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Summary

� Understanding chromosome recombination behavior in polyploidy species is key to advanc-

ing genetic discoveries. In blueberry, a tetraploid species, the line of evidences about its

genetic behavior still remain poorly understood, owing to the inter-specific, and inter-ploidy

admixture of its genome and lack of in depth genome-wide inheritance and comparative

structural studies.
� Here we describe a new high-quality, phased, chromosome-scale genome of a diploid blue-

berry, clone W85. The genome was integrated with cytogenetics and high-density, genetic

maps representing six tetraploid blueberry cultivars, harboring different levels of wild genome

admixture, to uncover recombination behavior and structural genome divergence across tet-

raploid and wild diploid species.
� Analysis of chromosome inheritance and pairing demonstrated that tetraploid blueberry

behaves as an autotetraploid with tetrasomic inheritance. Comparative analysis demonstrated

the presence of a reciprocal, heterozygous, translocation spanning one homolog of chr-6 and

one of chr-10 in the cultivar Draper. The translocation affects pairing and recombination of

chromosomes 6 and 10. Besides the translocation detected in Draper, no other structural

genomic divergences were detected across tetraploid cultivars and highly inter-crossable wild

diploid species.
� These findings and resources will facilitate new genetic and comparative genomic studies in

Vaccinium and the development of genomic assisted selection strategy for this crop.

Introduction

Blueberries (Vaccinium spp.) are well-recognized as a rich source
of health-promoting phytochemicals, which have contributed to

a rapid increase in consumer demand and production over the
past two decades (Mengist et al., 2020a). Domesticated only c.
100 yr ago, tetraploid highbush (V. corymbosum; HB) is the most
widely grown blueberry, accounting for vast majority of the US
blueberry production (Mengist et al., 2020b). During the last
four decades, several HB cultivars have been released by incorpo-
rating traits associated with environmental adaptation from clo-
sely related wild diploid species (Retamales & Hancock, 2018).
As a result of these breeding efforts, HB are classified based on
chilling requirement and winter hardiness, into northern high-
bush (NHB) and southern highbush (SHB) blueberries.

*These authors contributed equally to this work.

We dedicate this article in Dr Chad Finn’s memory. Dr Chad Finn served as

a world-renowned blueberry breeder, who released numerous blueberry culti-

vars as part of the USDA-ARS and Oregon State University. As a passionate

geneticist and resourceful collaborator, Dr Finn made significant contribu-

tions to advance genetic discoveries in this crop. The work presented here rep-

resents an example of his collaborative contributions to the discipline.
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Development of these SHB and NHB varieties contributed to
expansion of the geographic area of production of HB across the
US and globally.

Development of marker-assisted breeding (MAB) capacity to
accelerate the selection process and ‘pyramid’ multiple traits are
primary goals of blueberry breeding programs (Retamales &
Hancock, 2018). To that end, in recent years genomic resources
and genetic studies in blueberry have expanded. The first blue-
berry reference genome was developed using a wild diploid blue-
berry species, V. caesariense (clone W85-20) a.k.a diploid
V. corymbosum, since it is morphologically similar to HB (Brued-
erle & Vorsa, 1994; Gupta et al., 2015). Recently, a phased
assembly of a tetraploid NHB cultivar Draper was released and is
being used as a reference for multiple genetic and genomic stud-
ies (Colle et al., 2019). Despite these advances, the contiguity of
the V. caesariense and Draper genome assemblies was still rela-
tively low (contig N50 < 39 kb), and the V. caesariense genome
was not assembled at the chromosome (chr) level.

Understanding the chromosome recombination behavior (dis-
omic or polysomic inheritance) of polyploid species like HB is
another critical step to optimize genetic studies and improve the
efficiency of MAB. In HB, studies based on the segregation ratios
of certain traits and a small number of molecular markers sug-
gested that blueberry behaves as an autotetraploid (Qu & Han-
cock, 2001). However, some early cytogenetic studies suggested
allopolyploid behavior (Jelenkovic & Hough, 1970). Recently,
comparative genomic analysis in Draper unveiled potential differ-
ence among homologous chromosomes and signature of subge-
nome differentiation suggesting possible allopolyploid origin
(Colle et al., 2019). Given the complex inter-specific, and inter-
ploidy genetic admixture existing within this taxon, it is possible
that full or partial allopolyploid genetic behavior could exist
among blueberry cultivars. New high-throughput genotyping
and genomic resources developed for blueberry, with new statisti-
cal methods to study polyploidy genetics, have opened new
opportunities to further address these questions. Despite these
advances, the question of whether blueberry behaves as a fully
autopolyploid, allopolyploid or a segmental allopolyploid
remains unsolved. Additionally, chromosomal structural differ-
ences in tetraploid blueberry and their impact on chromosome
inheritance remain to be assessed and verified.

To continue building upon recent advances in blueberry genet-
ics and genomics, here we developed and used a high-quality,
phased, chromosome-scale assembly of V. caesariense, cytogenetics
and genetic linkage maps to investigate HB polyploid recombina-
tion behavior, and conservation of chromosomal structural features
such as centromeric repeats and rearrangements, that can affect
chromosome pairing and recombination in tetraploid blueberry.

Materials and Methods

Plant material, sequencing and genome assembly

Vaccinium caesariense clone, W85-20 (referred as W85 hereafter),
was used for whole-genome sequencing (Supporting Informa-
tionMethods S1). Sequences included 53 Gb PacBio data (809

physical coverage), 13 Gb (41.79 physical coverage) and 153 Gb
(469.59 physical coverage) Illumina sequences from the Chicago
and the Hi-C libraries, respectively (Table S1). In addition,
13.3 Gb PacBio Iso-Seq and 247 Gb Illumina sequencing data
representing transcripts from multiple tissues including leaf,
stem, flowers, flower buds and fruit tissues were generated
(Table S1).

A de novo assembly was developed using FALCON assembler
v.0.3.0 (Chin et al., 2016) and contigs were subsequently pol-
ished with PILON v.1.24 (Walker et al., 2014) using the Hi-C and
Chicago Illumina short reads as input (Methods S2). Chicago
and Hi-C data were used for phasing the genome using FALCON

PHASE v.2.0 (Kronenberg et al., 2021). The resulting haplotype-
phased contigs were used with the Hi-C and Chicago sequences
for scaffolding with the HighRise pipeline (Putnam et al., 2016),
independently for each haplotype. A linkage map representing
the W85 genome, including 17 486 single-nucleotide polymor-
phism (SNP) markers (Qi et al., 2021), was used to anchor the
genome. Marker sequences were aligned against the W85 phased
assemblies using BWA-ALN v.0.7.17 (default parameters) (Li &
Durbin, 2009). During this process, the Hi-C and Chicago data
interaction heat map in conjunction with the linkage map were
used to identify and correct chimeric regions (Methods S2).

Repetitive sequence annotation and analysis

The repeat library and its annotation were built using EDTA

v.1.9.7 (Ou et al., 2019), which performed a de novo transpos-
able element (TE) annotation by integrating structure- and
homology-based approaches. Default parameters were used in all
cases except for the usage of the genome’s CDS FASTA to aid in
annotation, and the –sensitive 1, parameter that enables the use
of REPEATMODELER v.2.0 to identify any remaining TEs. The
quality of the W85 assembly in terms of contiguity of repeat
space was assessed using the LAI v.2.9 (Ou et al., 2018) deployed
in the LTR_RETRIEVER v.2.9 (Ou & Jiang, 2018) (Methods S3).

One million random read pairs of W85 (NCBI accession no.
SRR837868) were analyzed using TAREAN (Nov�ak et al., 2017) to
identify potential satellite DNA sequences (Methods S3).

Gene prediction and annotation

Gene prediction was performed using MAKER v.3.01.03
(Cantarel et al., 2008) by integrating ab initio gene prediction
and evidence-based predictions and was performed indepen-
dently on the two haplotypes. Illumina reads from transcriptome
data (Table S1) were mapped to the W85 p0 and p1 assemblies
using STAR v.2.7.10a (Dobin et al., 2012), and STRINGTIE (Pertea
et al., 2016). The PACBIO ISO-SEQ reads were processed using the
ISOSEQ3 pipeline (https://github.com/PacificBiosciences/IsoSeq).
High quality Iso-Seq sequences were mapped against the W85
genome assembly using GMAP v.2021-12-17 (Wu & Watan-
abe, 2005). The resulting GFF3 files were used for gene model
prediction and correction of the ab initio predictions.

The repeat library was used as the input for MAKER to mask
repetitive sequences. Ab initio gene prediction was performed
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using AUGUSTUS v.2.5.5 (Stanke & Waack, 2003; Stanke
et al., 2006) and SNAP v.2006-07-28 (Korf, 2004), that were
trained using sets of high-quality predicted genes, high-quality
Iso-Seq full-length transcripts and Illumina data (Table S1).
MAKER was then run-in empirical mode with three iterations to
identify the best gene models by integrating ab initio predictions
and experimental evidence.

The quality and completeness of the predicted gene models
were assessed using BUSCO v.5.3.2 (Manni et al., 2021) plant
dataset (odb10). The putative function of the predicted genes
was annotated using GenBank nonredundant (nr) protein and
InterPro databases. BLASTx was used to compare the predicted
coding sequences (CDS) (e-value ≤ 1e�10) with the nr database
(Sayers et al., 2019). BLAST2GO v.1.4.11 (G€otz et al., 2008)
was used to annotate the gene ontology (GO) terms of genes.
The protein domains were annotated using INTERPROSCAN
v.5.32.71.0 (Jones et al., 2014) based on all available protein
databases. Resistance genes (R-genes) were identified using
DRAGO2 (Osuna-Cruz et al., 2018). INFERNAL v.1.1.2 (Nawrocki
et al., 2009) software was used for the in silico prediction of
microRNAs (miRNAs) and small nuclear RNAs (snRNAs) in the
assembled genome, implementing the cmsearch function against
Rfam database (v.13.0).

Haplotype comparison and diversity analysis

To identify structural variants (SVs), SNPs and insertion/deletion
polymorphism (indels) between the two haplotypes, syntenic
blocks were identified using MCSCANX v.1.1.11 (Wang
et al., 2012). The homologous syntenic pairs were identified
based on the following criteria: (1) paired regions must be on
homologous haplotypes, (2) the length of each homologous hap-
lotype should be less than three times the length of its counter-
part and (3) aligned regions must cover over 50% of the whole
region. One gene and its best homologous gene on the comple-
mentary haplotype were considered as homologous gene pair.

Single-nucleotide polymorphisms and indels between homolo-
gous syntenic blocks were identified using LASTZ software
(Harris, 2007) with the parameters --chain --format = diff
--matchcount = 3000 --rdotplot --strand = plus/minus --ambiguous
= n, and annotated using SNPEFF v.5.1 (Cingolani et al., 2012).

For SVs identification, the two haplotypes of a chromosome
were aligned using MUMMER4 (Marc�ais et al., 2018) with show-
diff function. Present Absent Variation (PAV) genes were identi-
fied as those genes located within as syntenic region, lacking a
homolog at the complementary haplotype, while its surrounding
genes had homologs that were collinear between two haplotypes.
Gene enrichment analysis of PAV genes were analyzed using
AGRIGO v.2.0 (Tian et al., 2017) using a Fisher test and false dis-
covery rate (FDR) < 0.05 and custom annotation.

Linkage map construction

Three mapping populations named DS9 J (n = 196), R9 A
(n = 346) and D9 B (n = 168), were used for linkage map con-
struction. Draper (D) and Draper Selection-44392 (hereafter

DS) are NHB selections/cultivars, whereas Arlen (A), Jewel (J),
Biloxi (B) and Reveille (R) are SHB cultivars with 10–60% of
their genome represented by wild species (Methods S4). Total
genomic DNA from individual plants was extracted using CTAB
method (Panta et al., 2004). For DS9 J and R9 A genotyping
was performed using a sequence capture technology at RAPiD
Genomics (Gainesville, FL, USA) targeting 31 063, and 10 000
genomic regions (probes), respectively. For D9 B, genotyping
was performed using Genotyping by Sequencing (GBS) (Meth-
ods S4).

High-quality reads were mapped against the W85_v2 p0
assembly using BWA-ALIGNER v.0.7.17 (Li & Durbin, 2009).
Uniquely mapped reads were used to call SNPs. For R9 A and
DS9 J, SNP calling was carried out using FREEBAYES v.1.3.4
(Garrison & Marth, 2012), and filtered with the following crite-
ria: (1) minimum mapping quality of 20; (2) mean depth of cov-
erage of 50; (3) maximum missing data of 10% across SNPs and
individuals; (4) only biallelic loci using VCFTOOLS v.0.1.16
(Danecek et al., 2011). For D9 B, SNP calling was performed
using the TASSEL-GBS PIPELINE v.2 (Glaubitz et al., 2014), with a
mean read depth of eight, maximum missing data of 20% across
SNPs and only biallelic loci. The tetraploid allele dosages were
called based on the read depth counts and ‘F1’ model using UPDOG

R package v.2.1.1 (Gerard et al., 2018). The genotypes were
coded as 0 for nulliplex (AAAA), 1 for simplex (AAAB), 2 for
duplex (AABB), 3 for triplex (ABBB), and 4 for quadruplex
(BBBB).

The linkage maps were constructed per parent using POLY-

MAPR v.1.1.2 (Bourke et al., 2018) (Methods S4). The markers
representing each set of four homologous chromosomes were
combined to develop an integrated linkage map. Meiotic recom-
bination rate was estimated using loess smoothing with a span of
0.4 using MAREYMAP v.1.3.6 (Rezvoy et al., 2007).

Estimation of double reduction, quadrivalent and
preferential chromosome pairing

The rate of double reduction (DR) and quadrivalent chromo-
some pairing was estimated using TETRAORIGIN software (Zheng
et al., 2016), implemented in MATHEMATICA v.11 (Wolfram
Research Inc., Champaign, IL, USA). For a given marker, the
probability of DR rate was averaged over the number of offspring
on parental meiosis. The quadrivalent chromosome pairing was
calculated by dividing the number of offspring with the quadriva-
lent pairing by the total number of offspring in the mapping pop-
ulation.

Preferential pairing was tested based on linked simplex9 nulli-
plex (S9N) markers in repulsion phase using POLYMAPR
(Bourke et al., 2018). The analysis was performed setting a mini-
mum distance between markers at 0.25, 0.5 and 1 cM. This anal-
ysis established the basis of a binomial test (H0:rdisom ≥ 1/3),
and corrected for multiple testing using the FDR with a = 0.05
(Benjamini & Hochberg, 1995).

TETRAORIGIN (Zheng et al., 2016) was used to estimate the
most likely bivalent pairing in each individual (Methods S5). To
estimate preferential pairing using a bivalent pairing model, both
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bivalentPhasing and bivalentDecoding were set to ‘True’. A v2

test was performed on the counts of each class on parental basis
to examine deviations from one-third (P < 0.001) as previously
described (Bourke et al., 2017).

The meiotic pairing behavior of the 49 varieties Arlen, DS,
Draper and Jewel was also evaluated cytologically, by examining
at least 40 pollen mother cells at diakinesis-metaphase I in each
variety.

Fluorescence in situ hybridization (FISH) analysis

Selected satellites of W85 were analyzed by fluorescence in situ
hybridization (FISH) using young flower buds of the W85,
V. darrowii and of the tetraploids DS, Draper and Jewel, accord-
ing to published procedures (Iovene et al., 2008). Oligonu-
cleotide probes and PCR primers were designed using the
consensus sequences of the repeats (Methods S6).

Results

Phased genome assembly revealed high allelic diversity

The W85_v2 assembled haplotypes span 703Mb (phase 0, p0)
and 643Mb (phase 1, p1), accounting for 108% and 99% of the
estimated haploid genome size (651� 58Mb) (Costich
et al., 1993), and with a contig N50 length of 424 and 370 kb,
respectively (Tables 1, S2). The Hi-C and Chicago sequences
along with a W85 linkage map (Qi et al., 2021) were used to
anchor > 97.1% of both p0 and p1 assembled haplotypes, and to
correct chimeric sequences (Fig. S1; Tables S3, S4). After this
process, the linkage map was collinear to the 12 chromosomes of
each phase and the Hi-C heatmap showed a uniform distribution
of genomic interactions along the diagonal (Figs S2, S3).

Over 99.7% Illumina and PacBio Iso-Seq transcriptome
sequences aligned to the p0 and p1 assemblies, respectively
(Tables S5, S6). The BUSCO score was > 99% (Table S7) and the
long terminal repeat (LTR) assembly index (LAI) was 13.3,
which is within the range of high-quality assembly (Ou
et al., 2018). These results demonstrated that the W85_v2 gen-
ome assembly covers the majority of gene space and assembled
complex repetitive elements (Fig. 1).

In the two haplotypes, 34 895 (p0) and 33 183 (p1) genes were
predicted (Table S8) and > 97% were anchored to the 12 chro-
mosomes. Over 95% of conserved orthologous angiosperm genes
had a match with the predicted genes and > 97% were annotated
(Tables S7, S9, S10). Repetitive sequences accounted for 45.3%
of the genome (Table S11). The most abundant Class I TEs were
long terminal repeat retrotransposons (LTR-RTs), specifically the
superfamily LTR/Gypsy, followed by LTR/Copia, while Tc1/Mari-
ner DNA transposon was the most abundant class II TEs. Over-
all, the number and the structure of the predicted genes and
fraction of repetitive sequences were similar to those predicted in
the tetraploid Draper genome (32 139 genes/haplotype, 44.3%
repeats) (Colle et al., 2019) (Table S12).

Haplotype comparison identified 372 syntenic blocks with an
average intra-genomic diversity of 1.66%, (Fig. 2). Between

syntenic blocks, 3408 842 SNPs, 1188 547 indels, and 40 050
SVs (> 100 bp) were detected, and 358 and 75 SVs spanned
> 100 kb and 1Mb, respectively (Fig. S4; Table S13). Within
syntenic blocks, 21 458 genes pairs (62% of all predicted genes)
were identified as having syntenic orthologs on the two haplo-
types, and 6157 genes were PAV genes. Among homologous
pairs and PAV genes, 22 422 genes (52%) and 1521 genes (25%)
harbored polymorphisms with moderate (e.g. missense variant)
to high (e.g. stop gained) predicted impact effect on the protein
coding regions (Cingolani et al., 2012), respectively (Table S14).
PAV genes involved in defense and environmental adaption were
enriched (Fig. S5), with c. 13% being R-genes (Table S14).

Satellite repeat analysis identified a putative centromeric
repeat

Based on tandem repeat analysis using TAREAN (Nov�ak
et al., 2017), four potential satellites (named VacSat1/Sat61/
Sat218/Sat169), with different monomer length (from 101 to
480 bp), AT content (from > 80% to 45%) and genomic abun-
dance were characterized (Methods S1; Table S15).

VacSat1 and VacSat218, with consensus monomer of 147 and
101 bp, respectively, represent variants of the same repeat family.
Within PacBio reads, VacSat1 was organized in arrays of 147 bp
adjacent monomers (Table S15). Conversely, VacSat218 motif
occurred as few (< 5) monomers interspersed within VacSat1
arrays (Fig. S6). In silico and FISH mapping of VacSat1 and Vac-
Sat218 revealed their location in most W85 centromeric regions,

Table 1 Summary statistics for genome assembly and annotation.

Phase 0 Phase 1

Genome assembly
Estimated genome size (Mb)a 651� 58 651� 58
Assembled genome size (Mb) 703 643
Fraction of genome covered (%) 108 99

Scaftigs (contigs)
Number of sequences 3234 3212
N50 size (kb) 425 370
L50 (kb) 464 480
Maximum sequence length (kb) 2844 2509
Minimum sequence length (bp) 416 77

Scaffolds
Number of scaffold 273 270
N50 size (kb) 56 354 52 472
Maximum sequence length (kb) 66 558 60 760
Minimum sequence length (kb) 13.32 5.99
GC content (%) 35.81 37.48

Genome annotation
Repeat content (%) 45.3 45.3

Number of protein-coding genes 34 895 33 183
Average gene length (bp) 4524 4554
Average exon length (bp) 235 238
Average intron length (bp) 770 770
Average number of exons per gene 5.3 5.3

aGenome estimated based on diploid Vaccinium caesariense (New Jersey
Blueberry) (Costich et al., 1993) and calculated as described in Pellicer &
Leitch (2020).
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which also displayed low recombination rate and high density of
LTR Gypsy elements (Fig. 1a–h). At metaphase I, the hybridiza-
tion signals of VacSat1/Sat218 were detected at the polar oppo-
sites of the bivalent chromosomes (Fig. 1b–f). These results
indicated that most W85 centromeres are either directly associ-
ated with or immediately adjacent to VacSat1/Sat218 arrays.
VacSat1 generated stronger FISH signals than VacSat218, reflect-
ing their different abundance in the genome (Fig. S6). In addi-
tion, the intensity of VacSat1 FISH signals varied among
chromosomes, with stronger signals in about half of the cen-
tromeres.

One chromosome pair, devoid of VacSat1/Sat218 sequences
(Fig. 1a,i,j), was unambiguously identified as chr-6 because it car-
ries VacSat169 repeats at the end of the short arm (Fig. 1a,i,j).
Bioinformatic and FISH analysis indicated that the VacSat169

repeats co-localized with 18S-25S rDNA (Figs 1a,i,j, S7). Analy-
sis of PacBio reads revealed that VacSat169 is arranged in three
to four adjacent monomers located in the intergenic spacer, close
to the 50 end of the 18S rRNA (Fig. S7). As expected, the region
spanning VacSat169/rDNA on chr-6 has a low recombination
frequency (Fig. 1a) because the rDNA arrays are protected from
meiotic recombination to ensure genome stability over genera-
tions (Sims et al., 2019).

VacSat61 was a repeat family located interstitially on most
pseudomolecules with monomers of 235–238 bp and an underly-
ing pattern of 115–118 bp sub-monomers, suggesting the pres-
ence of a higher-order repeat (HOR) (Methods S3; Fig. S8).
FISH mapping of VacSat61 generated distinct signals on two to
four chromosomes and weak signals on the rest (Fig. S8), con-
firming that this repeat family is less abundant than VacSat1. No
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rDNA on the chromosomes of W85 (2n = 2x= 24) and Jewel (2n = 4x= 48). (b–d) Distribution of VacSat1 (b, red signals) and VacSat218 (c, green signals)
on meiotic metaphase I chromosomes (in blue) of W85; (d) image merged from (b) and (c). (e, f) Localization of VacSat1 (red) and VacSat169 (green,
arrow) on W85 meiotic metaphase I chromosomes (blue); (f) the chromosomes in (e) shown in gray scale to better visualize the location of VacSat1 on
stretched terminal regions of most bivalents. (g) Localization of VacSat1 (red) on W85 meiotic pachytene chromosomes; (h) pachytene chromosomes in (g)
shown in gray scale to enhance the visualization of the heterochromatic domains overlapped by VacSat1. Two chromosomes each had two adjacent Vac-
Sat1 signals separated by a short gap on unlabeled chromatin (asterisks). (i) Distribution of VacSat1 (red) and VacSat169 (green) on mitotic metaphase
chromosomes (blue) of W85; VacSat169 is located on two chromosomes lacking VacSat1 signals (arrows); (j) the same chromosome plate used in (i) hybri-
dized with 45S rDNA (red, arrows). (k) Localization of VacSat1 (red) and VacSat169 (green) on mitotic metaphase chromosomes of Jewel (2n = 4x= 48);
VacSat169 is located on four chromosomes lacking VacSat1 signals (arrows); (l) the same chromosome plate used in (k) hybridized with 45S rDNA (red,
arrows). Bar, 5 lm.
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clusters of telomeric repeats were detected by TAREAN. However,
FISH using a typical plant telomeric motif (TTTAGGG)n
labeled the ends of each W85 chromosome (Fig. S9). Overall, the
FISH pattern of these repeats is consistent with their predicted
location on the 12 pseudomolecules physical map, further sup-
porting the quality of the W85_v2 genome assembly.

Centromeric repeat VacSat1 is conserved across diploid and
tetraploid blueberry species

For comparison among highly inter-fertile species belonging to
Vaccinium section Cyanococcus, we evaluated the sequence diver-
sity and distribution of the VacSat1 repeats between diploid spe-
cies (V. darrowii and W85), and tetraploid HB cultivars, Draper
and Jewel. Bilberry (V. myrtillus), belonging to the section
V. myrtillus, was used as an outgroup.

The sequences of 300 random VacSat1 monomers from Dra-
per, W85, V. darrowii and bilberry genomes were aligned (Colle
et al., 2019; Wu et al., 2021). The monomers from the Draper,
V. darrowii and W85 shared high similarity (> 99%) and could
not be separated based on phylogenetic analysis (Fig. 3a,b). In
contrast, bilberry monomers clustered separately and had a lower

similarity (c. 97%) relative to W85, V. darrowii and Draper
monomers.

The FISH distribution of VacSat1 and VacSat169 in the tetra-
ploids Jewel and DS was comparable to that of W85. Overall, the
FISH signals in the tetraploids were twice as many as those observed
for W85 (Figs 1k,l, S10). A minor difference in DS was a weaker
VacSat169 signal on one chr-6 homolog compared to the others,
likely due to a lower amount of the repeat (Fig. S10a–c). Neverthe-
less, at metaphase I in both varieties, the four chromosomes with
VacSat169 signals formed either two bivalents or a single quadriva-
lents (see also earlier; Fig. S10). Similarly, in silico and FISH analysis
in V. darrowii highlighted a conserved and comparable distribution
of VacSat1 and VacSat169 (Fig. 3c). These results demonstrated
that VacSat1 is highly conserved among closely related species
belonging to the Vaccinium sectionCyanococcus.

Comparative analysis between W85 and tetraploid
genomes highlights a reciprocal translocation in the Draper
genome

For comparative structural analysis between the W85 and tetra-
ploid genomes, two high-density linkage maps were constructed

Fig. 2 Haplotype diversity in the Vaccinium caesarienseW85 genome. The central blue bars represent the two haplotypes of chromosome 1. Haplotype on
the left represent the phase 0 (p0) assembly and the one on the right represent the phase 1 (p1) assembly. The gray lines indicate paired allelic genes. The
green, cyan, violet and red color bar plots indicate gene density, single-nucleotide polymorphism density, indel density and the density of potential deleteri-
ous effect variants, respectively. All numbers were determined considering a 200 kb windows.
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using two F1 mapping populations named DS9 J and R9 A.
The DS9 J and R9 A maps included 29 236 SNPs and 79 362
SNPs and spanned 1484 and 1499.9 cM, respectively (Fig. 4a,b;
Tables S16, S17). The marker density across the eight homologs
(h1–h8) of each linkage group was very high and evenly dis-
tributed (Figs 4a,b, S11, S12; Tables S16, S17).

The W85 genome was highly collinear with linkage maps and
the Draper genome (longest haplotypes, chr-1–12 and W85 p0)
(Fig. S13). Few minor rearrangements were identified on Draper
chr-2, -3, -5, -6, -7 and -9 and were largely located near cen-
tromeric and telomeric regions (Figs 4c,d, S13). Considering the
high level of collinearity between the linkage maps and the
W85_v2 genome, and the fact that the markers and the sequences
were ordered independently from each other across these three
resources (DS9 J, R9 A maps and W85_v2 genome), it is likely
that the rearrangements observed in the Draper genome are the
results of chimeric sequences.

Next, the comparative analysis with the Draper genome was
expanded to all 48 phased chromosomes. Synteny analysis

suggested the presence of a reciprocal, heterozygous, translocation
between one homolog of chr-6 and one of chr-10 (Fig. 5a).
Indeed, c. 14Mb of a Draper chr-6 homolog (chr-30, hereafter,
chr-610) aligned with W85 chr-10, while the rest of the chromo-
some (c. 26 Mb) mapped to W85 chr-6 (Fig. 5a). Similarly, c.
4.8 Mb of a Draper chr-10 homolog (chr 34, hereafter, chr-106)
mapped to the short arm end of W85 chr-6 including the Vac-
Sat169 repeat region, whereas the rest of the chromosome
(c. 33Mb) mapped to W85 chr-10 (Fig. 5a). Another Draper
chr-10 homolog (chr-46) consisted only of a portion of W85
chr-10, possibly due to either incomplete assembly or to a
large chromosomal deletion. Otherwise, each of the remaining
Draper chromosomes was highly collinear with only a single
W85 chromosome.

Cytogenetics analysis was used to validate the reciprocal
translocation. Due to the rearrangement, the translocation chr-
610 should have lost its VacSat169 repeat array, which in turn,
should be transposed to chr-106 (Fig. 5a). Thus, chr-610 should
have no detectable FISH signals of either VacSat169 or VacSat1,
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Fig. 3 Comparative analysis of putative satellite centromeric repeat VacSat1 (147 bp monomer) in Vaccinium species. (a) VacSat1 sequence logo
representing monomers extracted from four Vaccinium species, Draper (tetraploid, V. corymbosum), W85 (diploid, V. caesariense), bilberry (diploid,
V. myrtillus) and evergreen blueberry (diploid, V. darrowii). Numbers next to the arrows indicate the average percent similarity of VacSat1 monomers
across species estimated using the Maximum Composite Likelihood. (b) Phylogenetic analysis of VacSat1 monomer sequences inferred using the Neighbor-
Joining method implemented in MEGA11 (Tamura et al., 2021). For the sequence logo and phylogenetic analysis, 300 VacSat1 monomer sequences/species
were used. (c) Synteny analysis betweenW85_v2 against V. darrowii genome and distribution of VacSat1 and VacSat169 in V. darrowii physical maps
(1Mb windows). (d–f) Localization of VacSat1 and VacSat169 repeats on V. darrowii chromosomes using fluorescence in situ hybridization (FISH). (d) A
somatic metaphase chromosomes of V. darrowii hybridized with (e) VacSat1 (red signals) and (f) VacSat169 (green). Arrows (in d and e) indicate the chro-
mosomes with a terminal VacSat169 signal and no detectable VacSat1 repeats.
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whereas chr-106 should harbor both VacSat169 and VacSat1 sig-
nals. Notably, in the other genotypes analyzed (W85, V. dar-
rowii, DS and Jewel), none of the chr-6 homologs had detectable
VacSat1 signals (Figs 1i–l, S10). Using FISH mapping of Vac-
Sat169 and VacSat1 in Draper, we detected one chromosome
with both terminal VacSat169 and interstitial VacSat1 signals.
Our hypothesis is that this chromosome is the translocation chr-
106 (Fig. 5b,c). The three other chromosomes with a terminal
VacSat169 site had no detectable VacSat1 repeats and correspond
to three nonrearranged copies of chr-6 (Fig. 5b,c). Overall, these
results demonstrated the presence of an inter-chromosomal
translocation in the Draper genome.

The inter-chromosomal translocation alters chr-6 and
chr-10 meiotic behavior in the Draper genome

We were intrigued by how the four chromosomes with terminal
VacSat169 signals pair during meiosis in Draper vs DS and
Jewel. Therefore, we conducted FISH using VacSat169 and Vac-
Sat1 at diakinesis-metaphase I stages. In the pollen mother cells
of DS (n = 102) and Jewel (n = 49), the four chr-6 homologs car-
rying VacSat169 formed either two bivalents (in > 90% of the
cells) or a single tetravalent, whereas hexavalents were never
detected (Fig. S10; Table S18). By contrast, in Draper, the

chromosomes with the VacSat169 signals (that is, three homo-
logs of chr-6 and chr-106 with both VacSat169 and VacSat1)
formed various configurations, including hexavalents, involving a
total of five, six and eight chromosomes in 18%, 78% and 3% of
the cells (n = 130), respectively (Figs 5d–k, S14; Table S18). In
particular, in > 60% of the cells (n = 130), two chr-6 homologs
formed a bivalent, whereas another chr-6 formed a bivalent with
a chromosome with no detectable FISH signals of either probe.
We speculate that this chromosome with no signals is the translo-
cation chr-610. Finally, chr-106 (with both VacSat169 and Vac-
Sat1 signals) formed a bivalent with a chromosome carrying a
VacSat1 site, likely a chr-10 homolog (106–10 bivalent; Figs 5d,
e, S14a,b). In about 18% of the cells, chr-106 appeared as a uni-
valent, whereas two chr-6 homologs formed a 6–6 bivalent, and
another chr-6 formed a bivalent (6–610 bivalent) or a trivalent,
likely a 6–610–10 trivalent (Fig. S14c–e). About 8% of the cells
contained a tetravalent (likely a 6–610–10–106) plus a 6–6 biva-
lent (Figs 5f–g, S14f). Notably, about 7% of the cells contained a
hexavalent formation. In some cells, the hexavalent ring or chain
was made of three chr-6 homologs, plus chr-106 (with both Vac-
Sat169 and VacSat1) and two other chromosomes (likely chr-610

and a chr-10 homolog; Figs 5h,i, S14g). In other cells, it involved
a chr-6, chr-106 and other four chromosomes (likely chr-610 and
three chr-10 homologs each with VacSat1 signals), whereas other
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two chr-6 homologs formed a 6–6 bivalent (Figs 5j,k, S14h;
Table S18). Interestingly, each chr-10 had a detectable VacSat1
signal, suggesting that the partial copy of chr-10 (chr-46) in the
Draper reference genome (Colle et al., 2019) is due to incomplete
assembly rather than a chromosomal deletion.

The impact of the inter-chromosomal translocation on chro-
mosome pairing/recombination was also assessed in a bi-parental
mapping population named D9 B derived from a cross between
Draper (the translocation-carrier) and Biloxi (Methods S4).
Parent-specific markers were used for clustering analysis, which is
based on pairwise recombination frequency. At logarithms of
odds (LOD) score 6, Biloxi specific markers clustered into 12
groups, and each group included four subgroups, representing
the 12 blueberry chromosomes and four homologs, respectively
(Fig. 5l). In contrast, Draper markers clustered into 11 groups,
with 10 groups representing 10 chromosomes each with four
homologs, and one group containing eight subgroups

representing chr-6 and chr-10 (Fig. 5l). Among these eight sub-
groups, three subgroups comprised only chr-6 markers, three
comprised only chr-10 markers and two comprised a mix of chr-
6 and chr-10 markers. Increasing the LOD score to 9 did not
change the clustering results. These results demonstrated a signifi-
cant level of recombination between chr-6 and chr-10, which is
not expected across nonhomologous chromosomes, unless they
share some sequences due to a reciprocal translocation. After link-
age analysis, three chr-10 homologs had relatively low number of
markers and the chr-106 haplotype was not represented (Fig. S15;
Table S19). For chr-6, three homologs had normal number of
markers and one haplotype had a mix of chr-6 and chr-10 mark-
ers and represented chr-610.

Overall, these results demonstrated that the inter-
chromosomal translocation in the Draper genome altered its pair-
ing, recombination and segregation behavior, and in turn,
affected the linkage map construction (Fig. S16).

Fig. 5 Reciprocal inter-chromosome translocation and its impact on chromosome pairing and recombination in Vaccinium corymbosum cv. Draper. (a) Syn-
teny analysis betweenW85 (V. caesariense) chr-6 and chr-10 (p0) (gray bars) with Draper Chr 6 haplotypes (VaccDscaff6, 18, 30, 42) (blue bars) and chr-
10 haplotypes (VaccDscaff10, 22, 34 and 46) (orange bars). Blue and beige lines represent regions that were collinear. Violet lines represent regions that
were translocated betweenW85 chr-6 and chr-10. Heat map with green and red shades in the W85 chr-6 and chr-10 represent the density (200 kb win-
dows) of VacSat169 and VacSat1, respectively. Green and red dots in the Draper haplotypes represent the expected position of VacSat169 and VacSat1,
respectively. (b, c) Fluorescence in situ hybridization (FISH) of VacSat1 (red) and VacSat169 (green) on mitotic metaphase chromosomes of Draper
(2n = 4x= 48). VacSat169 signals were located on three chr-6 homologs with no detectable VacSat1 signals and on the translocation chromosome chr-106

carrying also VacSat1 repeats (arrows). (d–k) Meiotic pairing behavior of the four chromosomes carrying VacSat169 repeats (green signals) at diakinesis-
metaphase I in Draper. (d) Gray-scale image of a Draper metaphase I cell with 24 bivalents; (e, inset) the same image with VacSat1 (red) and VacSat169
(green) FISH signals; the arrows (in d and e) indicate 6–6 bivalent, 6–610 bivalent and 106–10 bivalent. Chr-610 has no detectable FISH signals of either
probe, whereas chr-106 has both VacSat169 and VacSat1 signals. (f) Gray-scale image of a Draper metaphase I cell containing a tetravalent ring; (g) the
same cell hybridized with VacSat1 and VacSat169 repeats. The arrows point to the tetravalent involving a chr-6, chr-610, a chr-10, and chr-106, and to a
6–6 bivalent. (h) Gray-scale image of a Draper metaphase I cell containing a hexavalent chain. (i) The same cell hybridized with VacSat1 and VacSat169
repeats. The arrows indicate the hexavalent made of three chr-6 homologs, chr-106, and other two chromosomes. (j) Gray-scale image of a Draper meta-
phase I cell containing a hexavalent chain; (k) the same cell with VacSat1 (red) and VacSat169 FISH signals. The arrows indicate a 6–6 bivalent, and the
hexavalent made of one copy of chr-6, chr-106, and other four chromosomes. Bar, 5 lm. (l) Clustering of Draper single-nucleotide polymorphism markers
obtained from the D9 B population into respective linkage groups based on logarithms of odds (LOD) score. Black circles represent markers grouped in
linkage groups, and representing the four haplotypes. Lines between circles represent linkage between markers grouped in each LG. Orange and blue color
inside the LGs representing chr-6 and chr-10, indicates the marker composition of each haplotype. Circles with orange and blue colors contain markers
from both chr-6 and chr-10.
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Blueberries behave as an autotetraploid with tetrasomic
inheritance

The quadrivalent chromosome pairing behavior estimated using
molecular markers varied between the DS9 J, R9 A and D9 B
mapping populations and, to some degree, between the parents.
For the DS9 J and R9 A mapping populations, the quadriva-
lent formation ranged from 24% on DS chr-7 to 53% on Arlen
chr-3 (Fig. 6a; Tables S20, S21). The degree of quadrivalent for-
mation for D9 B was relatively lower compared to R9 A and
DS9 J ranging from 3% on Draper chr-7 to 26.8% on Biloxi
chr-10 (Fig. 6a; Tables S22, S23).

Overall, there were substantial quadrivalent chromosome pair-
ing in DS9 J and R9 A mapping populations, as also indicated
by the cytological analysis of three parental varieties at diakinesis-
metaphase I (Arlen, DS, and Jewel) (Figs 6b, S17; Table S24). In
DS, 32% of the pollen mother cells at metaphase I (n = 68) con-
tained up to two quadrivalents, whereas in 65% of the cells, the
chromosomes formed bivalents exclusively (Fig. S17). Arlen and
Jewel had a higher frequency of meiocytes with at least one and
up to four quadrivalents (63%, n = 60 and 66%, n = 42, respec-
tively). Unpaired chromosomes (univalents) occurred at various
frequencies (from 4% in DS to up 48% in Jewel), sometimes in
the same cells containing the quadrivalent (Fig. 6b; Table S24).

In addition, the rate of DR increased towards the telomere
regions, reaching a maximum of 9% per parent at the telomeric
regions for most of the chromosomes of the DS9 J and R9 A
mapping populations (Figs S18, S19).

Preferential pairing based on pairs of closely-linked S9N
markers in the repulsion phase did not show significant deviations

between closely linked S9N markers in DS9 J (Figs S20, S21).
However, results obtained for R9 A revealed some significant
(FDR adjusted P < 0.05) preferential pairing on Arlen chr-7
(Fig. S22) and Reveille chr-11 (Fig. S23). The preferential pairing
was also investigated using a multi-point approach, identity-by-
descent probabilities for the population. For DS9 J mapping
population, we did not observe any significant deviations at both
bivalent pairing and quadrivalent pairing models (Tables S20–
S25). For the R9 A mapping population, there was significant
(P < 0.001) deviation from random pairing on Reveille chr-1 at
bivalent pairing model (Table S26) but not at quadrivalent pair-
ing model (Table S21). Furthermore, the strength of the preferen-
tial pairing parameter was weak on Reveille chr-1 (Table S21).
For D9 B, no significant preferential pairing was observed at
both bivalent and quadrivalent models except for Biloxi at the
bivalent model on chr-9 (Tables S22, S23). Although there were a
few indications of preferential pairing in R9 A and D9 B map-
ping populations, the results were not consistent between the dif-
ferent models (bivalent and quadrivalent) and the two methods.
Overall, our results did not reveal strong enough evidence to
demonstrate any preferential pairing in blueberry.

Discussion

High quality genomic resources provide novel insight into
the structure of the blueberry genomes

Here we presented a high-quality phased assembly of V. cae-
sariense, also classified as diploid V. corymbosum, and that repre-
sents the closest diploid reference genome relative to the genome
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Fig. 6 Chromosome pairing behavior evaluated using molecular markers and cytogenetic work in Vaccinium corymbosum cv. Draper, Biloxi, Arlen,
Reveille, Jewel and selection Draper Selection-44392 (DS). (a) Summary of quadrivalent formation (%) in parents of three linkage maps developed here.
(b) Representative diakinesis-metaphase I cells from the tetraploid blueberries Arlen containing two tetravalent rings, a tetravalent chain and 18 bivalents;
Draper with a tetravalent ring, two univalents and 21 bivalents; chr-6 homologs and translocation chromosomes paired as bivalent (arrowheads) and are
shown in the inset with their fluorescence in situ hybridization (FISH) signals of VacSat169 (green) and VacSat1 (red); DS with a tetravalent ring and 22
bivalents; Jewel with three tetravalent rings and 18 bivalents. Arrows point to the tetravalents (IV) and univalent (I). Bar, 5 lm.
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of cultivated tetraploid highbush blueberry (Bruederle &
Vorsa, 1994). Compared with W85_v1 genome (Gupta et al.,
2015), the W85_v2 assembly represents a 384- and 84-fold
reduction in the number of scaffolds and contigs, respectively,
and a 161-fold improvement in contiguity (N50 length) at
the contig level (Table S2). In addition, it contains > 116%
(378Mb) extra known sequences (contig level), was anchored to
chromosomes, and was phased. Compared to the Draper genome
(Colle et al., 2019), the contiguity at the contig level increased
about 10-fold (Table S2) and comparison at the structural level
with the W85_v2 genome highlighted some chimeric sequences
on the Draper assembly. Also, multiple regions spanning > 1Mb
(Fig. S13) were absent in the longest Draper haplotype assembly
(Dscaf 1–12) which resulted in a higher genome coverage and
density of the linkage maps (Fig. 4).

The W85_v2 genome enabled the localization of regions
enriched by low complexity sequences. Previous bioinformatic
analyses identified VacSat1 as the most abundant satellite repeats
in Vaccinium spp., (Sultana et al., 2020). Here, we provided the
first evidence of the centromeric localization of this repeat on
most W85 chromosomes. Future analyses of the blueberry cen-
tromeric chromatin could clarify whether there are chromosome-
specific centromeric sequences in blueberry (e.g. specific to the
chromosomes lacking VacSat1), as reported in other species
(Yang et al., 2018). Notably, VacSat1 sequence and distribution
were conserved between tetraploid HB and the crossable wild
diploid species belonging to the Vaccinium section Cyanococcus.
This similarity, combined with the high level of collinearity
detected across these genomes, might have contributed to the suc-
cessful introgression of wild species from this taxon into the culti-
vated blueberry and to the chromosome stability in interspecific
hybrids (Lyrene & Olmstead, 2012).

Finally, a comparison of the two haplotypes revealed a high
level of heterozygosity represented by SNPs, indels and SVs,
including PAV genes. Such a high level of heterozygosity can have
the following multiple effects: (1) mask the deleterious effect of
recessive alleles; (2) create allele-specific expression or allelic imbal-
ance; and (3) create new gene variants such as PAV. The high level
of heterozygosity maintained in this outcrossing species might
contributes to plant survival and environmental adaption, similar
to what has been observed in other crops (Zhou et al., 2020).

Evidence and impact of a reciprocal translocation for
blueberry genetic analysis and breeding

Chromosome translocations have played significant roles in trait
diversity, speciation and evolution (Martin et al., 2020). Recent
advances in sequencing and genotyping technologies have facili-
tated precise identification of chromosomal rearrangements,
including reciprocal translocations in many crops, especially in
species with disomic inheritance such as banana (Martin
et al., 2020) and cotton (Yang et al., 2019). However, similar
studies in species with polysomic inheritance like blueberry are
very limited. This is partially due to difficulties in generating
high-quality linkage maps and genome assemblies for these spe-
cies. Recently, a phased assembly of the tetraploid blueberry

cultivar Draper, was released (Colle et al., 2019), and comparative
analysis among Draper homologous and nonhomolog chromo-
somes revealed a possible heterozygous reciprocal translocation
between one homolog of chr-6 and chr-10. However, presence of
the translocation through cytogenetic evidence, its impact on chro-
mosome pairing and recombination, and its presence in other tet-
raploid genomes were not previously evaluated.

In this study, comparative genomic, cytogenetic and linkage
analysis demonstrated the presence of this reciprocal transloca-
tion, which formed two fused chromosomes, chr-610 and chr-
106. The co-localization between VacSat1 and VacSat169 repeats
on the same chromosome is specific to the translocation chr-106,
making these repeats ideal cytogenetic markers for future studies.

The reciprocal translocation can have multiple effects on chro-
mosome pairing and recombination. In bananas, the impact of
heterozygous reciprocal translocations on chromosome recombi-
nation rate ranged from no effect to full suppression (Martin
et al., 2020). In our cytogenetic analysis, we observed multiple
abnormal chromosome pairings configurations including hexava-
lent. Therefore, the translocation affected the linkage map con-
struction and the linkage relationships between chr-6 and chr-10,
by causing ‘pseudo linkage’ near the translocation sites. One of
the homologs of chr-10 was not retained in the final linkage map,
whereas the marker coverage in the other chr-10 homolog was
lower, indicating that this translocation may either limit recombi-
nation in the translocation sites or cause chromosome recombina-
tion frequencies that are not accounted for by available statistical
models used for linkage analysis (Durrant et al., 2006; Preedy &
Hackett, 2016). Also, approximately 20% of the chr-106 was uni-
valent, which may result in a lagging chromosome and gametes
with no chr-106. This phenomenon would impact GWAS (i.e.
genome-wide association study) analysis by generating a strong
population structure (Farr�e et al., 2012), and it could also prevent
the precise localization of quantitative trait locus (QTL) and dis-
tort/weaken statistical support for marker/trait associations. Stud-
ies also found that reciprocal translocation can affect gene
expression (Harewood et al., 2010; Muramoto et al., 2018).
Interestingly, comparative gene expression analysis among blue-
berry homologous chromosomes indicated that chr-6 and chr-10
had the most stable pattern of gene expression dominance across
fruit development (Colle et al., 2019). Preliminary analysis of
genes spanning the translocations indicated that biological pro-
cesses such as cellular and metabolic processes were the most sig-
nificantly enriched GO terms in both chr-6 and chr-10.
Similarly, molecular function such as nucleic acid binding, RNA-
binding and hydrolase activity, and cell components including
intracellular and organelles were the most enriched GO terms in
both chromosomal regions (Fig. S24). Future work will focus on
narrowing which genes and how their expression are affected by
the translocation and how it affect their function. The reciprocal
translocation can directly affect phenotypes and cell functional-
ity, including pollen viability. Blueberries shed their pollen as
permanent tetrads, which, in turn, represent the four products of
single meiotic events. A preliminary evaluation of pollen viability
using Alexander’s stain indicated that over 70% of the pollen tet-
rads of Draper (n = 600) had all four grains viable, while tetrads
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with 3 : 4 and 0 : 4 viable : nonviable pollen grains were 22% and
< 1%, respectively. Notably, the percent of total viable pollen
grains was high (90%, n = 2400) and comparable to the estimates
reported for other popular tetraploid blueberry cultivars (Krebs
& Hancock, 1990). Although plants heterozygous for a transloca-
tion are expected to have a significant decrease of viable pollen
(e.g. 50% observed in Arabidopsis thaliana) (Clark & Krysan,
2010), our preliminary data suggests that the translocation may
not cause such a drastic reduction in tetraploid blueberry.
Genetic studies for economically important traits in blueberry are
rapidly expanding, and some QTL were mapped on chr-6 and
chr-10 (Qi et al., 2021). This information opens opportunities to
investigate how and if the translocation affects the inheritance of
cold hardiness and other important phenotypes.

Multiple mechanisms could have contributed to the transloca-
tion including hybridization with wild species and polyploidiza-
tion (Yang et al., 2019; Chen & Ni, 2006; Martin et al., 2020).
In blueberry, hybridization with wild diploid species from the
Vaccinium section Cyanococcus via 2n gametes has been used
extensively for the introgression of multiple traits. For instance,
up to 8% of the Draper genome derived from V. darrowii
(1.6%), V. tenellum (0.4%) and V. angustifolium (6%) (Brevis
et al., 2008). Inter-specific hybridizations with species harboring
the translocation could have introduced the translocation into
cultivated germplasm. Our results indicated that the V. darrowii
genome (Yu et al., 2021) is highly collinear with all W85 chro-
mosomes (Fig. 3c), and that none of the V. darrowii chromo-
somes harbored both VacSat1 and VacSat169 as observed in
Draper. These results exclude the role of V. darrowii in the intro-
gression of the translocation.

The rate of incidence of this translocation across blueberry germ-
plasm and its effect can have direct implications on breeding and
genetic studies. This study did not support the presence of the
reciprocal translocation in other HB cultivars such as Arlen,
Reveille, Biloxi, Jewel and DS. However, the presence of heterozy-
gous translocations in blueberry was already suspected by
Vorsa (1990) who observed pentavalent formation in a triploid
V. corymbosum (NC-856-1) that did not share a direct ancestor with
Draper. This observation suggests that other genotypes carrying
translocations are likely present in blueberry germplasm. However,
since the translocation is heterozygous, gametes lacking the translo-
cation can be produced, and fertilization between similar gametes
could generate progenies that lack the translocation. This reduces
the likelihood of its fixation within the blueberry germplasm.

Overall, the results presented here open opportunities for
future genetic studies to evaluate the origin, distribution of the
translocation in the blueberry germplasm and its impact on trait
inheritance.

Evidence for autopolyploid genetic behaviors of blueberry

Understanding the polyploid origin (being autopolyploid or
allopolyploid) and genetic behavior (disomic or tetrasomic), in a
polyploid crop is critical to advancing genetic studies and breed-
ing. Addressing these two questions in blueberry is a relatively
complex task, for two reasons: (1) the Vaccinium section

Cyanococcus is comprised of diploid, tetraploid and hexaploid dis-
tinct species, that can easily intercross producing completely
interfertile hybrids (Lyrene et al., 2003); (2) multiple diploid spe-
cies have been introgressed into blueberry cultivars, making HB
(V. corymbosum) cultivars a highly diverse polyploid genetic sys-
tem (Retamales & Hancock, 2018). The only study addressing
the genetic behavior of tetraploid blueberry based on molecular
markers (RAPD) indicated that blueberry behaves as an
autopolyploid (Qu & Hancock, 1995, 2001). However, the
number of markers used in this study was very limited (n = 31),
and it was unknown what proportion/fraction of the genome was
assessed. Here, we present the first and most comprehensive study
that evaluated the polyploid behavior of tetraploid blueberry
based on preferential pairing, quadrivalent formation and double
reduction, using high-density molecular markers spanning the
entire genome paired with cytogenetic analysis. To account for
potential inter-cultivar variation, recombination behavior was
evaluated in six cultivars, including SHB and NHB, all of which
have a different fraction (10–60%) of their genomes introgressed
from wild diploid species (Brevis et al., 2008).

No evidence of preferential pairing was found, demonstrating
that the mode of inheritance of all chromosomes and all blue-
berry cultivars evaluated here is polysomic (tetrasomic), consis-
tent with previous data based on RAPD markers (Qu &
Hancock, 1995, 2001). The degree of quadrivalent formation
was substantial, ranging from 24% to 53% for the DS9 J and
R9 A mapping populations, and it was lower in D9 B (between
3% and 27%). These results are comparable to that of potato, a
certain autopolyploid species (Choudhary et al., 2020). Double-
reduction is a consequence of polysomic inheritance and occurs
when sister chromatids segregate into the same gamete. Here DR
rate, which was assessed for the first time in blueberry, was
detected in all chromosomes, and it increased towards the telom-
eric regions consistent with what has been described in other
autopolyploid species (Bourke et al., 2015).

Overall, we provided strong evidence that blueberry behaves as
an autopolyploid during meiosis. Furthermore, we demonstrated
the presence and the impact of a heterozygous reciprocal translo-
cation in the Draper genome, which can affect genetic studies
and breeding. Finally, comparative analyses among members of
the Vaccinium section Cyanococcus highlighted that the structure
of their chromosomes, including centromeric repeats, are highly
conserved. These findings likely explain the complexity of this
taxa characterized by extensive hybridization between ploidy/spe-
cies and overlapping morphologies (Retamales & Han-
cock, 2018). This information will serve as a framework to
extend comparative genome analysis within Vaccinium spp. and
advance genomic-assisted breeding in blueberry.
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