in the resolution, contrast, and 
image quality of the dataset may negatively affect the machine learning process. Therefore, these pre-procedures 
could be one of the reasons why our model showed good performance. Second, the diagnostic method was 
simple. DED diagnosis was performed using only two parameters: short TFBUT and the presence of subjec-
tive symptoms. A subjective symptom, such as OSDI, was constant among the cases; therefore, our machine 
learning algorithm only had to define whether TFBUT was > 5 s. The recent DED diagnosis approach proposed 
by DEWS and ADES focused on the assessment of tear film stability17,21. Moreover, we applied the ADES DED 
criteria since our model was based on Japanese eyes. Therefore, the use of the simple ADES diagnostic criteria is 
another reason for the high performance. Third, we mimicked real-world examination methods. In the clinical 
setting, ophthalmologists use a slit-lamp microscope to evaluate objective symptoms, including TFBUT42. They 
use fluorescence solutions to stain the tear film and cobalt blue light to visualize the transparent tear layer14. Our 
model imitates these examination methods by filming the objective findings using a recordable slit-lamp device, 
which showed performance comparable with that of a conventional slit-lamp microscope in humans19. This 
imitation gives our model an advantage, contributing to its high performance. To improve the performance of 
our model, more data, especially “breakup positive” data, would have to be accumulated due to the asymmetry 
of the datasets (breakup positive vs. negative = 5936 vs. 10,504 frames).

Our study has several limitations.
First, the number of samples was limited. Generally, tens of thousands of patients are needed to develop a 

medical image-based diagnostic AI43. We used 16,440 frames; however, the total number of patients was 79. 
Moreover, numbers of DED and non-DED cases are not equal, which may be the cause of sample selection bias. 
Therefore, a small sample size and selection bias may have resulted in a moderate correlation coefficient for 
TFBUT (r = 0.791). However, we used 10% of the data to build an appropriate validation dataset44. Even with 
sufficient validation procedures and appropriate results, a larger sample with greater variability is needed to 
demonstrate the generalizability of the model. Furthermore, we did eliminate bad quality of images and used only 
good and selected images which could be causal of the bias and it need an improvement for use in the clinical 
setting. Hence, collecting more ocular videos is necessary to improve the accuracy and validity of the model in 
the future. Moreover, according to the recent perspective in DED classification, tear film-oriented diagnosis is 
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important since the impairment of vision is closely connected with tear film instability21. Thus, the classification 
of the breakup patterns should be considered in the future.

Second, our diagnostic model was based on the updated DED diagnostic criteria defined by ADES. Thus, 
our model is ideal for DED diagnosis in the Asian population21–23. DEWS also emphasizes the importance of 
tear film stability, and the most frequently employed test of tear film stability is the measurement of TFBUT17,45. 
However, the prevalence of DED is reported to differ depending on the race and circumstances of the patients1. 
Hence, a validation study is needed to apply our model to different races. Moreover, our model was annotated 
single DED specialist so that is maybe the error of the annotation itself. Therefore, annotation by the multiple 
specialists are necessary in future studies.

Third, we annotated TFBUT only for the training dataset. Therefore, the TFBUT estimation is thought to 
be the main function of our model. To develop a more accurate DED diagnostic model, other DED findings, 
such as corneal fluorescein staining score46 and tear meniscus height47,48, will be required for the annotation of 
the fluorescence-enhanced blue light images. Moreover, additional training of MGD49, conjunctival lissamine 
green staining50, and conjunctival hyperemia51 from white diffuse illumination images will be needed to add 
further information to the machine learning model. Additionally, the values of the Schirmer’s test52, tear film 
osmolarity53, and tear film lipid layer thickness interferometry13 may help increase the ACC of the AI algorithm. 
Fourth, every diagnostic process used a fluorescent solution for staining tear films. Downie LE created an instru-
ment to measure the non-invasive tear film breakup time (NIBUT)54. NIBUT is measurable without any fluores-
cent solution; therefore, the value of the model will increase if our model can estimate NIBUT.

Despite these limitations, this study, for the first time, presents evidence for a criterion-based DED diagnostic 
machine-learning model. Our model demonstrated high ACC and AUC for estimating TFBUT from blue light 
images. Moreover, the high sensitivity, specificity, and AUC for DED diagnosis exhibited by this model might be 
sufficient for screening and/or providing primary medical care. All videos were recorded using a portable slit-
lamp device. The availability of smartphones and teleophthalmology has increased in developed and developing 
countries55. Hence, the combination of the portable recording device and our diagnostic model has the potential 
to enable ophthalmology examination outside hospitals and clinics. Further studies are needed to (1) improve 
the accuracy of the TFBUT estimation by training with a higher number of ocular videos and classification of 
the breakup pattern; (2) validate the model for different races; and (3) combine additional objective findings 
that will be annotated by ophthalmologists.

Data availability
All data associated with this study can be found in the server of the Department of Ophthalmology, Keio 
University School of Medicine. The datasets used and/or analysed during the current study available from the 
corresponding author on reasonable request.

Received: 15 December 2022; Accepted: 6 April 2023

References
	 1.	 Alshamrani, A. A. et al. Prevalence and risk factors of dry eye symptoms in a Saudi Arabian population. Middle East Afr. J. Oph-

thalmol. 24(2), 67–73 (2017).
	 2.	 Lin, P. Y. et al. Prevalence of dry eye among an elderly Chinese population in Taiwan: The Shihpai Eye Study. Ophthalmology 110(6), 

1096–1101 (2003).
	 3.	 Hashemi, H. et al. Prevalence of dry eye syndrome in an adult population. Clin. Exp. Ophthalmol. 42(3), 242–248 (2014).
	 4.	 Uchino, M. et al. Prevalence and risk factors of dry eye disease in Japan: Koumi study. Ophthalmology 118(12), 2361–2367 (2011).
	 5.	 De Fauw, J. et al. Clinically applicable deep learning for diagnosis and referral in retinal disease. Nat. Med. 24(9), 1342–1350 (2018).
	 6.	 Milea, D. et al. Artificial intelligence to detect papilledema from ocular fundus photographs. N. Engl. J. Med. 382(18), 1687–1695 

(2020).
	 7.	 Yim, J. et al. Predicting conversion to wet age-related macular degeneration using deep learning. Nat. Med. 26(6), 892–899 (2020).
	 8.	 Ting, D. S. W. et al. Development and validation of a deep learning system for diabetic retinopathy and related eye diseases using 

retinal images from multiethnic populations with diabetes. JAMA 318(22), 2211–2223 (2017).
	 9.	 Mitani, A. et al. Author correction: Detection of anaemia from retinal fundus images via deep learning. Nat. Biomed. Eng. 4(2), 

242 (2020).
	10.	 Poplin, R. et al. Prediction of cardiovascular risk factors from retinal fundus photographs via deep learning. Nat. Biomed. Eng. 

2(3), 158–164 (2018).
	11.	 Cartes, C. et al. Dry eye is matched by increased intrasubject variability in tear osmolarity as confirmed by machine learning 

approach. Arch. Soc. Esp. Oftalmol. 94(7), 337–342 (2019).
	12.	 Maruoka, S. et al. Deep neural network-based method for detecting obstructive meibomian gland dysfunction with in vivo laser 

confocal microscopy. Cornea 39(6), 720–725 (2020).
	13.	 da Cruz, L. B. et al. Interferometer eye image classification for dry eye categorization using phylogenetic diversity indexes for 

texture analysis. Comput. Methods Programs Biomed. 188, 105269 (2020).
	14.	 Gellrich, M.-M. The Slit Lamp: Applications for Biomicroscopy and Videography 48 (Springer, 2013).
	15.	 Yedidya, T., Hartley, R., Guillon, J. P. & Kanagasingam, Y. Automatic dry eye detection. Med. Image Comput. Comput. Assist. Interv. 

10(Pt 1), 792–799 (2007).
	16.	 Yedidya, T., Carr, P., Hartley, R. & Guillon, J. P. Enforcing monotonic temporal evolution in dry eye images. Med. Image Comput. 

Comput. Assist. Interv. 12(Pt 2), 976–984 (2009).
	17.	 Craig, J. P. et al. TFOS DEWS II definition and classification report. Ocul. Surf. 15(3), 276–283 (2017).
	18.	 Stapleton, F. et al. TFOS DEWS II epidemiology report. Ocul. Surf. 15(3), 334–365 (2017).
	19.	 Shimizu, E. et al. Smart eye camera: A validation study for evaluating the tear film breakup time in dry eye disease patients. Transl. 

Vis. Sci. Technol. 10(4), 28 (2021).
	20.	 Shimizu, E. et al. “Smart Eye Camera”: An innovative technique to evaluate tear film breakup time in the murine dry eye disease 

model. PLoS One 14(5), e0215130 (2019).



8

Vol:.(1234567890)

Scientific Reports |         (2023) 13:5822  | https://doi.org/10.1038/s41598-023-33021-5

www.nature.com/scientificreports/

	21.	 Tsubota, K. et al. A new perspective on dry eye classification: Proposal by the Asia Dry Eye Society. Eye 375 Contact Lens 46 Suppl 
1(1), S2–S13 (2020).

	22.	 Tsubota, K. et al. New perspectives on dry eye definition and diagnosis: A consensus report by the Asia Dry Eye Society. Ocul. 
Surf. 15(1), 65–76 (2017).

	23.	 Shimazaki, J. Definition and diagnostic criteria of dry eye disease: Historical 380 overview and future directions. Invest. Ophthalmol. 
Vis. Sci. 59(14), 7–12 (2018).

	24.	 Shimizu, E. et al. A study validating the estimation of anterior chamber depth and iridocorneal angle with portable and non-
portable slit-lamp microscopy. Sensors 21(4), 1436 (2021).

	25.	 Yazu, H. et al. Clinical observation of allergic conjunctival diseases with portable and recordable slit-lamp device. Diagnostics 
11(3), 535 (2021).

	26.	 Yazu, H. et al. Evaluation of nuclear cataract with smartphone-attachable slit-lamp device. Diagnostics 10(8), 576 (2020).
	27.	 Dougherty, B. E., Nichols, J. J. & Nichols, K. K. Rasch analysis of the ocular surface 439 Disease Index (OSDI). Invest. Ophthalmol. 

Vis. Sci. 52(12), 8630–8635 (2011).
	28.	 Inomata, T. et al. Association between dry eye and 441 depressive symptoms: Large-scale crowdsourced research using the Dry-

EyeRhythm iPhone application. Ocul. Surf. 18(2), 312–319 (2020).
	29.	 Toda, I. & Tsubota, K. Practical double vital staining for ocular surface evaluation. Cornea 12(4), 366–367 (1993).
	30.	 Brock, A., De, S., Smith, S. L., & Simonyan, K. High-performance large-scale image recognition without normalization. arXiv:​

2102.​06171 (2021).
	31.	 Russakovsky, O. et al. ImageNet large scale visual recognition challenge. Int. J. Comput. Vis. 115, 211–252 (2015).
	32.	 Kingma, D. P. & Jimmy, B. Adam: A method for stochastic optimization. CoRR abs/1412.6980 (2015): n. pag.
	33.	 Loshchilov, I. & Hutter, F. SGDR: Stochastic gradient descent with warm restarts. arXiv: Learning (2017): n. pag
	34.	 Mikołajczyk, A., & Grochowski, M. Data augmentation for improving deep learning in image classification problem. In 2018 

International Interdisciplinary PhD Workshop (IIPhDW), Świnouście, Poland, 2018, pp. 117–122.
	35.	 Selvaraju, R. R. et al. GradCAM: Visual explanations from deep networks via gradient-based localization. Int. J. Comput. Vis. 128, 

336–359 (2020).
	36.	 Mander, G. T. W., & Munn, Z. Understanding diagnostic test accuracy studies and systematic reviews: A primer for medical radia-

tion technologists [published online ahead of print, 2021 Mar 16]. J. Med. Imaging Radiat. Sci. 2021;S1939-8654(21)00037-0.
	37.	 Mou, Y. et al. Reliability and efficacy of maximum fluorescein tear break-up time in diagnosing dry eye disease. Sci. Rep. 11, 11517 

(2021).
	38.	 Paugh, J. R. et al. Efficacy of the fluorescein tear breakup time test in dry eye. Cornea 39(1), 92–98 (2020).
	39.	 Ludwig, C. A. et al. Automatic identification of referral-warranted diabetic retinopathy using deep learning on mobile phone 

images. Transl. Vis. Sci. Technol. 9(2), 60 (2020).
	40.	 Faita, F. et al. Ultra-high frequency ultrasound and machine-learning approaches for the differential diagnosis of melanocytic 

lesions [published online ahead of print, 2021 Mar 19]. Exp. Dermatol. https://​doi.​org/​10.​1111/​exd.​14330 (2021).
	41.	 Yang, Z., Zhao, L., Wu, S. & Chen, Y. C. Lung lesion localization of COVID-19 from Chest CT image: A novel weakly supervised 

learning method [published online ahead of print, 2021 Mar 19]. IEEE J. Biomed. Health Inform. https://​doi.​org/​10.​1109/​JBHI.​
2021.​30674​65 (2021).

	42.	 Lemp, M. A. & Hamill, J. R. Jr. Factors affecting tear film breakup in normal eyes. Arch. Ophthalmol. 89(2), 103–105 (1973).
	43.	 Kusunose, K. Steps to use artificial intelligence in echocardiography. J. Echocardiogr. 19, 21–27 (2021).
	44.	 Baskin, I. I. Machine learning methods in computational toxicology. Methods Mol. Biol. 1800, 119–139 (2018).
	45.	 Wolffsohn, J. S. et al. TFOS DEWS II diagnostic methodology report. Ocul. Surf. 15(3), 539–574 (2017).
	46.	 Shimizu, E. et al. Corneal higher-order aberrations in eyes with chronic ocular graft-versus-host disease. Ocul. Surf. 18(1), 98–107 

(2020).
	47.	 Chen, Y. et al. Comparative evaluation in intense pulsed light therapy combined with or without meibomian gland expression for 

the treatment of meibomian gland dysfunction [published online ahead of print, 2021 Jan 18]. Curr. Eye Res. 20, 1–7 (2021).
	48.	 Yokoi, N. & Komuro, A. Non-invasive methods of assessing the tear film. Exp. Eye Res. 78(3), 399–407 (2004).
	49.	 Nakayama, N., Kawashima, M., Kaido, M., Arita, R. & Tsubota, K. Analysis of meibum before and after intraductal meibomian 

gland probing in eyes with obstructive meibomian gland dysfunction. Cornea 34(10), 1206–1208 (2015).
	50.	 Shimizu, E. et al. Commensal microflora in human conjunctiva; characteristics of microflora in the patients with chronic ocular 

graft-versus-host disease. Ocul. Surf. 17(2), 265–271 (2019).
	51.	 Yazu, H., Fukagawa, K., Shimizu, E., Sato, Y. & Fujishima, H. Long-term outcomes of 0.1% tacrolimus eye drops in eyes with severe 

allergic conjunctival diseases. Allergy Asthma Clin. Immunol. 17(1), 11 (2021).
	52.	 Ogawa, Y. et al. International chronic ocular graft-vs-host-disease (GVHD) consensus Group: Proposed diagnostic criteria for 

437 chronic GVHD (Part I). Sci. Rep. 3, 3419 (2013).
	53.	 Tukenmez-Dikmen, N., Yildiz, E. H., Imamoglu, S., Turan-Vural, E. & Sevim, M. S. Correlation of dry eye workshop dry eye 

severity grading system with tear meniscus measurement by optical coherence tomography and tear osmolarity. Eye Contact Lens 
42(3), 153–157 (2016).

	54.	 Downie, L. E. Automated tear film surface quality breakup time as a novel clinical marker for tear hyperosmolarity in dry eye 
disease. Invest. Ophthalmol. Vis. Sci. 56(12), 7260–7268 (2015).

	55.	 Mohammadpour, M., Heidari, Z., Mirghorbani, M. & Hashemi, H. Smartphones, tele-ophthalmology, and VISION 2020. Int. J. 
Ophthalmol. 10(12), 1909–1918 (2017).

Acknowledgements
This cross-ministerial strategic innovation promotion project “AI hospital” at Keio University Hospital (Tokyo, 
Japan) was supported by the Cabinet Office, Government of Japan. We thank Prof. Masahiro Jinzaki and Prof. 
Shigeru Ko, who are in charge of the AI hospital at Keio University Hospital, for providing helpful advice.

Author contributions
E.S. and T.I. conceptualized the study and wrote the original draft of the manuscript. E.S., S.S., and A.H. per-
formed the clinical examinations. S.N. and R.Y. performed data management and data curation. The machine-
learning team of the Department of Ophthalmology, Keio University School of Medicine (T.I., M.T., N.A., Y.N., 
and S.N.), conducted data management and AI development. S.S. performed annotation. T.I., A.H., and Y.S. 
performed statistical analysis. E.S. acquired funding. M.H., Y.O., J.S., K.T., and K.N. supervised the study.

Funding
This work was supported by the Japan Agency for Medical Research and Development (20he1022003h0001, 
20hk0302008h0001, and 20hk0302008h0101), Hitachi Global Foundation, Kondo Memorial Foundation, 

http://arxiv.org/abs/2102.06171
http://arxiv.org/abs/2102.06171
https://doi.org/10.1111/exd.14330
https://doi.org/10.1109/JBHI.2021.3067465
https://doi.org/10.1109/JBHI.2021.3067465


9

Vol.:(0123456789)

Scientific Reports |         (2023) 13:5822  | https://doi.org/10.1038/s41598-023-33021-5

www.nature.com/scientificreports/

Eustylelab, Kowa Life Science Foundation, Daiwa Securities Health Foundation, H.U. Group Research Institute, 
and Keio University Global Research Institute.

Competing interests 
E.S. is a founder of OUI Inc. and owns OUI Inc. stock. OUI Inc. holds a patent for the Smart Eye Camera (Japa-
nese Patent No. 6627071. Tokyo, Japan). There are no other relevant declarations related to this patent. OUI Inc. 
did not have any additional role in the study design, data collection and analysis, decision to publish, prepara-
tion of the manuscript, or funding. The other authors declare no competing interests associated with this study.

Additional information
Correspondence and requests for materials should be addressed to E.S.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note  Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Open Access   This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the 
Creative Commons licence, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from 
the copyright holder. To view a copy of this licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/.

© The Author(s) 2023

www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/

	Artificial intelligence to estimate the tear film breakup time and diagnose dry eye disease
	Methods
	Study design. 
	Mobile recording slit-light device. 
	DED diagnosis. 
	Datasets and annotation. 
	Machine learning. 
	Statistical analysis. 
	Ethical approval. 

	Results
	Demographic data of the study. 
	Performance of the AI model in estimating the breakup of individual frames. 
	Performance of the machine learning model in the diagnosis of DED. 

	Discussion
	References
	Acknowledgements


