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Abstract
Aim: To investigate whether brain volumes were reduced in children aged 6 to 
8 years without cerebral palsy, who underwent therapeutic hypothermia for neonatal 
hypoxic-ischaemic encephalopathy (patients), and matched controls, and to examine 
the relation between subcortical volumes and functional outcome.
Method: We measured regional brain volumes in 31 patients and 32 controls (median 
age 7 years and 7 years 2 months respectively) from T1-weighted magnetic resonance 
imaging (MRI). We assessed cognition using the Wechsler Intelligence Scales for 
Children, Fourth Edition and motor ability using the Movement Assessment Battery 
for Children, Second Edition (MABC-2).
Results: Patients had lower volume of whole-brain grey matter, white matter, pallidi, 
hippocampi, and thalami than controls (false discovery rate-corrected p < 0.05). 
Differences in subcortical grey-matter volumes were not independent of total brain 
volume (TBV). In patients, hippocampal and thalamic volumes correlated with 
full-scale IQ (hippocampi, r = 0.477, p = 0.010; thalami, r = 0.452, p = 0.016) and 
MABC-2 total score (hippocampi, r = 0.526, p = 0.004; thalami, r = 0.505, p = 0.006) 
independent of age, sex, and TBV. No significant correlations were found in controls. 
In patients, cortical injury on neonatal MRI was associated with reduced volumes of 
hippocampi (p = 0.001), thalami (p = 0.002), grey matter (p = 0.015), and white matter 
(p = 0.013).
Interpretation: Children who underwent therapeutic hypothermia have reduced 
whole-brain grey and white-matter volumes, with associations between hippocampal 
and thalamic volumes and functional outcomes.
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Therapeutic hypothermia is now standard care for neonatal 
hypoxic-ischaemic encephalopathy (HIE) secondary to 
perinatal asphyxia in high-income countries and has been 
shown to reduce the risk of death and severe disability 
compared with normothermia management.1 Studies have 
reported that 74% to 90% of those who undergo therapeutic 
hypothermia survive past 18 months, and 73% to 85% of these 
do not have cerebral palsy (CP).2–4 Follow-up assessment 
confirmed that 79% of survivors do not have CP at 6 to 
7 years.5,6 In children without CP, nearly 21% had cognitive 
impairments and 24% had high risk of motor impairment at 
6 to 8 years.7

Despite the benefits of therapeutic hypothermia, we have 
previously demonstrated that early school-age children who 
underwent therapeutic hypothermia for HIE and did not 
develop CP have altered brain structural connectivity8,9 and 
reduced cognitive, motor, and behavioural scores7,10,11 com-
pared with typically developing controls matched for age, 
sex, and socioeconomic status. In addition, motor difficul-
ties were not predicted from developmental scores assessed 
at 18 months of age using the Bayley Scales of Infant and 
Toddler assessment.11

It is well established that the acute hypoxic-ischaemic in-
sult preceding HIE leads to characteristic patterns of brain 
injury on neonatal magnetic resonance imaging (MRI) 
scans, particularly to the deep grey-matter structures in-
cluding the hippocampus, thalamus, and basal ganglia.12 In 
children and adults who had mild to moderate HIE, before 
widespread use of therapeutic hypothermia, hippocampal13 
and total brain and cortical volumes14 were found to be re-
duced when compared with controls. Injury to subcortical 
structures in neonates with HIE was shown to be associated 
with adverse neurodevelopmental outcomes.15,16

It is not known whether children who have been treated 
with therapeutic hypothermia for HIE and who do not de-
velop CP have lower volumes of subcortical structures and 
whether these subcortical volumes are associated with 
motor and cognitive outcomes. Therefore, we compared the 
volumes of brain tissues and subcortical structures between 
early school-age children cooled for HIE, without CP, and 
control children matched for age, sex, and socioeconomic 
status. Second, we examined the relation between subcor-
tical volumes and motor and cognitive outcomes. Finally, 
we investigated the association between qualitative scores of 
regional brain injury on neonatal MRI and regional brain 
volumes at early school-age.

M ETHOD

Participants

This study was conducted at the Clinical Research and 
Imaging Centre (CRiCBristol), University of Bristol, UK, with 
approval from the North Bristol Research Ethics Committee 
(REC ID 15/SW/0148). Participants' assent was ensured at 
all times and informed and written consent was obtained 

from the parents of participants. Patients were sequentially 
selected from the cohort of children who received therapeu-
tic hypothermia between October 2007 and November 2012 
under a standard protocol for perinatal asphyxia-induced 
moderate to severe encephalopathy confirmed by amplitude-
integrated electroencephalogram (EEG) assessment.17 These 
data are maintained by the Bristol Neonatal Neurosciences 
group at St Michael's Hospital, Bristol, UK, under previous 
ethics approval (REC ID 09/H0106/3).

Patients

Patients were aged 6 to 8 years and did not have a diagnosis 
of CP at 2 years based on assessment of motor function and 
neurological examination (all assessed by the same experi-
enced clinician). Absence of CP at 6 to 8 years was confirmed 
using a standard clinical neurological examination includ-
ing assessment of tone, motor function, and deep tendon re-
flexes. We excluded children who (1) were cooled outside the 
standard criteria; (2) were born before 35 weeks' gestation; 
(3) had an additional diagnosis, for example a metabolic dis-
order; or (4) did not have English as their primary spoken 
language.

Patients underwent neonatal MRI, which was qualita-
tively assessed, by an experienced perinatal neurologist (FC) 
for the presence and extent of brain injury. This was quan-
tified, in the basal ganglia and thalami (BGT), white matter, 
and cortex (each on a score of 0–3), and the posterior limb of 
internal capsule (PLIC) (score 0–2), where a higher number 
indicates more severe injury.17,18 Criteria for these scores are 
described in Table S1.

Controls

We recruited controls from schools around Bristol. Schools 
were excluded where a patient was currently attending, to 
protect participants' confidentiality. We included children 
who were born after 35 weeks' gestation, had not had peri-
natal asphyxia with HIE, and spoke English as their primary 

What this paper adds

•	 Patients who underwent therapeutic hypothermia 
for neonatal hypoxic-ischaemic encephalopathy 
had lower whole-brain white- and grey-matter 
volumes than controls.

•	 These patients had smaller pallidi, hippocampi, 
and thalami.

•	 Subcortical volume differences were not inde-
pendent of total brain volume.

•	 Cognitive and motor scores correlated with hip-
pocampal and thalamic volumes in the patients.
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spoken language. To minimize the chance of recruiting chil-
dren whose parents had concerns (e.g. about their develop-
ment), parents were made aware that results of children's 
individual assessments would not be made available to them.

Socioeconomic status was assessed using the index 
of multiple deprivation as defined for England by the UK 
Government (www.gov.uk/gover​nment/​stati​stics/​engli​sh-
indic​es-of-depri​vatio​n-2019). The 1 to 10 scale (where 10% 
of neighbourhoods are assigned to each number) is deter-
mined for a given neighbourhood from seven domains of 
deprivation including income, employment, education, 
health, crime, barriers to housing and services, and living 
environment, indicating the decile within which the local 
area is ranked in the country, from most deprived (1) to least 
deprived (10). We assessed the index of multiple deprivation 
for each participant on the basis of postcode at birth.

Cognitive and motor assessments

Psychologists (led by JT), blinded to patient–control sta-
tus, assessed the cognitive abilities of the children using the 
Wechsler Intelligence Scale for Children, Fourth Edition19 
including subscales of working memory, processing speed, 
verbal comprehension, and perceptual reasoning from which 
full-scale IQ is derived, which has a normative mean (SD) of 
100 (15). Two researchers (RL-K and SJ) assessed motor abil-
ity using the Movement Assessment Battery for Children, 
Second Edition (MABC-2).20 Each assessment was video
taped and reviewed, and scoring agreed by consensus. The 
MABC-2 has three subscale (manual dexterity, aiming and 
catching, and balance) standard scores which are combined 
to give an MABC-2 total score, which has a normative mean 
(SD) of 10 (3). This score indicates high-risk for, or at risk of, 
motor impairment at the 5th or 15th centiles respectively.

MRI acquisition

All children were scanned using a 3 tesla Siemens Magnetom 
Skyra (Munich, Germany) and a receive-only 32-channel head 
coil. Following acquisition of localizer images, a T1-weighted 
volumetric scan was obtained with the magnetization-
prepared rapid acquisition gradient echo sequence using 
the following parameters: echo time 2.19 ms; inversion time 
800 ms; repetition time 1500 ms; flip angle 9°; field of view 
234 mm × 250 mm; 176 slices; 1.0 mm isotropic voxels; general-
ized autocalibrating partially parallel acquisitions acceleration 
factor 4.21 Volumetric data were quality controlled by asses-
sors blinded to patient–control status (JCWB and APCS) and 
scans with excessive movement artefact excluded.

A brain tissue mask was created for each participant's T1-
weighted data using either SPM8-VBM (http://fil.ion.ucl.ac.uk/
spm)22 or the CAT12 module in SPM12 (http://www.neuro.
uni-jena.de/cat)23 depending on which gave better delineation 
of the brain surface. Subsequently, the brain was segmented 
into grey matter, white matter, and cerebrospinal fluid using 

the automated tissue type segmentation tool, FAST,24 from the 
FMRIB software library (FSL, https://fsl.fmrib.ox.ac.uk/fsl), 
to obtain the whole-brain volume of each tissue type. Whole-
brain grey-matter volume included both cortical and subcorti-
cal grey matter. Total brain volume (TBV) was then calculated 
as the sum of grey- and white-matter volumes.

Subcortical grey-matter structures, including the basal 
ganglia (caudate, pallidum, and putamen), hippocampus, 
and thalamus, were segmented from each individual's T1-
weighted scan using FSL's automated subcortical segmen-
tation tool, FIRST,25 to obtain their volumes. Upon visual 
inspection of the masks of subcortical structures produced 
by FIRST, and masks of tissue types produced by FAST, no 
manual correction for delineation of structures was found 
necessary. As hypoxic brain injury is a brain-wide insult, we 
expected to see bilateral changes. Therefore, to reduce the ef-
fect of multiple comparisons, for each subcortical structure 
we summed the left and right volumes to give the total bilat-
eral volume. Figure 1 gives a demonstration of segmentation 
of tissue types and subcortical structures.

Statistical analysis

Normality was tested with a Q–Q plot and Shapiro–Wilk 
test. Grey matter, white matter, cerebrospinal fluid, and sub-
cortical grey-matter volumes were compared between the 
patient and control groups using a two-tailed t-test as these 
variables were normally distributed. One-way analysis of co-
variance (ANCOVA) was then used to compare subcortical 
volumes between groups while controlling for TBV. To ex-
amine the association between regional brain volumes and 
functional outcome, we then assessed the partial Pearson 
correlation between subcortical volumes, full-scale IQ score, 
and MABC-2 total score, with age, sex, and TBV included as 
covariates, in the patient and control groups separately. To 
test whether there was any association, in patients, between 
qualitative injury scores on neonatal MRI and regional vol-
umes at 6 to 8 years, we performed Wilcoxon rank-sum tests 
between the regional volumes of patients with no injury 
(score = 0) and those of patients with any injury (score >0) 
for each injury category (white matter, BGT, PLIC, and 
cortex). In all tests, correction for false discovery rate was 
applied and p < 0.05 was considered significant. Statistical 
analysis was performed using IBM SPSS version 24 (IBM 
Corp., Armonk, NY, USA).

R E SU LTS

Recruitment

Study recruitment is summarized in Figure S1. We recruited 
50 patients and 43 controls for the study. Of these, seven 
patients and four controls did not want to undergo scan-
ning and four patients had incomplete scans due to move-
ment during the scan. Scans from eight patients and seven 

http://www.gov.uk/government/statistics/english-indices-of-deprivation-2019
http://www.gov.uk/government/statistics/english-indices-of-deprivation-2019
http://fil.ion.ucl.ac.uk/spm
http://fil.ion.ucl.ac.uk/spm
http://www.neuro.uni-jena.de/cat
http://www.neuro.uni-jena.de/cat
https://fsl.fmrib.ox.ac.uk/fsl
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controls were not of sufficient quality because of movement 
artefacts. The remaining 31 patients and 32 controls were in-
cluded in the analysis. The demographics in Table  1 show 
that controls were matched to patients for age, sex, and so-
cioeconomic status and that there was no patient–control 
difference in head circumference. The patient group had 
reduced full-scale IQ score and a larger proportion of indivi
duals at risk of motor impairment compared with the con-
trol group. Detailed analyses of patient–control differences 
in domains of the cognitive and motor assessments have 
been previously reported for this cohort,8,9 and for a cohort 
that overlapped with 15 patients and 14 controls included 
in this cohort.7,11 The demographics, outcome scores, and 
perinatal clinical information of children excluded from the 
patient group because of incomplete or poor quality scans 
were not significantly different from those included in the 
analysis, apart from Apgar score (Table  1). Median Apgar 

score was higher in rejected patients than included patients 
(p = 0.040), indicating that the included cohort on average 
was in poorer condition at 10 minutes of age.

Regional brain volumes

Figure  2 shows the distribution of regional brain volumes 
measured from MRI at 6 to 8 years, with statistics shown in 
Table S2. Patients had a reduced whole-brain volume of grey 
matter (p = 0.003) and white matter (p = 0.026). Additionally, 
patients compared with controls had significantly lower 
volumes of pallidi (p = 0.026), hippocampi (p = 0.004), and 
thalami (p  =  0.013). When taking differences in TBV into 
account, there were no significant differences in the volumes 
of subcortical structures (uncorrected p > 0.05; one-way 
ANCOVA).

F I G U R E  1   Segmentation of T1-weighted images. Volumes of grey matter, white matter, and cerebrospinal f luid (CSF) were measured using the 
FAST automated tissue type segmentation tool. Volumes of subcortical structures were measured using the FIRST automated subcortical segmentation 
tool. Abbreviation: CSF, cerebrospinal f luid.
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Association with functional outcome

Correlations between subcortical volumes and functional out-
come are shown in Figure 3. In patients, full-scale IQ score 
significantly correlated with the volume of the hippocampi 
(r  =  0.477, p  =  0.010) and thalami (r  =  0.452, p  =  0.016). 

Additionally, MABC-2 total score significantly correlated with 
the volume of the hippocampi (r = 0.526, p = 0.004) and thal-
ami (r = 0.505, p = 0.006). In controls, MABC-2 total score cor-
related with the volume of the putamen (r = −0.378, p = 0.043) 
and hippocampi (r = −0.389, p = 0.037), but neither of these 
was significant after correction for false discovery rate .

T A B L E  1   Participants' demographics

Patients (n = 31) Controls (n = 32) p
Rejected patients 
(n = 19) p

Childhood MRI

Age, years:months, median (range) 7:0 (6:0–7:11) 7:2 (6:1–7:10) 0.994 6:11 (6:2–7:11) 0.659

Sex, male/female 17/14 16/16 0.802 11/8 1.0

Index of multiple deprivation, median (range) 7 (1–10) 7 (3–10) 0.371 7 (2–9) 0.864

Head circumference (cm), median (range) 52.3 (47.2–57.5) 52.5 (48.5–56.5) 0.440 52.0 (50.3–56.5) 0.741

Full-scale IQ, median (range) 97 (62–123) 109 (88–137) <0.001 89 (81–107) 0.293

MABC-2 total score, median (range) 11 (3–19) 11 (5–16) 0.643 8.5 (1–15) 0.182

MABC-2 total score < 15th centile, n (%) 10 (32) 2 (6) 0.011 5 (26) 0.757

Neonatal MRI scores

White matter 0.891

0 8 5

1 13 5

2 8 7

3 2 1

BGT 0.124

0 27 13

1 3 5

2 1 1

3 0 0

PLIC 0.106

0 28 14

1 3 3

2 0 2

Cortex 0.563

0 19 13

1 9 5

2 1 1

3 2 0

Perinatal clinical information

Assisted ventilation at 10 minutes of age, n (%) 24 (77) 11 (58) 0.205

Cardiac compressions required, n (%) 9 (29) 6 (32) 1.0

Apgar score at 10 minutes of age, median 
(range)

6 (0–10) 7 (2–10) 0.040

Worst pH within 1 hour of birth, median 
(range)

6.94 (6.70–7.25) 6.90 (6.65–7.34) 0.453

Amplitude-integrated EEG abnormalities 
before therapeutic hypothermia: moderate/
severe

29/2 18/1 1.0

Perinatal clinical information and Rutherford scores17 from neonatal MRI assessment of BGT (score 0–3), white matter (score 0–3), posterior limbs of the internal 
capsule (score 0–2), and cortex (score 0–3), are given for patients. Also shown are demographics of the rejected patients, and p-values for the comparison between 
included and rejected patients. The p-values were calculated with Fisher's exact tests or Wilcoxon rank-sum tests. Abbreviations: BGT, basal ganglia and thalami; EEG, 
electroencephalogram; MABC-2, Movement Assessment Battery for Children, Second Edition; MRI, magnetic resonance imaging; PLIC, posterior limb of internal capsule.
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Association with neonatal injury scores

Median qualitative scores of injury on neonatal MRI in pa-
tients were low, as expected for this group, which did not 
include those with severe disability or any CP. There was 
no association between regional volumes at school-age and 
qualitative injury scores on neonatal MRI for the white mat-
ter, BGT, or PLIC (false discovery rate-corrected q > 0.05); 
however, the sample sizes for these injury sites were very 
small. Patients with cortical injury scores greater than 0 

on neonatal MRI had significantly reduced hippocampi 
(p = 0.001), thalami (p = 0.002), grey matter (p = 0.015), and 
white matter (p = 0.013) compared with patients with no cor-
tical injury. When TBV was included as a covariate in an 
ANCOVA, hippocampal volume was still associated with 
cortical injury (p = 0.002), but the association with thalamic 
volume was not significant after correction for false discov-
ery rate. Regional brain volumes at school-age are plotted 
against scores from qualitative scores of injury on neonatal 
MRI in Figures S2–S5, with statistics shown in Tables S3–S6.

F I G U R E  2   Patient–control comparison of regional volumes, for subcortical structures (left) and whole-brain volumes, including white matter 
(WM), total cortical and subcortical grey matter (GM), and cerebrospinal f luid (CSF). Boxes indicate the interquartile range, with a line for the median, 
with whiskers extending to the range of the data and outliers shown as diamonds. Group statistics are shown in Table S2.

F I G U R E  3   Correlation between subcortical volumes and cognitive and motor scores. Partial Pearson correlations were measured between volumes 
and outcome, in patients and controls separately, for both Movement Assessment Battery for Children, Second Edition (MABC-2) total score and 
full-scale IQ (FSIQ) score, with age, sex, and total brain volume included as covariates. Hippocampus and thalamus gave significant correlations with 
both FSIQ score and MABC-2 total score in patients (red). Controls are shown for comparison (blue), although no correlations were significant after 
correction for false discovery rate. Each plot shows the residuals of subcortical volume against the residuals of functional outcome score, with a line 
showing the regression. Correlation coefficients and uncorrected p-values are shown on each plot. *False discovery rate-corrected p < 0.05.
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DISCUSSION

In this study, we demonstrated that early school-age children 
who underwent therapeutic hypothermia for HIE, without 
CP, had reduced volumes of grey and white matter compared 
with matched controls. Additionally, patients had reduced 
volumes of pallidi, hippocampi, and thalami, which were not 
independent of TBV. We also demonstrated that, in cooled 
children, both full-scale IQ score and MABC-2 total score 
correlated with hippocampal volumes and thalamic vol-
umes, independent of age, sex, and TBV. No significant cor-
relations were found in controls. We found that patients with 
any cortical injury visible on neonatal MRI had reduced vol-
umes of hippocampi, thalami, and grey and white matter at 
school-age compared with patients with no cortical injury.

Previous studies have investigated the effect of HIE on brain 
volume. An early study using head circumference demon-
strated that infants with HIE with only mild or moderate BGT 
lesions did not have abnormal head growth compared with 
controls,26 consistent with our cohort in which there were no 
differences in head circumference between patients and con-
trols. An investigation of brain volume in young adults with 
a history of mild or moderate of HIE, before widespread use 
of therapeutic hypothermia, showed significant reduction in 
whole-brain volume.14 Our study demonstrates that, in a pop-
ulation cooled for moderate to severe HIE, without CP, there 
is a reduction in whole-brain grey- and white-matter volume 
at school-age compared with matched controls, despite no 
differences in head circumference.

Studies involving qualitative assessment of MRI scans on 
children with HIE, before the widespread use of therapeutic 
hypothermia, have demonstrated persistent abnormalities 
in the white matter and basal ganglia on MRI scans at 12 
to 24 months27 and 9 to 10 years.28 Additionally, the hippo-
campus is known to be vulnerable to hypoxic injury.13,29,30 
We found that the pallidi, hippocampi, and thalami were 
smaller at age 6 to 8 years in patients compared with controls. 
Lower hippocampal volume in patients may affect cognitive 
outcomes, and thus may be associated with the reduced per-
ceptual reasoning, verbal comprehension, working memory, 
and full-scale IQ scores in this population.7,8 Similarly, lower 
thalamic volume in patients may affect fine or complex 
motor skills, as seen in this population, with patients having 
lower manual dexterity, aiming and catching, and MABC-2 
total score than matched controls.7 Although these absolute 
differences were not independent of TBV, the correlations of 
both full-scale IQ and MABC-2 total scores with hippocam-
pal and thalamic volumes show that there was still variation 
in subcortical grey-matter volumes within the patient group 
that was significantly associated with functional outcome, 
independent of TBV, age, and sex. The lack of significant re-
duction in subcortical grey-matter volumes beyond those as-
sociated with an overall reduction in brain volume may have 
been due to our cohort comprising children without CP; the 
median qualitative score of injury on neonatal MRI was low, 
possibly resulting in small differences in regional brain vol-
umes which were masked by normalization with TBV.

Hippocampal volume has been associated with IQ both 
in adults31 and in children.32 Neuroimaging studies have in-
dicated that hippocampal damage sustained from perina-
tal asphyxia persists throughout development, resulting in 
memory difficulties and reduced IQ.13,33 Additionally, tha-
lamic volume has been shown to be associated with verbal IQ 
in typically developing children,34 and with visual memory 
performance in patients aged 14 to 25 years with developmen-
tal amnesia resulting from hippocampal atrophy caused by 
hypoxic-ischaemic injury.29 In our control group, volumes of 
the hippocampi and thalami did not correlate with cognitive 
and motor scores. This may have been due to the small sample 
size, and could indicate that functional outcome in these chil-
dren was dependent on a much larger number of factors. In the 
patient group of a similar size, volumes of the hippocampi and 
thalami correlated with both full-scale IQ and MABC-2 total 
score, suggesting stronger associations in this group.

Previous qualitative MRI studies of children with HIE 
have shown that injury patterns on neonatal MRI (most 
commonly in the BGT) are associated with later adverse 
neurodevelopmental outcomes.15 We found that volumes 
of hippocampi, thalami, grey matter, and white matter at 
school-age were reduced in patients, with signal change indi-
cating cortical injury on neonatal MRI compared with those 
with normal cortical signal. The association between neo-
natal cortical injury and hippocampal volume was indepen-
dent of TBV, suggesting this association is due to those with 
abnormal cortical signal also having underlying primary in-
jury to other structures which were not assessed during the 
neonatal qualitative assessment (e.g. the hippocampus); if 
the reduced school-age hippocampal volume was secondary 
to cortical injury, we would expect it to be associated with 
the reduced grey- and white-matter volumes (and therefore 
TBV) in these children. Despite therapeutic hypothermia 
there is still an effect of HIE on hippocampal volume which 
is probably related to neonatal hippocampal injury. Thus, 
therapeutic hypothermia may not be neuroprotective for 
hippocampal injury; animal studies have shown that devel-
opment of the hippocampal GABAergic system is impaired 
despite therapeutic hypothermia.35

We found no association between regional brain volumes at 
school-age and injury patterns in the BGT, PLIC, or white mat-
ter on neonatal MRI. This may suggest cortical injury is more 
sensitive than other sites of injury in contributing to altered 
structural brain development in cooled children without severe 
disability; however, owing to the small sample sizes in these 
tests, particularly for the PLIC, BGT, and white-matter associ-
ations, we cannot draw firm conclusions from these analyses.

Owing to the difficulties associated with scanning chil-
dren of this age group, the MRI data from many participants 
were not of sufficient quality to be included in the analy-
sis. A larger sample could have enabled more sensitive de-
tection of group differences and correlations, particularly 
as this cohort represented those with non-severe outcomes 
and may therefore be characterized by very subtle differ-
ences in brain structure. Specifically, a larger cohort would 
allow more robust analysis of differences in regional brain 
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volumes between patients with and without injury on neo-
natal MRI. Additionally, to increase statistical power and 
reduce the effect of multiple comparisons, we did not inves-
tigate associations with subscales of the cognitive and motor 
assessments. This is largely because few studies have inves-
tigated subcortical grey-matter volumes in cooled children 
with non-severe outcomes, so we opted for a more explor-
atory, rather than hypothesis-driven, approach. Future stud-
ies could focus on the involvement of the hippocampus and 
thalamus in domains of cognitive and motor performance.

CONCLUSION

We have demonstrated that early school-age children cooled 
for HIE, without CP, had altered regional brain volumes 
compared with matched controls. Further investigation is 
required to determine neuroprotective strategies or thera-
peutic interventions that improve outcomes.
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