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Metalation, the acquisition of metals by proteins, must avoid mis-metalation

with tighter binding metals. This is illustrated by four selected proteins that

require different metals: all show similar ranked orders of affinity for

bioavailable metals, as described in a universal affinity series (the Irving–Wil-

liams series). Crucially, cellular protein metalation occurs in competition with

other metal binding sites. The strength of this competition defines the intra-

cellular availability of each metal: its magnitude has been estimated by cali-

brating a cells’ set of DNA-binding, metal-sensing, transcriptional regulators.

This has established that metal availabilities (as free energies for forming

metal complexes) are maintained to the inverse of the universal series. The

tightest binding metals are least available. With these availabilities, correct

metalation is achieved.
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Metal affinities and mis-metalation

Metalation is crucial for metalloproteins to achieve their

proper enzymatic activity and/or structure. Mis-

metalation occurs in part because proteins are flexible and

metal binding is non-conservative: a wrong metal can use

a sub-set of ligands from the bona fide site, recruit addi-

tional adventitious ligands, and/or distort the native geom-

etry. With such limited constraint, it is anticipated that

most metalloproteins are at risk of mis-metalation of their

nascent binding sites. It is estimated that 47% of enzymes

contain metals [1,2]. How do cells overcome this pervasive

challenge to enable enzymes to bind metal(s) with the cor-

rect chemical properties, and not simply those that bind

most tightly? To exemplify the challenge of mis-

metalation, Fig. 1 shows how tightly essential metals bind

to the four selected proteins: Namely, a chelatase (CbiK)

that acquires CoII for a molecular cofactor (vitamin B12),

a CoII metallochaperone (CobW), a homologous ZnII

delivery protein (YeiR) and a MnII enzyme that entraps

metal during folding (MncA) [3–5]. The tightness of bind-
ing is represented as differences in free energies for forming

the respective metal complexes. Affinities were measured

for what is considered the exchangeable available form of

each metal in the cytosol, that is divalent except for copper

which is monovalent (albeit MncA ratios were estimated

for CuII as described later) [6]. For all four proteins, the

tightest binding metal is not the one required for activity

(Fig. 1). The orders of binding follow, or tend towards,

the Irving–Williams series: MgII < MnII < FeII < CoII

< NiII < CuII (CuI) > ZnII, from weakest to tightest [6,7].

If surplus metals were allowed to inter-compete, three pro-

teins would be mis-metalated with CuI, and one inferred

to become mis-metalated with ZnII (represented as black

and grey insets in Fig. 1).

Examples of delivery proteins and the synthesis

of molecular cofactors

Some proteins bind metals in pre-assembled cofactors

such as iron in haem or iron sulfur clusters, nickel in

cofactor F430 or cobalt in vitamin B12, as examples.

Abbreviation

SodA, superoxide dismutase.
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However, the correct metal must still partition onto the

cofactor assembly pathway in the first place. CbiK is a

chelatase that inserts CoII into corrin in one of two

pathways for the synthesis of vitamin B12 [8–10]. Fig. 1
shows that CuI binds tightly to CbiK, with ZnII and

NiII comparable to CoII, highlighting the question as to

how tight-binding non-cognate metals are avoided.

Metals are supplied to some proteins by delivery

pathways involving metallochaperones and here the

final metalation step is aided by selective protein–pro-
tein interactions [11–14]. CobW supplies CoII to a dif-

ferent chelatase, not CbiK, in an alternative pathway

for vitamin B12 biosynthesis [5,8,15]. CobW has a pre-

dicted GTPase domain and when bound to MgIIGTP,

CobW forms a tight complex with CoII but crucially it

forms an even tighter complex with CuI [5]. As an

aside, binding of NiII to MgIIGTP-CobW is relatively

weak, departing from the Irving–Williams series

(Fig. 1). This is probably because association with

MgIIGTP pre-organises the CoII site of CobW into a

tetrahedral geometry thereby limiting the ability of

NiII to distort the site into its preferred planar geome-

try [5]. YeiR is analogous to CobW but is implicated

in the delivery of ZnII rather than CoII [5,16,17]. In

common with CobW, when bound to MgIIGTP, YeiR

forms tighter complexes with CuI than with its cognate

metal. How do the correct metals somehow partition

onto these, and other, delivery pathways inside cells to

avoid mis-metalation, or blocked metalation, of the

proteins that they supply?

Fig. 1. Metal binding to four proteins exemplifies the risk of mis-metalation. Tightness of binding to the four proteins is shown for the avail-

able and exchangeable forms of metals in the cytosol (or CuII for periplasmic MncA). Values (black circles) are free energies for forming

complexes calculated via the standard relationship ΔG = �RTlnKA (ΔG free energy change, R molar gas constant, T temperature in kelvin,

KA association constant). Note that values are logarithmically related to binding constants. The more negative the value the tighter the bind-

ing. Arrows indicate values that were at the minimum or maximum limits of the respective determinations of metal affinity. CbiK is a CoII

chelatase for vitamin B12 biosynthesis [3], MgIIGTP-CobW is a CoII metallochaperone from an alternative vitamin B12 biosynthetic pathway,

MgIIGTP-YeiR is analogous to MgIIGTP-CobW but implicated in handling ZnII [5], MncA is a MnII cupin [4]. Values for MncA are assigned

based upon competition between metals (details noted in the text). Insets show percentage occupancies with copper (black) and ZnII (grey)

as a proportion of total metal occupancy. The correct metals are not the tightest binding metals and the orders of binding tend to follow the

Irving–Williams series [6,7].

142 FEBS Letters 597 (2023) 141–150 � 2022 The Authors. FEBS Letters published by John Wiley & Sons Ltd on behalf of

Federation of European Biochemical Societies.

Protein metalation in a nutshell D. Osman, and N. J. Robinson



Example of kinetic trapping in a folded protein

Some metals become kinetically trapped within folded

proteins. However, the folding pathway may still pref-

erentially entrap the wrong metals. This is illustrated

by the MnII cupin MncA. An experiment in which

MncA was folded in vitro in the presence of an

equimolar surplus of CuI and MnII led to the wrong

metal, CuI, being entrapped implying that CuI binds

MncA more than 10 times more tightly. Similar experi-

ments competing MnII against either ZnII or CuII

again led to entrapment of the wrong metal [4]. Pre-

sumably, some nascent flexible site along the folding

pathway tends to follow the Irving–Williams series.

Competition experiments with increasing molar

excesses of MnII versus either CuII or ZnII yielded full

loading of MncA with MnII at 10 000 and 100 000-

fold surpluses of MnII respectively [4]. Notably, this

suggests a slightly tighter affinity for ZnII than CuII,

but the experiment used Tris buffers, which may have

formed unaccounted CuII-complexes. Affinities for

ZnII and CuII binding to a nascent site in MncA have

been assigned in Fig. 1D to reflect the measured differ-

ences relative to MnII.

Mis-metalation within cells

The MnII form of Escherichia coli superoxide dismu-

tase (SodA) is commonly mis-metalated with FeII and

inactive [18]. The detection of reactive oxygen species

by a sensor, OxyR, triggers expression of a manganese

importer (MntH) which in turn leads to nascent super-

oxide dismutase SodA being correctly metalated with

MnII [19]. Small molecule cofactors can also become

mis-metalated. For example, exposure to elevated

levels of CoII leads to mis-metalation of iron sulfur

clusters with CoII [20]. Furthermore, some forms of

iron deficiency cause the accumulation of zinc proto-

porphyrin IX in place of haeme [21]. The copper cupin

CucA is found in the same cyanobacterial periplasmic

compartments as MnIIMncA, but CucA does acquire

copper using the same ligands within the same fold as

MncA [4]. Importantly, while CucA is secreted via the

sec-pathway to fold within the periplasm where it

acquires copper, MncA is a TAT-substrate which folds

in the cytoplasm where it entraps MnII. This suggests

that the location of protein folding can determine the

specificity of metalation, and moreover that MnII must

be significantly more available than either CuI or ZnII

in the cytosol, with the latter ratio being at least

100 000-fold. These observations reveal the crucial

contributions of metal availabilities at the sites of pro-

tein folding to the avoidance of mis-metalation [4].

Metalation in cells

Cells have a diversity of mechanisms that maintain

metal availabilities within tolerable ranges [22–30]. For
example, importers acquire more of metals that are

deficient while storage proteins and exporters sequester

or remove those in surplus. Mechanisms also exist to

sustain optimal metal availabilities within intracellular

compartments and to maintain extracellular systemic

metal supply in multicellular organisms. These mecha-

nisms are controlled by a variety of metal sensors.

DNA-binding metal sensing transcriptional regulators

have been especially well characterised in bacterial

cells: They include metal-dependent de-repressors [31],

metal-dependent co-repressors [32], and metal-

dependent activators [33,34], of gene transcription. The

allosteric mechanisms of these sensors have evolved to

couple metal binding to DNA binding, and to respond

within the ranges of intracellular metal availabilities

over which their cognate metals fluctuate in viable cells

[35,36]. When sensitivities are adjusted to lie outside

the vital range, sensors become unresponsive to

changes in metal levels [35]. These sensors offer a route

to read-out the ranges over which intracellular metal

availabilities fluctuate.

Calibrating metal sensors to decode metalation

A set of DNA-binding metal sensors of the three types

outlined above, have been characterised in detail from

Salmonella enterica serovar Typhimurium (hereafter

Salmonella), for the purpose of calibrating their

responses to intracellular metal availabilities [3]. The

Salmonella sensors are almost identical to those of

E. coli [5,37]: They include MnII-responsive co-

repressor MntR, FeII-responsive co-repressor Fur,

CoII-responsive de-repressor RcnR, NiII-responsive co-

repressor NikR, ZnII-responsive activator ZntR, ZnII-

responsive co-repressor ZntR and CuI-responsive acti-

vator CueR [3]. After confirming their cognate metals,

the metal affinities, DNA affinities of apo- and metal-

bound forms of each sensor, along with the number of

promoter binding sites and the number of sensor mole-

cules per cell (in high and in low metal) were all deter-

mined [3]. These values were used to calculate

response curves that relate the state of each sensor to

the intracellular availability of the cognate metal. The

states (on or off DNA, with or without metal) that

exist at different metal availabilities form coupled ther-

modynamic cycles [38,39]. Before resolving these cycles

mathematically in order to generate response curves,

there needs to be prior consideration of the nature of

available metals inside cells.
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A ZnII-buffered in vitro transcription assay previ-

ously established that ZnII sensors of E. coli respond

at femtomolar ZnII concentrations [40]. It was noted

that one atom per cell volume (approximately a fem-

tolitre) equates to nanomolar concentrations, suggest-

ing that the sensors detect the transition from ZnII

deficiency to excess at a million times less than one

(hydrated) atom per cell. An explanation is that there

are surplus binding sites in the intracellular milieu such

that all ZnII atoms are bound, leading to a suggestion

that ZnII might be delivered to its destinations by dedi-

cated proteins analogous to copper metallochaperones

[40,41]. There is evidence of some ZnII delivery pro-

teins [42], albeit this deflects attention towards the

specificity of metal acquisition by the delivery proteins

themselves. Moreover, it is anticipated that ZnII-

metallochaperones are exceptional, with a multitude of

ZnII-proteins acquiring metal directly. Importantly,

metal transfer by associative ligand exchange, analo-

gous to transfer from metallochaperones [13,41,43,44],

may also occur from small molecule ligands such as

glutathione or free histidine [35,45–52].
Cytosolic metal buffering by small molecules, metal-

lochaperones and other labile sites, coupled with asso-

ciative metal-transfer, has several implications: (a) It

becomes mathematically possible to resolve the cou-

pled thermodynamic cycles to calculate sensor states at

different metal availabilities when the metal is buffered

(because metal binding to the sensor does not alter the

available metal concentration, thus removing an other-

wise dependent variable); (b) metal transfer by associa-

tive ligand exchange is rapid because it is not limited

by the slow rate of release to the hydrated state; (c) an

equilibrium state will better approximate an in vivo

state if metal transfer to and from sensors (along with

other proteins) is associative and fast; (d) an almost

non-existent pool of hydrated metal ions is not a limi-

tation if metal transfer is associative; (e) the concentra-

tion of the negligible hydrated pool (equating to one

ZnII atom per million cells at any given instant or an

atom in every cell one millionth of the time, in the ear-

lier example) enables the strength of competition from

the intracellular milieu to be calculated as an activity

or difference in free energy. The range of internal

metal availabilities over which each Salmonella sensor

transitions between its off-DNA states and its DNA-

bound states, or in the case of the activators, DNA-

metal-bound state, were thus calculated [3]. Notably,

the activators distort DNA to align critical nucleotide

sequences only in their metal-bound state. In contrast,

repression is mediated by apo- or metalated sensors,

albeit the proportions associated with DNA differ for

co-repressors versus de-repressors. The calculated

response curves were seen to depart from those gener-

ated from the metal affinities of sensors alone [3]. For

example, some metal sensors are autoregulatory and a

change in sensor abundance with metal concentration

introduces hysteresis. Also, because metal binding and

DNA binding are allosterically coupled, metal binding

alters DNA affinity but reciprocally DNA binding

alters metal affinity, and this influences the metal

response curves.

Metal availability follows the inverse of the

Irving–Williams series

The grey bars in each panel of Fig. 2 show the avail-

abilities over which the sensor(s) for each metal are

calculated to respond, ranging from 10% to 90% cog-

nate DNA occupancy with sensor, or with solely meta-

lated sensor for activators [3]. Availabilities are shown

as free energies for forming complexes that would be

50% metalated at the respective metal concentration.

Metal availability is the inverse of the Irving–Williams

series. The more competitive metals are maintained at

the lowest availabilities. This has been a long-standing

hypothesis which is now experimentally supported by

the calculated sensitivities of a cells’ detectors/con-

trollers of metal availabilities [3,6]. These data provide

estimates of the magnitude of competition from labile

binding sites in the intracellular milieu [3]. In turn, this

provides a frame of reference against which it becomes

possible to re-interpret metalation, for example, of the

four proteins shown in Fig. 1, in a biological context.

Decoding metalation

The insets in Figs 1 and 2 depict fractional occupan-

cies of each protein with metals: copper black, ZnII

grey, CoII salmon red, FeII green and MnII pink. Once

competition against the intracellular milieu is consid-

ered, calculated metalation switches from the black

and grey insets in Fig. 1 (representing the tightest but

wrong metals copper and ZnII) to the colours in Fig. 2

[representing the correct metals CoII (MgIIGTP-

CobW), ZnII (MgIIGTP-YeiR), CoII (CbiK) and MnII

(MncA)]. These occupancies have been estimated for

an idealised cell in which metal-availabilities match the

mid-points of the ranges for the respective sensor(s)

[3–5]. They have been calculated from the difference in

free energy for forming the respective metal complex

with the protein of interest, versus that inferred for the

competing intracellular milieu. Metalation can occur if

the gradient favours transfer to the protein [3,5]. The

gradient may be favourable for more than one metal

and hence values have been inter-competed to ensure
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that occupancy of a single site does not exceed a stoi-

chiometry of one [5]. Intriguingly, in the absence of

nucleotide or with MgIIGDP, the gradient disfavours

transfer of CoII to CobW, whereas MgIIGTP-CobW

favours CoII-transfer, providing insight into the mech-

anistic cycle for this metallochaperone [5]. Because

metals are trapped within MncA it is difficult to deter-

mine the affinities of the nascent site at which binding

occurs during folding and, as noted earlier, values

have only been estimated for the relative affinities of

three metals [4]. Fig. 2D therefore, shows the free

energies for forming ZnII complexes (and limits for

CuI complexes) with the nascent site in MncA relative

to an assigned MnII value.

Metalation calculators have been created which per-

form analogous calculations. They enable simulations

of intracellular metalation of proteins of interest from

inputted metal affinities and either by using default

metal availabilities originally estimated for Salmonella,

or by inputting known or simulated metal availabilities

for other organisms (such as E. coli) [53].

New frontiers in protein metalation

Questions and methods

To what extent does metal-protein speciation depart

from predictions based on differences in free energies

Fig. 2. Metal availability is the inverse of the Irving–Williams series and decodes correct metalation. Grey bars show the ranges from 10%

to 90% of the transcriptional responses of the cognate sensors for each metal as free energies for forming complexes that would be 50%

saturated at the respective availability [3]. Metal availability is inverse to the Irving–Williams series. The ranges indicate the range of

strengths of competition from exchangeable cytosolic binding sites against which the sensors have evolved to compete to sustain optimal

metal availabilities. Metalation of other proteins similarly involves competition with these exchangeable metal binding sites. Black circles and

arrows replicate metal binding data from Fig. 1, except for limits to CuI binding to MncA where the weakest value is derived from a

competition experiment and the tightest inferred to give negligible (1%) CuI occupancy. The four cognate metals become apparent when

binding is considered in relation to availability, as shown in the insets with CoII (salmon red), ZnII (grey), MnII (pink) [3,5]. These proportional

metal occupancies are calculated for idealised cells in which the sensors are at the mid-points of their ranges. Total calculated metal occu-

pancies are 16% CbiK, 99% MgIIGTP-CobW, 36% MgIIGTP-YeiR and (using the selected KA MnII) 91% MncA, implying substantial amounts

of apo-CbiK and apo-YeiR exist under these conditions. Online metalation calculators similarly decode metal occupancies in the context of

defined metal availabilities (https://mib-nibb.webspace.durham.ac.uk/metalation-calculators/) [53].
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for complex formation relative to competing intracellu-

lar sites? Constraints and uses of the approach

described here have been catalogued [53]. Additional

factors that could influence metalation include kinetic

contributions such as proximity to sites of metal

import (where availability departs from that averaged

over the compartment as a whole) and selective inter-

actions with metal buffering molecules, including met-

allochaperones as extreme examples. The scale of such

additional contributions could become evident from

the extent to which observed metalation departs from

the predictions of metalation calculators. The dispari-

ties may be relatively small, and hence at risk of being

dismissed, but viewed in the context of the landscape

of competition from intracellular-binding sites their

crucial contributions to correct metalation might

become evident.

To what extent do the metal-binding preferences of

some proteins depart from the Irving–Williams series?

A cautionary note is that metal affinities of proteins

can be challenging to measure and many reported val-

ues are not correct [54,55]. We have already discussed

how the formation of adducts with other molecules

such as MgIIGTP can pre-organise a binding site to

introduce steric selection [5]. It is known that coopera-

tivity at di-metal sites can similarly improve selectivity,

for example, in favour of MnII relative to FeII in a

class Ib diMnII ribonucleotide reductase and in the

MnII/FeII oxidase R2lox [56,57]. Change in oxidation

state post-binding, away from that of the labile pool,

can favour retention of a selected metal [58]. Synthetic

proteins have been generated with metal preferences

that depart from the Irving–Williams series [59]. If bet-

ter metal selectivity could have evolved, why has not

it? Perhaps, because greater selectivity comes at a price

such as reduced flexibility at the active site diminishing

the catalytic repertoire [57,59]. Perhaps because there

has been limited pressure for greater selectivity when

evolution has occurred within the thermodynamic

landscape for metal availabilities shown in Fig. 2. Evo-

lution of metal homeostasis, rather than adaptation of

the vast complement of metal sites, has probably

offered the more parsimonious solution when metal

supply has changed over time.

By how much does metal availability vary in differ-

ent compartments and organisms? It is anticipated that

availability is the inverse of the Irving–Williams series

in the compartments of most cells (e.g. albeit CuI may

be substantially more available in the trans-Golgi net-

work of eukaryotic cells). Existing metalation calcula-

tors could initially be extrapolated to simulations for

other cell types. However, modest change in availabili-

ties of two metals, but in opposing directions (one

more available, one less available), could switch the

specificity of metalation. Thus, bespoke calculators

should ideally be generated by substituting availabili-

ties determined for the respective compartment and

growth condition, albeit using the same understandings

and web-based template. However, it took about a

decade to calibrate the sensors of Salmonella and in

many compartments and species it is less clear which

cellular sensors could be used to replicate this

approach. The metal affinities of sites that modulate

the trafficking or processing of metal-transporters,

change the stability or translatability of transcripts

encoding proteins of metal homeostasis, or modulate

other post-transcriptional mechanisms, offer a possible

route to define metal availability in idealised cellular

compartments. However, it is less clear how these sites

could be used to read out availabilities in conditional

cells. An attractive idea is to use artificial intelligence

to predict availabilities based on global surveys of pro-

tein metal affinities. However, a preponderance of

erroneous affinities in the literature could confound

the signal to noise ratio. Better yet, metal-responsive

probes, including cell permeable chromogenic mole-

cules, have been developed [60–62]. There is uncer-

tainty about what some probes read-out in a

biological context: But these uncertainties seem resolv-

able such that the probes could be calibrated to read-

out the free energies of available metal. Furthermore,

these probes could be cross-correlated inside Sal-

monella by comparison with values obtained from the

characterised DNA-binding metal sensors. This latter

approach may allow the generation of bespoke metala-

tion calculators for a variety of cells and compart-

ments to be more swiftly created.

Applications

The term nutritional immunity encompasses mecha-

nisms by which pathogens are subjected to metal

excess or deficiency as part of the host defences

[23,30,63,64]. This includes the sequestration of metals

by calprotectin released from neutrophils [65,66], the

depletion of metals in macrophage phagosomes by nat-

ural resistance-associated macrophage protein one

[67,68], the elevation of copper in the same compart-

ment [69], the sequestration of iron scavenging sidero-

phores by siderocalins [70], amongst others. There is a

history of using metals and chelants to limit the

growth of pathogens in medicine, in agriculture and in

consumer goods [71]. Knowledge of the activities of

available metals in pathogens should enable the identi-

fication of proteins that are liable to mis-metalation,

creating opportunities to tailor antimicrobials to
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subvert metalation, for example of enzymes involved

in antimicrobial resistance.

Mis-metalation occurs in some diseases [72]. This

might be a primary cause or a secondary symptom.

Metalation could be simulated for proteins associated

with such diseases to identify those liable to mis-

metalation, perhaps informing future treatments. Such

simulations could use metalation calculators in which

availabilities have been entered that match determined

free energies of available metals in the respective com-

partment of human cells. The latter might be deter-

mined using cell permeable chromogenic probes as

discussed earlier. In plants, the generation of analo-

gous calculators for their varied compartments has the

potential to assist approaches to improve the nutri-

tional supply of metals associated with hidden hunger

[73].

The sources of some technology-critical metals

required in electronic devices and batteries are at risk

[74]. This generates a need for targeted metal recovery

and sustainable recycling. Sensors are known that

detect several non-essential metals and there is scope

to identify more [33,34,75–78]. These sensors could be

calibrated to monitor and quantify sub-lethal intracel-

lular availabilities of the critical elements. In turn, this

knowledge would assist the engineering of accumula-

tion and bio-recovery of technology-critical metals.

In synthetic biology, heterologous (introduced) pro-

teins may be mis-matched to metal availabilities in the

engineered cells. There is scope to use metalation cal-

culators for organisms such as E. coli, and in future

yeast, to optimise metalation in support of sustainable

industrial biotechnology. The heterologous proteins

might be products of in vitro evolution or of targeted

engineering. Encouragingly, these proteins need not be

engineered for the tightest binding metal to be the cor-

rect metal, but merely to meet the more attainable goal

of acquiring the correct metal in the context of the

prevailing intracellular availabilities as illustrated in

Fig. 2. The pathway for synthesis of cofactor F430

stalled at the point of NiII insertion; likewise, that for

vitamin B12 stalled at CoII insertion, when introduced

into E. coli, which does not naturally produce either

molecule [5,79]. The latter vitamin B12 pathway

involved CobW as in Figs 1B and 2B. Calibrated

qPCR with E. coli transcripts indicated that intracellu-

lar CoII availability in cells grown in LB medium was

below 10% of the range for CoII-sensing RcnR, while

ZnII approximated to the mid-point for ZnII-sensing

ZntR and Zur, equating to idealised cells for ZnII but

not for CoII [5]. Under these conditions, MgIIGTP-

CobW is predicted to be ~75% mis-metalated with

ZnII [5]. Supplementation of culture media with 10 lM

cobalt was estimated (via qPCR) to raise the intracel-

lular free energy of available CoII sufficiently to

reverse mis-metalation of the metallochaperone and

indeed under these conditions, vitamin B12 synthesis

proceeded, matching calculated loading of MgIIGTP-

CobW with CoII [5]. This presents opportunities to

optimise the bioprocess for manufacturing vitamin B12

by manipulating the supply of CoII or ZnII via supple-

mentation and chelation or by further engineering

metal homeostasis. Importantly, vitamin B12 is neither

made nor used by plants with the vegan society recom-

mending supplements [80,81]. As individuals adopt

more plant-based diets to reduce environmental

demand for food production, efficient bio-manufacture

of vitamin B12 may gain in importance. Web-based

metalation calculators are now available for E. coli

strains grown under specified culture conditions with

plans to iteratively update the resource (https://mib-

nibb.webspace.durham.ac.uk/metalation-calculators/)

[53]. With an estimated half of the reactions of life

requiring metals, optimisation of metalation informed

by metalation calculators, promises to assist the transi-

tion to more sustainable manufacturing.
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