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1  |  INTRODUC TION

Alterations to the epigenome are a conserved hallmark of bio-
logical ageing, and recent findings have demonstrated that age-
associated DNA methylation patterns can be modelled to generate 
epigenetic age predictors capable of estimating chronological and 

biological age with unprecedented accuracy (Berdyshev et al., 1967; 
Christensen et al.,  2009; Hannum et al.,  2013; Richardson,  2003). 
In one of the first DNA methylation-based age predictors or “epi-
genetic clocks” developed by Horvath (2013), the methylation status 
of 353 cytosines predicts human chronological age with an error of 
±3.6 years. Epigenetic clocks have subsequently been developed in 
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Abstract
Biological ageing is connected to life history variation across ecological scales and 
informs a basic understanding of age-related declines in organismal function. Altered 
DNA methylation dynamics are a conserved aspect of biological ageing and have re-
cently been modelled to predict chronological age among vertebrate species. In ad-
dition to their utility in estimating individual age, differences between chronological 
and predicted ages arise due to acceleration or deceleration of epigenetic ageing, and 
these discrepancies are linked to disease risk and multiple life history traits. Although 
evidence suggests that patterns of DNA methylation can describe ageing in plants, 
predictions with epigenetic clocks have yet to be performed. Here, we resolve the 
DNA methylome across CpG, CHG, and CHH-methylation contexts in the loblolly pine 
tree (Pinus taeda) and construct epigenetic clocks capable of predicting ages in this 
species within 6% of its maximum lifespan. Although patterns of CHH-methylation 
showed little association with age, both CpG and CHG-methylation contexts were 
strongly associated with ageing, largely becoming hypomethylated with age. Among 
age-associated loci were those in close proximity to malate dehydrogenase, NADH 
dehydrogenase, and 18S and 26S ribosomal RNA genes. This study reports one of the 
first epigenetic clocks in plants and demonstrates the universality of age-associated 
DNA methylation dynamics which can inform conservation and management prac-
tices, as well as our ecological and evolutionary understanding of biological ageing in 
plants.
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a variety of other mammalian (Horvath, 2013; Weidner et al., 2014), 
avian (De Paoli-Iseppi et al.,  2019; Raddatz et al.,  2021), and fish 
species (Anastasiadi & Piferrer, 2020; Bertucci et al., 2021; Mayne 
et al., 2020), and are currently being applied to biomedical and con-
servation problems, as well to questions regarding their relation-
ship to the underlying biology of ageing and senescence (Bertucci 
& Parrott, 2020; Kabacik et al., 2018). However, whereas the phe-
nomenon of epigenetic ageing appears to be a conserved aspect 
of biological ageing in vertebrates, age-associated changes to DNA 
methylation and their ability to predict chronological age in plants 
is relatively unexplored (Parrott & Bertucci, 2019; Yao et al., 2021).

DNA methylation refers to the covalent addition of a methyl 
group to the 5′ carbon of cytosine nucleotides (Jung & Pfeifer, 2015; 
Ng & Adrian,  1999; Suzuki & Bird,  2008), and although the func-
tional consequences of these modifications vary across genomic 
context and taxonomic groups, DNA methylation is broadly associ-
ated with repressed transcriptional activity of genes and transpos-
able elements through direct silencing and promotion of repressive 
chromatin states (Ng & Adrian, 1999; Zilberman, 2008). Similar to 
vertebrates, changes in DNA methylation levels in plants are ob-
served with exposure to stress, age, and development (Dubrovina 
& Kiselev, 2016; Jiang et al., 2014; Law & Jacobsen, 2010; Probst 
& Mittelsten Scheid, 2015). However, compared to the distribution 
of cytosine methylation within vertebrate genomes, which almost 
exclusively occurs in CpG dinucleotides, DNA methylation in plant 
genomes is frequently observed within CpG, CHG and CHH con-
texts (where H = A, T, or C). Methylated cytosines located within 
gene bodies in plants primarily occurs in CpG contexts (Takuno 
et al., 2016), whereas CpG, CHG, and CHH-methylation is typically 
found within highly repetitive genomic regions, potentially func-
tioning to silence transposable element activity (Ausin et al., 2016; 
Slotkin & Martienssen, 2007). How these different sequence con-
texts might relate to age-associated DNA methylation patterning is 
not resolved.

Despite the ability of current epigenetic clocks to predict chrono-
logical age, discrepancies between epigenetic age and chronological 
age are observed and reflect variation in biological age (Horvath & 
Raj, 2018; Parrott & Bertucci, 2019; Xiao et al., 2019). Accelerated 
epigenetic ageing is associated with age related losses in organis-
mal function and in humans, and predicts risk for age-associated 
disease and mortality (Levine et al., 2018; Perna et al., 2016; Zheng 
et al., 2016). In addition, epigenetic-to-chronological age discordance 
mirrors variation in life history traits (Anderson et al., 2021; Hamlat 
et al., 2021). For example, birth weight, age and size at maturity, as 
well as the timing of reproductive senescence are all correlated to 
epigenetic age in humans, demonstrating intriguing links between 
ageing processes and life history variation (Binder et al., 2018; Ryan 
et al., 2018; Simpkin et al., 2015). However, the links between the 
rate of epigenetic ageing and variation in organismal function and 
life history traits (including those with potential commercial implica-
tions) are largely unexplored in plants.

Loblolly pine (Pinus taeda) is a large tree with a broad geo-
graphic range spanning from southern New Jersey to eastern Texas, 

including parts of northern Florida (Baker & Langdon, 1990) and is 
capable of living for up to 275 years (Baker & Langdon, 1990). The 
loblolly pine is often commercially harvested for timber and is also 
used to diversify forest habitats, control erosion, and improve water 
quality (Baker & Langdon, 1990). Research and management prac-
tices aimed at improving growth and yield from loblolly pine stands 
often manipulate resource availability (Albaugh et al., 2004; Coyle 
et al.,  2016; Fox et al.,  2007). However, the underlying biological 
mechanisms promoting optimal growth rates across variable envi-
ronmental conditions remain unclear (Albaugh et al., 2004). As plant 
growth has been linked to DNA methylation processes (Genger 
et al.,  2003; Horvath et al.,  2003), resolving and utilizing age-
associated methylation patterns in trees may aid in evaluating strat-
egies for increasing stand yield (i.e., increasing leaf area and other 
traits that promote growth efficiency [Dubrovina & Kiselev, 2016; 
Fox et al., 2007; Medlyn et al., 2003; Samuelson et al., 2001]).

Here, we investigate age-associated DNA methylation patterns 
in P. taeda and evaluate their genomic distributions among differing 
methylation contexts. We then test differing modelling strategies 
to develop a novel epigenetic clock for P. taeda, which can be used 
to investigate the factors most important to growth, development, 
and tree ageing. This study demonstrates the utility of epigenetic 
clocks in nonvertebrate models and indicates that age-associated 
DNA methylation, both within CpG contexts and beyond, may be a 
universal aspect of organismal ageing.

2  |  MATERIAL S AND METHODS

2.1  |  Sample collection

Between 31 December 2019 and 14 January 2020, cambium sam-
ples from standard coring procedures were obtained at 1.37 m of 
stem height from 24 P. taeda individuals ranging from 1 to 119 years 
of age. Cambium tissues have been reliably sampled for differential 
DNA methylation analyses in other species (Wang et al., 2016). Tree 
cores spanned the radius of the tree stem, and the cambium was 
separated from the bark and xylem for DNA extractions. Cambium 
samples were utilized instead of leaves as it is currently unknown 
whether age-related methylation patterns differ among these or-
gans. This study was conducted at the United States Department 
of Energy's Savannah River Site (Aiken, SC, USA), a National 
Environmental Research Park. The United States Department of 
Agriculture (USDA) Forest Service manages the natural resources of 
the Savannah River Site (Kilgo & Blake, 2005). Using records from 
the Forest Service, we identified stands which were planted be-
tween 1 and 55 years prior and sampled three trees from each stand 
(1, 10, 19, 28, 37, 46, and 55 years old). Three additional trees of ad-
vanced age (approximately 82, 97, and 119 years old) were identified 
by counting rings within core samples as planting records for older 
stands were unavailable. Core samples are often used for estimating 
tree ages (Mahoney et al., 1991); however, coring estimates might 
contain bias for age underestimation as it can take several years for 
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a tree to reach the height of 1.37 m where coring was performed. 
Cambium samples from adult trees (>1-year) were taken at breast 
height (1.37 m) using a metal hole punch. Saplings (1-year old) were 
sampled at the base of the primary stem with a metal blade. All sam-
ples were immediately stored in RNAlater at −20°C until DNA ex-
traction. Diameter at breast height was measured using a diameter 
tape and height was measured using a TruPulse 200x Rangefinder 
(Laser Technology, Inc.).

2.2  |  DNA extraction

DNA was extracted from cambium tissue using Qiagen's DNeasy 
Plant Pro Kit (catalogue no. 69204, Qiagen) following the manufac-
turer's protocol with the addition of 100 μl of the solution PS per 
sample due to high amounts of phenolic compounds in pine species. 
Briefly, samples were cut into small pieces using a sterile blade and 
then homogenized using a Mini-Beadbeater (BioSpec) for 4–8 min at 
2000 oscillations/min. DNA was eluted in 50 μl of the supplied elu-
tion buffer, and the concentration and purity of DNA samples were 
assessed using a Qubit fluorometer 2.0 (Invitrogen) and Nanodrop 
spectrometer (Thermo-Scientific), respectively.

2.3  |  Reduced representation bisulphite 
sequencing library preparation

Reduced representation bisulphite sequencing (RRBS) libraries 
were prepared using Diagenode's Premium RRBS Kit (catalogue no. 
C02030032, Diagenode). Due to the occurance of CHG-methylation 
in plant genomes, we adapted the protocol by digesting genomic 
DNA with the BsaWI restriction enzyme (catalogue no. R0567S, 
New England BioLabs) instead of MspI, as BsaWI cuts the recognition 
site W^CCGGW. Digestion efficiency of BsaWI in our samples was 
confirmed by visualizing digested genomic DNA from test samples 
using standard gel electrophoresis. For library preparations, 200 ng 
of genomic DNA from each sample was digested with 5 units/ng of 
BsaWI for 12 h at 60°C, after which samples underwent a 20 min 
heat inactivation of the restriction enzyme at 80°C. To obtain suf-
ficient library concentrations, two RRBS libraries were prepared for 
each sample. In the second library preparation, the protocol was 
further altered to add additional extension time in the final amplifi-
cation (72°C for 1 min during cycling and 10 min during final exten-
sion). Libraries were eluted in 22 μl of the supplied elution buffer and 
stored at −80°C until sequencing. Other than these alterations, the 
manufacturer's protocol was followed exactly.

2.4  |  RRBS sequencing, quality 
control, and alignment

RRBS libraries were assessed for concentration and fragment 
size distribution on a Fragment analyser (Advanced Analytical 

Technologies, Inc.) at the Georgia Genomics and Bioinformatics 
Core at the University of Georgia. Libraries were then pooled and 
sequenced single-end for 100 cycles on the Illumina NextSeq 2000 
with 20% PhiX control added. Two library preparations for each 
sample were sequenced across five high-output flow cells and ap-
proximately 400 million reads from each flow cell were generated. 
The quality of the resulting reads was assessed using FastQC (ver-
sion 0.11.5; Andrews, 2010). Reads were trimmed using TrimGalore! 
(version 0.4.5) to remove adapter sequences and low-quality reads 
(Phred score < 25), using the –rrbs option for RRBS data. Trimmed 
reads were concatenated into a single file and aligned to a bisulphite 
converted index of the loblolly genome (Ptaeda2.0) using Bismark 
(version 0.20.0) (Krueger & Andrews,  2011) allowing for one mis-
match (option n-1). The subsequent alignments were sorted and in-
dexed using SAMtools (version 0.1.19) (Li et al., 2009).

2.5  |  File processing

The resulting Bam files were analysed using the methylKit pack-
age (Akalin et al.,  2012) in R (version 4.0.5) (2021). An average of 
18,177,435 (± 1,342,074) reads comprised each Bam file, and cy-
tosines from each individual were divided into CpG, CHG, or CHH 
contexts using the read. context parameter in the processBis-
markAln function of methylKit. To broadly assess age-associated 
DNA-methylation, while also developing an epigenetic clock, we 
filtered our data using two approaches. In the first approach, we fil-
tered out cytosines covered by <5x reads and not represented in 
<80% of samples. To ensure comparability across CpG, CHG, and 
CHH contexts, cytosines on opposite strands were not merged 
(destrand  =  FALSE). This data set is considered our “exploratory” 
data set, in which general age-associated patterns could be resolved. 
In the second approach, we increased coverage requirements (≥10x) 
to yield a data set that could be used to construct epigenetic age 
predictors.

2.6  |  Exploratory data set

The resulting exploratory data set was analysed using the files gen-
erated for CpG, CHG, and CHH cytosine-methylation contexts. 
We filtered out cytosines displaying zero or near-zero variance in 
methylation status across samples using the nearZeroVar func-
tion from the Classification And Regression Training (caret) pack-
age (Kuhn, 2015) in R. Following filtering of invariant cytosines, we 
performed Spearman correlations between the methylation status 
of each cytosine and chronological age using the corr.test function 
from the psych package (Revelle, 2019) in R. Given the exploratory 
nature of the downstream analyses, we considered cytosines with 
an absolute correlation coefficient greater than 0.5 (R > |.5|) as being 
“age-associated”, and those with p-values less than .05 (p < .05) fol-
lowing an FDR correction for multiple comparisons as “significantly 
correlated” with age.
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To assess genomic characteristics of age-associated and signifi-
cantly correlated CpG, CHG, and CHH cytosines, we classified the 
genomic locations of all covered cytosines according to genomic 
context within the P.  taeda genome using the GenomicRanges 
package (Lawrence et al.,  2013). We first used CpG plot (Madeira 
et al., 2019) to identify CpG islands (CGIs; parameters: widow = 100, 
min len = 200, minoe = 0.6, minpc = 50). We then used CGI coor-
dinates to generate coordinates for shore regions (± 2000 bp from 
CGIs), and shelf regions (± 2000–4000 bp from CGIs) using Bedtools 
and Samtools (Li et al., 2009; Quinlan & Hall, 2010). All remaining 
sites not falling in island, shore, or shelf regions were characterized 
as open sea regions. Enrichment above background within each 
methylation context was performed with binomial tests using all 
cytosines following invariant filtering within each context (21,566, 
25,501, and 33,151 CpG, CHG, and CHH cytosines, respectively) as 
the background levels. To identify genes in close proximity to cy-
tosines according to age-associated methylation patterns, we per-
formed BLAST searches on 400 bp regions (200 bp upstream and 
200 bp downstream) centered around each of the 35 cytosines from 
CpG and CHG contexts with the greatest correlations with age.

2.7  |  Clock data set

Cytosine methylation in CHH contexts is highly variable among 
plants (Bartels et al., 2018) and is subject to elevated measurement 
variation when compared to CHG and CpG-methylation (How-Kit 
et al., 2017). Thus, whereas much larger sample sizes are probably 
required to thoroughly assess the associations of CHH-methylation 
with ageing, our exploratory analyses indicated that the methylation 
status of CHH cytosines was not associated with age and we only 
generated epigenetic clocks using CpG and CHG cytosines. We first 
removed any invariant sites using the nearZeroVar function from 
the caret package (Kuhn, 2015) and performed imputation on miss-
ing data using a K-nearest neighbour (KNN) approach in the impute 
package (Hastie et al., 2021) in R. We set k = 2 as each age group 
among our samples was only represented by a maximum of three 
samples.

2.8  |  Elastic net clocks

We trained elastic net models for CpG and CHG-methylated cy-
tosines using the glmnet package (Friedman et al., 2010) in R. We 
used an elastic net penalized regression model (alpha  =  0.5, fam-
ily =  gaussian) to select CpG- and CHG-methylated cytosines and 
assign penalties to individual model coefficients using the subset of 
CpG-loci and CHG-loci. We constructed elastic net models utilizing 
a leave one out cross validation (LOOCV) approach to evaluate age-
related methylation patterns in P.  taeda. This approach constructs 
epigenetic clocks for all samples, while leaving out one sample and 
predicting its age. This process is repeated until each tree has been 
left out and predicted ages for each tree are then assessed. To 

further assess the influence of the proportion and combinations of 
individual samples represented in the training and test sets on clock 
performance, we performed k-fold cross validations (k = 100) using 
training sets of randomly chosen trees (12–18 trees per training set) 
and applied attendant models to remaining trees, which comprised 
the test set (Appendix  S1 and Figure  S1). As results from k-fold 
validation steps indicated that models tended to become overfit to 
training sets as the proportion of samples used decreased (p < 2e−16), 
we split our data by randomly choosing three individuals for our test 
set (ages: 10, 19, and 55), and used the remaining individuals (n = 18) 
to construct elastic net regularized clocks.

When constructing our elastic net clocks, we used a LOOCV ap-
proach (nfold = 18) to select the optimal lambda value (resulting in 
minimum mean error) for the training set model (n = 18 samples). 
We used the resulting model trained on trees from our training set 
to then predict ages of the trees in our test set. Following the gen-
eration of our elastic net epigenetic clocks, we performed BLAST 
searches of 400 bp regions centered around each clock cytosine and 
used GenomicRanges to determine the genomic contexts for these 
sites (genes and CpG islands, shores, shelves, or open seas).

2.9  |  Pearson clocks

Bertucci et al.  (2021) demonstrated that epigenetic clocks con-
structed using elastic net approaches on small sample sizes may be 
overfit, and linear models constructed using cytosines for which 
the relationship between methylation status and age is greatest 
(assessed with Pearson correlation tests) have the potential to out-
perform elastic net models. Therefore, we performed Pearson cor-
relations on all cytosines represented across samples and identified 
the top five and 10 cytosines with the greatest Pearson correlation 
with age (R > |.5|) from our training set using the corr.test function 
(using FDR correction, alpha  =  .05) from the psych package. We 
generated our linear models using the lm function in R, and then 
used them to predict the ages of the individuals in our test data set. 
Following the generation of our linear model epigenetic clocks, we 
performed BLAST searches of 400 bp regions centered around clock 
cytosines and used GenomicRanges to determine genomic context 
(genes and CpG islands, shores, shelves, or open seas).

To evaluate performance of our elastic net and Pearson clocks 
and to compare whether methylation context (CpG, CHG, or 
CpG + CHG) had an effect on age predictions, we used multiple 
regression to compare the mean absolute errors (MAE) generated 
when using each clock to predict ages of trees from our test set. We 
used clock type (elastic net, Pearson (5), or Pearson (10)) and meth-
ylation type (CpG, CHG, or CpG + CHG) as factors and chronologi-
cal age as a covariate in our model and corrected resulting p-values 
using Bonferroni correction for multiple comparisons. Overfit of 
each clock to our training set was evaluated by comparing the MAE 
for training and test sets from each clock using t-tests. Additionally, 
we also evaluated how often specific cytosines were selected in 
our models through further k-fold cross validation methods. Setting 
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k  =  100, we constructed additional separate elastic net models 
(n  =  100) trained on randomly chosen trees from our sample set 
(n  =  18 trees per each training set), which generated additional 
unique lists (n = 100) of sites used to predict age in P.  taeda. This 
frequency measure is referred to as robustness through the remain-
der of the manuscript. The robustness of each of the sites used in 
models reported in this manuscript was evaluated by obtaining the 
frequency at which each of our model sites were found among each 
of our additional k = 100 clock site lists.

3  |  RESULTS

3.1  |  Characterizing age-related cytosine 
methylation

Among the CpGs analysed, 533 (2.47%) displayed age-associated 
methylation, with 207 CpGs having positive correlations (max 
R  =  .84) and 326 having negative correlations (min R  =  −.79) 
(Figure 1). Following FDR (alpha = .05) correction for multiple com-
parisons, 10 CpGs (9 negative and 1 positive) showed significant cor-
relations with age. When examining locations of our age-associated 
cytosines with respect to genomic contexts, CpG-methylated cy-
tosines were enriched in island (p  =  4.85e−10) and shore regions 
(p =  .038), while being depleted in shelf (p = 9e−04) and open-sea 
regions (p  =  2.20e−06) (Figure  2). Among the age-associated CpG-
methylated sites found in islands, many became hypomethylated 
with age (Table 1). Whereas this pattern was also observed for CpGs 
in shore and open-seas, CpGs in shelf regions were more evenly split 
between hypo- and hypermethylation with increasing age. Malate 
dehydrogenase (mdh), as well as 18S and 26S ribosomal genes of 
related pine species, were among the genes our methylated CpG-
containing 400 bp regions mapped to (Table S1).

For CHG-methylation, 869 cytosines (3.41%) were age associ-
ated, with 350 displaying positive correlations (max R = .87) and 519 
negatively correlated with age (min R  =  −.89; Figure  1). Following 

FDR corrections, 70 of these 869 age-associated sites (60 hypometh-
ylated and 10 hypermethylated) showed significant (p < .05) correla-
tions with age. Compared to background levels, age-associated CHG 
cytosines were enriched in island regions (p = 3.62e−05) and were 
depleted in shores (p  =  1.3e−03) (Figure  2). The majority of CHG-
methylated cytosines were hypomethylated with age, regardless of 
genomic context (Table 1). One of the top 35 CHG age-associated 
cytosine sites mapped to an apparent homologue of mdh and be-
came hypermethylated with age (Table S2).

Within CHH-methylation contexts, 308 (0.093%) cytosines 
were found to be age-associated, with 187 displaying a positive 
correlation with age (max R = 76) and 121 negatively correlated to 
age (min R = −.71; Figure 1). However, following FDR corrections, 
no cytosines were significantly (p < .05) correlated with ageing, and 
compared to background levels, there were no differences in the 
distributions of age-associated CHH-methylated cytosines based on 
genomic context (p > .05). CHH-methylated cytosines found in island 
regions showed a trend of being mostly hypermethylated (67%) with 
age (Table 1), while CHHs found in shore regions were mostly hy-
pomethylated (59%) with age. Shelf-region CHHs were more evenly 
split between hypo- and hypermethylation with age (48% vs. 52%), 
while most of the open-sea region CHH cytosines showed hyper-
methylation with age (63%) (Figure 2).

3.2  |  Construction of epigenetic clocks capable of 
predicting age

LOOCV approaches incorporating all individuals resulted in a large 
MAE (17.44 ± 3.77 years) of predicted ages and poor correlations 
to chronological ages (R2  =  .23), with age estimates of the oldest 
trees in our sampling set (ages 82, 97, and 119) displaying the largest 
discordance between chronological and epigenetic age (Figure S2). 
We then reran the LOOCV without the three oldest individuals, 
which yielded a MAE of 6.77 (± 1.20), and predicted ages showed 
a higher correlation with chronological age (R2  =  0.85; Figure  3). 

F I G U R E  1  Histograms displaying the distribution of spearman correlation coefficients of cytosine methylation status with age following 
filtering of invariant sites across CpG, CHG, and CHH-methylation contexts from 24 loblolly pine trees of differing ages. (a) of 21,567 CpGs 
analysed, 533 (2.5%) showed correlations between methylation status and age of R > |.5|. (b) of 25,501 CHGs analysed, 869 (3.4%) displayed 
correlations between methylation status and age of R > |.5|. (c) of 33,151 CHHs analysed, 308 (0.93%) showed correlations between age and 
methylation status of R > |.5|.

(a) (b) (c)
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Subsequently, epigenetic age predictors were constructed using 
elastic net regularized regression approaches using either CpG-
methylation, CHG-methylation, or a combination of CpG and 
CHG-methylation (Figure  4). All three elastic net clocks predicted 
ages of trees from our training set within 0.48 years, and predicted 

ages were highly correlated with chronological ages for these trees 
(R2 = 0.99) (Table 2). However, the ability of these models to pre-
dict chronological ages of trees in the test set was slightly lower as 
R2 values ranged from 0.75 to 0.97, with the CpG model (Table S3) 
being outperformed by the CHG (Table S4) and the combined CpG 
and CHG model (Table S5).

In addition to our elastic net models, we constructed epigenetic 
clocks for each methylation context (CpG, CHG, and CpG + CHG) 
separately using cytosines with the greatest Pearson correlation co-
efficients to chronological age (Figure 5). When the top five Pearson 
age-correlated cytosines were selected, training set ages were 
predicted within 5.89 years and were highly correlated to chrono-
logical age (R2 = 0.98 to 0.99) (Table 3, Figure 5). As expected, the 
performance on test sets was somewhat lower, with MAE ranging 
from 12.37 years for the CpG clock and 4.06 years for the CHG clock 
(Figure 5). We then constructed models using the top 10 Pearson 
age-corelated cytosines. Relative to the models using the top five 
correlated cytosines, these models performed better on the train-
ing set (R2 = 0.89 to 0.99); however, performance suffered on the 
test set, with R2 values ranging from 0.53 when using only CHG-
methylated cytosines to 0.75 when using CpG-methylated cytosines 
(Table  3). For annotations of CpG, CHG, and combined CpG and 
CHG cytosines from Pearson correlation models, see Tables S6–S8.

When comparing predictive performance among our elastic net 
and Pearson clocks, MAE of predicted ages for trees from our test 
set ranged from 4.06 to 36.44 years (1.47%–13.25% of the total 
lifespan for P. taeda). There was no effect of clock type (elastic net or 
Pearson) on MAE values of predicted ages for trees from our test set 
(p > .05). To assess the potential overfit of our models, we compared 
the MAE of the training sets to those of test sets. Although perfor-
mance was generally lower for test sets, our statistical comparison 
indicated that they were not significantly overfit to our training set 
(p > .05) (Tables 2 and 3). When comparing how robust specific cy-
tosines used among our models were at predicting age in P. taeda, 
the average robustness of sites used in our models was greater for 
our Pearson models that included the 5 highest age-correlated sites 
compared to the 10 highest age-correlated sites (p  =  4.380e−06), 
which was also the case when comparing these models to our elastic 
net models (p = 8.580e−06). Clock type (CpG, CHG, or CpG combined 
with CHG) had no effect on robustness (p > .05).

We next used BLAST to assess if clock cytosines were proximal 
to specific genes. Among the known genes a few of our loci mapped 
to were mdh, NADH dehydrogenase, and rRNA (18S and 26S). Loci 
that mapped to mdh and rRNA genes were found in both CpG and 
CHG contexts, while loci mapping to NADH dehydrogenase were 
found only within the CpG context. The loci mapping to these genes 
were distributed among varying genomic contexts (islands, shores, 
shelves, and open seas). Both mdh and NADH dehydrogenase sites 
became hypermethylated with age, and sites mapping to rRNA be-
came hypomethylated with age (similar to patterns we observed in 
our exploratory data set). Within our combined CpG + CHG elastic 
net clock six of 38 cytosines returned hits based on homology to 
mdh and rRNA, all of which were CpG-methylated (Table S7). The 

F I G U R E  2  Enrichment and depletion of age-related DNA 
methylation within genomic regions with varying CpG densities. 
Cytosines for which methylation status was associated with age 
(R > |0.5|) were compared against all RBSS-captured cytosines 
(background). Darker green shading indicates proportion of 
cytosines for which methylation decreased with age and lighter 
green shading indicates cytosines for which methylation increased 
with age. (a) Age-associated CpG-methylation was enriched in CpG 
island and shore regions and were depleted in CpG shelf and open-
sea regions. (b) Age-associated CHG-methylation was enriched 
in CpG islands and depleted in shore regions. (c) There were no 
differences in the distributions of age-associated CHH-methylated 
cytosines compared to background CHH-methylated cytosine 
levels (asterisks indicate p < .05).

(a)

(b)

(c)
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CpG cytosine that mapped to mdh was found in a shore region, while 
cytosines in regions mapping to rRNA were found in shore and open 
sea regions. For annotations and robustness of cytosines at predict-
ing age from CpG and CHG clocks, see Tables S3–S8.

4  |  DISCUSSION

We demonstrate the use of methylation patterns to generate epi-
genetic clocks for P.  taeda. These clocks are capable of predicting 
chronological ages within ~6% of the maximum lifespan (275 years) 
of this species, although predicted ages from clocks utilizing CHG-
methylated cytosines were more slightly more correlated with 
chronological age compared to those using CpG-methylated cy-
tosines only. Our study shares similarities to that reported by 
Shahryary et al. (2020) in that both make use of age-related meth-
ylation patterns to predict chronological ages of trees; however; as 
described in the review by Yao et al.  (2021), there are key differ-
ences in the methodological approaches and interpretations of our 
studies. Shahryary et al. (2020) leveraged a novel software program 
(AlphaBeta) that generated a model capable of accurately predicting 
whole tree chronological age by estimating divergence times of epi-
mutations among loci fron leaf methylomes collected from differing 
branches of known chronlogocial age from an individual Poplar tree 
(Populus trichocarpa). The approach requires methylome divergence 

along with calibrated epimutation rates as input, and has so far 
only be applied to a single tree. By contrast, the epigenetic clocks 
described in our study were generated utilizing either elastic net 
penalized regression or correlation tests to select relatively fewer 
numbers of sites whose methylation status is highly correlated with 
age. The resulting models from this approach can then be utilized to 
perform age predictions for many individuals and potentially other 
species, as has been the case for other similarly constructed meth-
ylation clocks (Mammalian Methylation Consortium et al., 2021).

Although there was no effect of clock type on the MAE values 
of predicted ages for our test set trees, we found that models con-
structed with five sites for which methylation status was highly cor-
related with age (assessed by Pearson correlation coefficients) were 
more accurate when predicting age in P. taeda compared to models 
constructed with elastic net methods. Regarding methylation con-
text, although age-associated CpG and CHG-methylation patterns 
were both distributed across multiple genomic regions, we observed 
an enrichment of age-associated CpG-methylation within island and 
shore regions, and CHG-methylation in island regions. Within both 
methylation contexts, age-associated methylation mostly resulted in 
hypomethylation, regardless of genomic (island, shore, shelf, or open 
sea) context. In regard to potential functional implications, only CpG-
methylation has been previously associated with gene expression in 
P. taeda (Takuno et al., 2016). As increased CpG-methylation at pro-
moter sequences (commonly associated with CpG island regions) is 

Context Cytosine subset

Island 
cytosines

Shore 
cytosines

Shelf 
cytosines

Open Sea 
cytosines

− + − + − + − +

CpG Age-associated 111 14 56 35 7 9 152 149

Significantly 
correlated

2 0 2 1 0 0 4 1

CHG Age-associated 105 24 57 30 33 27 325 269

Significantly 
correlated

21 0 5 1 1 0 33 9

CHH Age-associated 7 14 20 14 11 12 84 147

TA B L E  1  Distributions of hypo- (−) and 
hypermethylated (+) cytosines with age 
among genomic regions

F I G U R E  3  Accuracy and precision of age predictions using elastic net models to predict chronological age for n = 21 Pinus taeda trees 
(ages 1–55 years) using a leave-one-out-cross-validation approach. (a) Predicted ages were highly correlated with chronological ages 
(R2 = .85, obtained from a regression of predicted age with chronological age). (b) Precision of predicted ages was assessed by comparing 
estimated age for each individual to their chronological age and is expressed as mean absolute error (MAE) in years.

(a) (b)
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associated with reduced expression of downstream genes (Gehring 
& Henikoff,  2007), hypomethylation at many island-region sites 
may indicate that expression of specific genes increases with age in 
P. taeda. In contrast to CpG-methylation, CHG-methylation is asso-
ciated with gene splicing (Chaudhary et al., 2021; Zhang et al., 2018). 

Alterations in CHG-methylation status can affect the proper splicing 
of genes (Chaudhary et al., 2021; Zhang et al., 2018) which can have 
deleterious consequences (Ong-Abdullah et al., 2015). When com-
paring age-related changes in methylation status among cytosines 
from both CpG and CHG contexts mapping to known genes in our 

F I G U R E  4  Elastic net models used 
to predict chronological age in Pinus 
taeda for both training and test subsets. 
Clock accuracy is measured by the 
Pearson's correlation coefficient and 
precision by the mean absolute error 
(MAE) (± standard error). (a) a total of 
34 CpGs out of 18,844 CpGs following 
invariant filtering were selected in our 
elastic net model. (b) a total of 35 CHGs 
out of 22,263 CHGs were selected 
and incorporated into the clock. (c) 
Combining CpG and CHG data sets, 
there were 41,107 cytosines following 
invariant filtering, with 38 incorporated 
into the clock. Values of individual data 
points represent the error between 
predicted ages from our models 
compared to chronological ages among 
test individuals, with positive values 
indicating overestimation and negative 
values indicating underestimation of 
chronological age.

(a)

(b)

(c)

TA B L E  2  Performance of elastic net models when predicting ages of trees from training and test sets

Elastic net models

Context
Number of 
initial sites

Number of 
filtered sites

Number of 
clock sites Train R2

Train MAE 
(years) Test R2

Test MAE 
(years)

Overfit 
t-test 
p-value

CpG 26,520 18,844 34 .999 0.483 (± 0.067) .75 16.20 (± 4.41) .95

CHG 30,728 22,263 35 .999 0.460 (± 0.074) .97 7.74 (± 5.79) .34

CpG + CHG 52,748 41,107 38 .999 0.477 (± 0.067) .97 8.32 (± 4.03) .19
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BLAST searches, gains and losses in methylation were consistent 
for sites that mapped to similar genes for both contexts. Compared 
to CpG and CHG-methylation, CHH-methylation in plants has 

largely been associated with transposable element silencing (Dubin 
et al., 2015), and rates of epimutations in transposable element re-
gions are generally low (van der Graaf et al., 2015). Thus, the stability 

F I G U R E  5  Pearson models 
incorporating the five cytosines with the 
strongest age-associated methylation 
patterns predict chronological ages in 
Pinus taeda for both training and test 
subsets for CpG, CHG, and combined 
(CpG + CHG) models. Clock accuracy is 
measured by the Pearson's correlation 
coefficient and precision by the mean 
absolute error (MAE) (± standard error). 
Values of individual datapoints represent 
the error between predicted ages from 
our models compared to chronological 
ages among our test individuals, with 
positive values indicating overestimation 
and negative values indicating 
underestimation of chronological age.

(a)

(b)

(c)

TA B L E  3  Performance of Pearson models when predicting ages of trees from training and test sets

Context
Number of 
initial sites

Number of 
filtered sites Train R2

Train MAE 
(years) Test R2 Test MAE (years)

Overfit t-
test p-value

Pearson model (5 cytosines)

CpG 26,520 18,844 .8 5.89 (± 1.30) .99 12.37 (± 7.05) .46

CHG 30,728 22,263 .94 3.09 (± 0.71) .98 4.06 (± 1.99) .68

CpG + CHG 52,748 41,107 .95 3.23 (± 0.61) .98 5.71 (± 0.79) .06

Pearson model (10 cytosines)

CpG 26,520 18,844 .89 4.49 (± 0.93) .75 36.44 (± 9.43) .08

CHG 30,728 22,263 .99 1.72 (± 0.32) .53 12.33 (± 6.65) .25

CpG + CHG 52,748 41,107 .97 1.93 (± 0.53) .69 8.76 (± 6.37) .4
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of CHH-methylation through development could explain the poor 
associations between CHH-methylation and ageing observed in the 
current study.

Although the majority of cytosines in our analyses did not map 
to annotated genes, the expression of critical genes involved in 
conserved molecular pathways that regulate life-history traits has 
been observed to influence multiple physiological processes (Flatt & 
Partridge, 2018; Partridge & Gems, 2002; Perls et al., 2002). Among 
the genes proximal to several of our age-associated CpG and CHG-
methylated sites in the exploratory and clock data sets were malate 
dehydrogenase (mdh), NADH dehydrogenase, and 18S and 26S rRNA. 
The expression of mdh, a multisubunit metabolic enzyme in many or-
ganisms including plants (Longo & Scandalios, 1969; Yudina, 2012), 
has been linked to respiration and CO2 assimilation rates, and normal 
plant growth and development (Tomaz et al., 2010). Expression has 
been shown to increase with age, which is postulated to maintain 
aerobic metabolism (Sharma & Patnaik,  1982). NADH dehydroge-
nase, another important metabolic enzyme involved in the electron 
transport chain (Weiss et al.,  1992), is also associated with plant 
growth and development (Sweetman et al.,  2019). Proper subunit 
splicing of this enzyme is essential for its function (Bonen,  2008; 
Malek & Knoop, 1998), with defective splicing leading to decreased 
activity of the electron transport chain, slower growth, and de-
layed germination and phenotypic development (Hsieh et al., 2015). 
Expression and activity of rRNA have been shown to increase with 
increased metabolic demands (Russell & Zomerdijk, 2005), also af-
fecting growth, cell adaptation, stress responses, and cell prolifera-
tion (Russell & Zomerdijk, 2005). Increased methylation near rRNA 
promoter regions greatly reduces expression (Ghoshal et al., 2004; 
Zatsepina et al.,  1993); therefore, the loss of methylation we ob-
served for cytosines proximal to 18S and 26S rRNA genes in island 
and shore regions coupled with the methylation gains we observed 
for CpG-methylated cytosines near mdh and NADH dehydrogenase 
in shore and open sea regions may indicate expression of these 
genes increases to match increasing metabolic demands as P. taeda 
trees age. If so, an increased requirement for proper splicing of 
NADH and mdh would be needed (Gendrel et al., 2002; Jeddeloh 
et al.,  1999), which might explain the increased CHG-methylation 
near these genes with age. Thus, taken together with current func-
tional understanding of the roles of methylation patterns in plants, 
our findings may indicate a possible link between epigenetic ageing 
and increases in gene expression and splicing variation with age, al-
though these predictions require further evaluation.

Beyond their ability to predict chronological age, the epigene-
tic clocks developed here are likely to find utility in forest manage-
ment applications and addressing questions surrounding the basic 
biology of ageing. Currently, stem coring is the most common and 
reliable method for determination of tree chronological age (Villalba 
& Veblen, 1997). While not entirely destructive, stem coring does 
introduce a wound into a tree stem that could potentially allow 
pest or pathogen access (Tsen et al., 2016). Thus, the chronological 
age estimation methods described in our study offer a potentially 
less invasive approach for tree age determination. For example, 

cambium can be collected by removing bark and not actually pene-
trating the tree xylem, which would allow for faster repair. If meth-
ylation patterns are similar between cambium and leaves, then this 
approach would offer an even less invasive approach for predicting 
their chronological age. Unlike the other trees in our data set for 
which chronological age was determined using planting records, age 
estimates for the three oldest trees were estimated based solely 
on coring techniques. Ultimately, these trees showed the high-
est discordance between their epigenetic age and that estimated 
using coring techniques. As tree ring formation varies with growth 
rates and fluctuating environmental conditions (Gonzalez-Benecke 
et al., 2015; Jayawickrama et al., 1997; Wong & Lertzman, 2001), 
erroneous age estimations of up to several decades using these 
methods may occur (Wong & Lertzman, 2001). However, it is also 
possible that the epigenetic clocks developed in this study are not 
able to accurately age older trees.

The directionality and magnitude of epigenetic-to-chronological 
age discordance in humans and other vertebrates correlates to vari-
ation in life history traits (Anderson et al., 2021; Hamlat et al., 2021; 
Ryan, 2021). Variation in life history traits can have consequences 
for stand productivity (Kellner & Swihart, 2016; Schulze, 2003). If 
epigenetic-to-chronological age discordance, especially in early 
life, is connected to variation in tree growth, productivity, wood 
quality, and/or responses to disturbances, epigenetic clocks might 
inform breeding programs and could be used in evaluating ef-
ficiencies of experimental manipulations to increase early-life 
growth and subsequent wood yield from managed P.  taeda stands 
(Baker & Langdon, 1990; Clason, 1989). Age-associated variation in 
DNA methylation patterns is also associated with species-specific 
lifespans in vertebrates (Mammalian Methylation Consortium 
et al., 2021). The findings presented here raise the possibility that 
age-related DNA methylation patterns might be used to estimate 
lifespan and yield insights into the underlying genetic and epigenetic 
determinants across different plant species.

A limitation of this study was the relatively small number of in-
dividual trees analysed. The P. taeda genome, like that of many tree 
species, is quite large (20 billion base pairs) (Neale et al., 2014). As a 
result, resolving patterns of genomic methylation are sequencing in-
tensive, and more cost-efficient technical approaches (e.g., amplicon 
sequencing, bait capture techniques) are probably needed if measures 
of epigenetic age are to be scaled to stand and population applica-
tions (Meek & Larson, 2019). Despite a low sample size, age predic-
tions from our methylation clocks were highly accurate, predicting 
similar MAE values as those for many vertebrate species (Bertucci 
et al., 2021; Bors et al., 2021; Lemaître et al., 2020; Meer et al., 2018; 
Stubbs et al.,  2017). Additionally, our Pearson clocks utilizing five 
highly age-correlated sites showed high robustness when predicting 
age in P. taeda, which may allow for a more targeted approach in fur-
ther studies seeking to quantify tree age through epigenetic signa-
tures. Regardless of these limitations, our study clearly demonstrates 
the relationship between DNA methylation and chronological age in a 
long-lived tree species and indicates that alterations in DNA methyla-
tion may be a universal aspect of ageing across the tree of life.
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