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Purpose: Many MRS paradigms produce 2D spectral-temporal datasets,
including diffusion-weighted, functional, and hyperpolarized and
enriched (carbon-13, deuterium) experiments. Conventionally, temporal
parameters—such as T2, T1, or diffusion constants—are assessed by first
fitting each spectrum independently and subsequently fitting a temporal
model (1D fitting). We investigated whether simultaneously fitting the entire
dataset using a single spectral-temporal model (2D fitting) would improve
the precision of the relevant temporal parameter.
Methods: We derived a Cramer Rao lower bound for the temporal parame-
ters for both 1D and 2D approaches for 2 experiments: a multi-echo experi-
ment designed to estimate metabolite T2s, and a functional MRS experiment
designed to estimate fractional change (𝛿) in metabolite concentrations. We
investigated the dependence of the relative standard deviation (SD) of T2 in
multi-echo and 𝛿 in functional MRS.
Results: When peaks were spectrally distant, 2D fitting improved precision
by approximately 20% relative to 1D fitting, regardless of the experiment and
other parameter values. These gains increased exponentially as peaks drew
closer. Dependence on temporal model parameters was weak to negligible.
Conclusion: Our results strongly support a 2D approach to MRS fitting
where applicable, and particularly in nuclei such as hydrogen and deu-
terium, which exhibit substantial spectral overlap.
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1 INTRODUCTION

Dynamic MRS refers to an experiment in which a series
of 1D spectra are acquired sequentially, often while

varying a sequence parameter or administering an external
time-dependent stimulus or manipulation. This encom-
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passes a wide range of experimental designs, including
observation of the dynamic incorporation of carbon-13
and deuterium–labeled metabolites following the injec-
tion of a labeled compound1–7; functional MRS designed
to detect endogenous metabolic changes in glutamate,
GABA, and lactate in response to an external visual, motor,
or cognitive manipulation8–20; multiparametric MR spec-
troscopic experiments aimed at simultaneously and effi-
ciently quantifying multiple spin parameters21–26; diffu-
sion MRS whereby the diffusion-weighting gradients are
varied to quantify the diffusion coefficient of different
metabolites27–32; and even simple relaxometry, where, for
example, T2 might be measured by measuring spectral data
at different TEs (MTE).33–41

The analysis of the 2D spectral-temporal data sets pro-
duced by dynamic MRS experiments is conventionally
done piecewise in two stages. First, each spectrum is fit
using a linear combination of basis functions42–48 to extract
the temporal dependence of each metabolite’s amplitudes.
Then, the time-series for each metabolite’s amplitude is
fit to the dynamic model, which describes the temporal
behavior to extract the relevant temporal constants, such
as T1 or T2, diffusion coefficients, or metabolite kinetics,
depending on the experiment in question. We will refer
to this approach as piecewise, or 1D. Recently, it has been
suggested that multiple spectra comprising a dynamic data
set should be analyzed and fitted in tandem rather than
sequentially using a model that combines the spectral and
temporal degrees of freedom.42,49–51 Such an approach uti-
lizes the temporal correlations inherent in the data to
benefit the spectral estimations of metabolite amplitudes,
and—in principle—should provide more precise and accu-
rate estimates of the temporal constants. We will refer to
such approaches as dynamic, or 2D. The two approaches
are contrasted schematically in Figure 1.

In the current work, we set out to investigate the theo-
retical gains in precision offered by 2D fitting of dynamic
MRS data relative to the more conventional 1D approach.
Rather than quantifying the exact improvements, which
would invariably depend on the specific details of the tem-
poral and spectral models, we instead asked ourselves two
questions: First, is 2D fitting indeed uniformly superior
to 1D fitting? And, if so, which specific spectral or tem-
poral features—or combination thereof—yielded the most
substantial gains? To answer these, we assumed a sim-
ple spectral model consisting of two Gaussian peaks, and
investigated two temporal models: an MTE relaxometry
experiment designed to estimate T2 (which, formally, is
equivalent to a diffusion-weighted experiment designed to
estimate the apparent diffusion coefficient), and a func-
tional MRS (fMRS) experiment in which one of the peaks
changes in response to an external stimulus, whereas the
other remains unchanged. For each model (MTE, fMRS)

and each approach (1D, 2D), we calculated the Cramer
Rao lower bound (CRLB),52,53 a theoretical estimate on the
variance of the relevant dynamical parameter—T2 (MTE)
and fractional metabolite change (fMRS)—and explored
the relative gain in precision offered by 2D fitting.

2 METHODS

2.1 Models

Our spectral model
(
𝜈|𝜃(𝜈)

)
consisted of the sum of two

Gaussian lineshapes, each with a respective amplitude (A),
center (𝜇), and linewidth (Δ):


(
𝜈|𝜃(𝜈)

)
= G (𝜈|A1, 𝜇1,Δ1) + G (𝜈|A2, 𝜇2,Δ2) , (1)

with 𝜃
(𝜈) = (A1, 𝜇1,Δ1,A2, 𝜇2,Δ2 ), and

G(𝜈|A, 𝜇,Δ) = A ⋅ exp
(
−(𝜈 − 𝜇)2

2Δ2

)
. (2)

In this notation, 𝜈 is the independent frequency variable,
whereas A, 𝜇, andΔ are the model parameters (Figure 2A).

We considered two temporal models. The first tempo-
ral model is that of a MTE experiment (Figure 2B) in which
the signal decays exponentially with a time constant T2 as
a function of the TE:

TMTE
(
TE|𝜃(t)

)
= TMTE (TE|s0,T2) = s0 ⋅ exp

(
−TE

T2

)
,

(3)
with 𝜃

(t) = (s0,T2) the vector of temporal constants. We
note that an MTE experiment is formally equivalent to
a simple diffusion-weighted experiment in which peak
amplitudes decay exponentially with a time constant
given by the apparent diffusion coefficient D as a func-
tion of the b value, which is altered by changing the
diffusion-encoding gradient amplitudes (so 𝜃

(t) = (s0,D)).
The full 2D dynamic model for each peak consisted of
the outer product of the spectral and temporal models,
with 1 minor modification. The amplitude parameter s0 in
the temporal model was set to unity, given that the spec-
tral amplitudes A1, A2 can be used to adjust the overall
amplitude of each peak:

T(2D)
MTE(𝜈,TE|𝜃)
= T(2D)

MTE
(
𝜈,TE|A1, 𝜇1,Δ1,T2,A,A2, 𝜇2,Δ2,T2,B

)

= G (𝜈|A1, 𝜇1,Δ1) ⋅ TMTE
(
TE|1,T2,A

)
+ G (𝜈|A2, 𝜇2,Δ2)

⋅TMTE
(
TE|1,T2,B.

)
.

The second temporal model is that of an fMRS exper-
iment using a single-condition block design (Figure 2C).
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F I G U R E 1 A schematic overview of 1D
(piecewise) versus 2D (dynamic) fitting schemes for
a fictitious multi-echo MRS experiment designed to
estimate the T2. (Top) In 1D fitting, data is initially
fit to a spectral model to extract the relevant spectral
parameters, 𝜃(𝜈), such as the area (or amplitude) of
each spectral peak or metabolite basis function.
These are then fit to the relevant temporal model to
extract the relevant temporal parameters, 𝜃(t), which
for a multi-echo experiment include T2. (Bottom) In
2D fitting, the entire spectral-temporal dataset is fit
simultaneously to a spectral-temporal model. Such
fitting simultaneously furnishes all spectral and
temporal parameters—for example, T2 for a
multi-echo experiment

TE (Sec) Freq. (Hz)

Temporal
Parameter

1D FITTING (PIECEWISE)

Spectral Fitting
Spectral Model:  �(�|�(�)) Model: �(TE|�(t))

Spectral-Temporal Fitting

Temporal Fitting

TE (Sec)Freq. (Hz)

T2

2D FITTING (DYNAMIC)

Temporal
Parameter

T2

Spectral-Temporal
Model: �(2D)(����|�(�)��(t))

Such a design is described the convolution of a boxcar
function H(t) of unit amplitude between some initial (ti)
and final (tf) times—representing the external stimulus,
such as a visual checkerboard pattern—and a point spread
function (PSF), which we have taken to be Gaussian with

a width 𝜎: PSF(t|𝛿, k) = G
(

t|
√

2
𝜋k2 𝛿, 3k, k

)
. This ensures

that the fractional change in the metabolite’s amplitude
will be given by 𝛿. The shift 3k ensures causality, effectively
zeroing out the temporal dynamics prior to the adminis-
tration of the stimulus. Thus,

TfMRS
(

t|𝜃(t)
)
= TfMRS (t|s0, 𝛿, k)

= s0(1 + (PSF ⊗ H)(t))
= s0

(
1 + 𝛿

2

[
erf

(
tf−t
√

2k2

)
− erf

(
ti−t
√

2k2

)]) ,

whereas the full 2D spectral-temporal model is:

T(2D)
fMRS(𝜈, t|𝜃)

= T(2D)
fMRS (𝜈, t|A1, 𝜇1,Δ1, 𝛿A, kA,A2, 𝜇2,Δ2, 𝛿B, kB)

= G (𝜈|A1, 𝜇1,Δ1) ⋅ TfMRS (t|1, 𝛿A, kA) + G (𝜈|A2, 𝜇2,Δ2) ⋅
TfMRS (t|1, 𝛿B, kB) .

This temporal model can also be used to describe the
incorporation of a labeled nucleus—such as deuterium
or carbon-13—in the observable peaks as it undergoes
different metabolic cycles within the tissue.

2.2 Cramer Rao lower bounds (CRLBs)

For all models, we assume the acquired data contains addi-
tive, normally distributed noise with zero mean. Under
this simplification, the Fisher information matrix for
a model with 𝜂 = (𝜂1(𝜃), 𝜂2(𝜃), … , 𝜂N(𝜃)) measurements,
which depend on M parameters 𝜃 = (𝜃1, 𝜃2, … , 𝜃M), has
matrix elements given by:

Fmn =
𝜕𝜂

T

𝜕𝜃m
Σ−1 𝜕𝜂

𝜕𝜃n
+ 1

2
trace

(
Σ−1 𝜕𝛴

𝜕𝜃m
Σ−1 𝜕𝛴

𝜕𝜃n

)
, (4)

where Σ is the N × N covariance matrix of the N measure-
ments.

For the full 2D models, the covariance matrix is diag-
onal and proportional to the identity, Σ = 𝜎

2
nI, with the

noise’s variance being 𝜎
2
n. The means are all indepen-

dent, drawn from the same distribution, and given by the
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(A)

(B)

(C)

F I G U R E 2 An illustration of the spectral and temporal
models under investigation, without any added noise. (A) The
spectral model, which consists of two Gaussians, for several values
of the distance parameter d (Equation (5)). Additional parameters:
unit amplitudes, FWHM of 8 Hz, SW = 64 Hz, 64 sampled points.
(B) MTE temporal-spectral data with equal amplitudes,
FWHM = 8 Hz, d = 1.5, T2,A = T2,B = 200 ms, TE = 0, 0.05, … 0.35
s. (C) fMRS temporal-spectral data with FWHM = 8 Hz, d = 1.5,
equal amplitudes, 𝛿A = 0, 𝛿B = 0.2, kA = kB = 2 s, pulse TR = 2 s.
The red-shaded patch indicates the presence of the external
stimulus between 30 and 90 s. The two purple solid curves trace the
maxima of the 2 peaks as a function of time, showing their temporal
dynamics: 1 peak remains unaffected by the stimulus (𝛿A = 0),
whereas the other increases and then returns to baseline (𝛿B = 0.2)
fMRS, functional MRS; MTE, multi-echo.

relevant model expression; for example, for MTE MRS,
𝜂𝑗 ∼ N

(
T(2D)

MTE(𝜈, t|𝜃), 𝜎2
)

. This implies the derivatives of
the covariance matrix are all zero, and the second term in
Equation (4) can be omitted. The M ×M CRLB matrix is
derived by inverting the M ×M Fisher information matrix
and equals to covariance matrix of the parameters in 𝜃. The

square root of its diagonal provides the lower bound on
the standard deviation (SD) of each parameter in 𝜃, includ-
ing the relevant temporal constant (e.g., T2,A and T2,B for
MTE MRS). Note that if N(𝜈) points are sampled along
the spectral dimension and N(t) spectra are acquired along
the temporal dimension, then the number of independent
measurements is N = N(𝜈)N(t).

For piecewise 1D fitting approaches, the analysis
is slightly more involved: First, the 1D spectral model
(Equation (1)) is fitted, and then the amplitude of each
peak is fit to the corresponding 1D temporal model
to extract the relevant temporal constant. Consequently,
Equation (4) is first computed and inverted to calculate
the 6 × 6 covariance matrix of the 6 spectral parameters
in 𝜃

(𝜈) (𝜎n is assumed the same as for the full 2D model).
The 2 × 2 covariance submatrix for the two amplitudes
A1,A2 is then extracted for each 1D spectrum, and N(t)

such covariance matrices are then chained together along
the diagonal to produce a 2N(t) × 2N(t) covariance matrix
Σ for the temporal model; the block diagonal form reflects
the statistical dependence of the two spectral amplitudes,
which becomes nonnegligible once the peaks overlap. The
expression for the mean, 𝜂k

(
𝜃
(t)), is given by the cor-

responding expression for the 1D temporal model (e.g.,
Equation (3) for MTE MRS). Calculating and inverting
Equation (4) produces the covariance matrix of the tempo-
ral parameters, and the square root of its diagonal yields
the SDs of each of the temporal constants. The MAT-
LAB code for carrying out the calculations of the CRLB is
provided as Supporting Information.

2.3 Spectral parameters

Because spectral lines tend to have very similar linewidths,
we set the widths of our Gaussian lines to be identical
throughout: Δ1 = Δ2 ≡ Δ = 2.355 ⋅ FWHM. Typical spec-
tral lineshapes are approximately 5–10 Hz, and we set
FWHM = 8 Hz. For all simulations, we defined a distance
parameter,

d ≡ 𝜇2 − 𝜇1
√

2 ⋅ FWHM
, (5)

which quantified the closeness of the two Gaussian peaks.
d ≫ 1 implies little to no overlap, whereas d ∼ 1 and lower
signifies significant overlap.

Because the CRLB matrices are always proportional to
𝜎

2
n, the variance of the noise in the spectra, and because

we were only interested in relative SDs between the two
approaches, the absolute value of 𝜎n was irrelevant and set
to unity. The spectral range was set to [−32, 32] Hz and
sampled at a spectral resolution of 1 Hz, equivalent to a
typical FID acquisition time of 1 s, with N(𝜈) = 64.
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2.4 Temporal parameters: MTE

For MTE MRS, we investigated the relative SD of the
two decay constants T2,A and T2,B between the two fitting
approaches as a function of d. First, we considered 3 cases
of equal T2s: T2,A = T2,B = 50,100, and 200 ms. We also cal-
culated the effect of unequal T2s by fixing T2,A = 100 ms
and varying T2,B between 30 and 300 ms for two values of
d: d= 0.7 and d= 1.4. For all cases, the following TEs were
sampled: TE = 0, 50,100, … , 350 ms; This resulted in a 2D
dataset with N(𝜈) × N(t) = 64 × 8 = 512 data points.

2.5 Temporal parameters: fMRS

For fMRS, we investigated the relative SD of the frac-
tional change during activation, 𝛿, between the two fit-
ting approaches. We assumed a 2 min experiment with
TR = 2 s and a 60 s boxcar stimulus administered between
30 and 90 s. Only 1 of the peaks was assumed to change,
whereas the other remained static (𝛿B ≠ 0, 𝛿A = 0). We
plotted the SD of the fractional change 𝛿 for each of
the two peaks as a function of d for both the fast
(k = 2 s) and slow (k = 15 s) metabolite dynamics, for
𝛿B = 0.05, 0.1, and 0.2. We then explored the effect of the
activation timescale, k, for two spectral peak distances,
d = 0.8, 1.5, assuming 𝛿B = 0.1. For each case, the result-
ing 2D dataset consisted of N(𝜈) × N(t) = 64 × 60 = 3840
data points.

3 RESULTS

3.1 Multi-echo (MTE) MRS

The relative gains in precision of T2 offered by 2D fitting
are summarized in Figure 3. Figure 3A shows that the
relative SD is independent of T2 as long as T2,B = T2,A.
When the peaks have little to no spectral overlap (d ∼ 1
and above), this relative gain is 20%. This increases expo-
nentially as the peaks begin to overlap (d → 0), indicat-
ing that 2D fitting could be a powerful tool in resolving
the overlap of metabolites in crowded spectra. Figure 3B
shows that some variation (±20%) in the gain is to be
expected when T2,B ≠ T2,A and the peaks overlap spectrally
(d = 0.7), with the optimal performance being observed
for T2,B = T2,A. No variation is observed when the peaks
do not overlap (d = 1.5). Finally, Figure 3C —plotted for
quality assurance—confirms that the spectral peak ampli-
tudes have no effect on the relative performance because
the CRLB matrix is proportional to the SNR for both 1D
and 2D fittings, and this dependence cancels out once the
1D/2D ratio is formed.

(A)

(B)

(C)

F I G U R E 3 Results: Relative (1D/2D) SD of T2 in an MTE
experiment. Solid lines are for peak A, whereas dashed lines are for
peak B. Unless otherwise stated, TE = 0, 0.05, … , 0.35 s, Spectral
Width = 64 Hz, N(𝜈) = 64 spectral points, FWHM = 8 Hz, and
amplitudes are kept equal. (A) Relative SD as a function of the
distance d between the spectral peaks for several values of T2, which
were kept equal between the two peaks. All curves match almost
perfectly, indicating that the relative performance is independent of
the absolute value of T2 so long as T2,A = T2,B. This also indicates
performance of 2D fitting becomes exponentially better as the peaks
begin to spectrally overlap. (B) Relative SD for two distances (d= 0.7,
1.4) while varying the ratio T2,B∕T2,A (fixing T2,A = 0.1 s). When the
peaks are far apart, the relative performance is independent of the
absolute value of T2 (in accordance with (A)). When overlap occurs,
2D fitting provides the best relative performance when the
relaxation times are equal. (C) The relative SD is a function of the
ratio of amplitudes of the two peaks (fixing A1 = 1) for two different
spectral distances (d = 0.7, 1.4), keeping the amplitude of the first
peak fixed at unity. This “sanity check” confirms that, as expected,
the performance is independent of the SNR because the SD of the
noise cancels out once the ratio of the CRLBs (1D/2D) is taken. For
all plots, as d ≫ 1, the relative performance of 2D fitting remains
fixed at approximately 1.2 (see Discussion section for an
explanation of this) CRLBs, Cramer Rao lower bounds.
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(A)

(B)

(C)

F I G U R E 4 Results: Relative (1D/2D) SD of the fractional
change in metabolite concentrations 𝛿 in an fMRS experiment.
Solid lines are for peak A, whereas dashed lines are for peak B.
Unless otherwise stated, TR = 2 s, TA = 2 min, and stimulus was
administered between 30 and 90 s. Spectral parameters were
Spectral Width = 64 Hz, N(𝜈) = 64 spectral points, FWHM = 8 Hz,
and equal amplitudes. (A) Relative SD as a function of the spectral
distance d between the peaks for several values of 𝛿B (keeping
𝛿A = 0) and fast temporal dynamics (kA = kB = 2 s). All curves
match almost perfectly, indicating that the relative performance is
independent of the fractional change. As with the MTE model, this
indicates performance of 2D fitting becomes exponentially better as
the peaks begin to overlap spectrally. (B) The same as (a) but for
slow temporal dynamics (kA = kB = 15 s). This indicates the
temporal dynamics has virtually no effect on the ability to quantify
metabolite changes when kA = kB. (C) Relative SD as a function of
the ratio kB∕kA, keeping kA fixed at 5 s and varying kB, for two
values of the spectral distance (d = 0.8, 1.5). This indicates that the
ratio of temporal constants has non-zero but negligible (<5%) effect
on quantification precision, even when the peaks overlap. Much
like for the MTE plots (Figure 3), the relative gain in precision for
2D fitting remains fixed at approximately 1.2 as d increases

3.2 Functional MRS (fMRS)

The relative gains in precision of 𝛿, the fractional change
in metabolite concentration, offered by 2D fitting are sum-
marized in Figure 4. The overall behavior of the relative SD
is highly similar between fMRS and MTE MRS: when the
peaks do not overlap, the relative gain in precision for 2D
fitting is approximately 20%, regardless of all other model
parameters; this gain grows exponentially as d → 0. This is
confirmed for both fast (Figure 4A) and slow (Figure 4B)
temporal dynamics. Figure 4C shows the ratio of dynam-
ical time constants kB∕kA has a negligible (<5%) effect on
the relative SD whether or not the peaks overlap spectrally.

4 DISCUSSION

In the Introduction, we have laid out two questions that
we are now poised to answer: Is 2D fitting always supe-
rior to 1D fitting? And when does it achieve its biggest
gains? First, our results confirm that 2D fitting is indeed
uniformly superior to 1D fitting. For all parameter com-
binations considered and for all models, the ratio of SDs
between 2D and 1D approaches exceed ≈ 1.2. The lower
bound was attained for both models once the peaks did
not overlap spectrally (d ≫ 1), regardless of the value of
all other parameters. This can be explained by noting that
all 2D models fit 1 parameter fewer than their 1D coun-
terparts: namely, the amplitude of the temporal model. 1D
approaches initially fit the spectral peak amplitudes and
then reintroduce an amplitude parameter in the temporal
model (e.g., s0 in Equation (3)). It is this redundancy that
is avoided by 2D approaches, in which all scaling is done
only once in the combined 2D model.

The precision offered by 2D fitting improved expo-
nentially when the spectral overlap between the peaks
increased (d → 0). This behavior was observed for both
MTE and fMRS models, regardless of other parameter
values. This strongly supports the notion that 2D fitting
is a powerful tool for handling spectra with significant
overlap—as is the case for proton and deuterium MRS, but
less so for enriched carbon-13 and phosphorus-31 MRS.
The effect of all other parameters was much less signif-
icant: The absolute value of the fractional change (𝛿) in
an fMRS experiment, or the T2 relaxation time in an MTE
experiment, has little effect on the relative quantification
precision. In particular, as long as T2,A = T2,B in an MTE
experiment, its absolute value had virtually no effect on
precision, and different T2,B∕T2,A ratios (from 0.3 to 3.0) led
to only a ±20% deviation in relative precision.

Where do the substantial gains in precision come from
as d → 0? When the spectral peaks are far apart (d ≫ 1),
the 6× 6 CRLB matrix for the spectral components is block
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diagonal because the parameters of the first peak (ampli-
tude, center, and width) are uncorrelated with those of
the second peak. As the spectral peaks overlap, the CRLB
deviates from this block diagonal form, and substantial
spectral correlations form. 1D fitting records the individual
values of the fitted spectral parameters, effectively tracing
out these off-diagonal matrix elements and discarding cru-
cial information about their correlations. No such tracing
occurs during 2D fitting.

To put the relative gains of 2D fitting in perspective, we
note that an N-fold increase in precision is equivalent to an
N-fold increase in SNR. Such gains can reduce the sample
size Ns required to observe an effect with a given statistical
significance 𝛼 and power (1 − 𝛽)54:

Ns =
(

z1−𝛼𝜎B − z𝛽𝜎A

)2

(𝜇B − 𝜇A)2
.

Here, 𝜎B, 𝜇B are the SD and mean of the distribution of a
quantity (e.g., percent change, or T2) in population B (e.g.,
patients), whereas 𝜎A, 𝜇A are the SD and mean in popula-
tion A (e.g., controls). zx is the inverse of the normal cumu-
lative distribution function. For typical values of 𝛼 = 0.05,
𝛽 = 0.2, one has z1−𝛼 = 1.645 and z𝛽 = −0.842. Reducing
the SD of both populations by a factor of two reduces the
required sample size by a factor of 4—a substantial gain
in experimental time, cost, and complexity (however, it
should be noted that in a real experiment, 𝜎A, 𝜎B will be
determined by both the intrasubject precision—which 2D
fitting improves—and intersubject variability, on which
2D fitting has no effect). Even for the case of no spectral
overlap, where gains of about 20% in precision are to be
expected, a commensurate reduction of 1.22 ≈ 1.44 in the
required sample size can be had. Similar substantive gains
can be had in sensitivity and specificity, indicating 2D fit-
ting can have a major impact on MRS in both the clinic and
biomedical research.

4.1 Improvements to accuracy

The current work has examined gains to precision by
calculating the CRLB for both 1D and 2D approaches
to fitting spectral-temporal data. The CRLB provides a
lower bound for unbiased estimators; that is, this work
has implicitly assumed that the fitting algorithms used
are unbiased and therefore perfectly accurate. This is
not uncommon: the Gauss–Markov theorem states that
minimizing the least squares (i.e., L2-norm) between the
data and model function—an approach often taken dur-
ing fitting spectral data—produces unbiased parameter
estimations witha precision that matches the CRLB

(regardless of the SNR, and assuming noise is uncorre-
lated and has equal variances, which is the case for MRS
data). However, our conclusions should be treated with
some caution if the fitting is expected or known to produce
biased parameter estimations, for example, if one chooses
to minimize some other norm, such as L1.

Another source of bias occurs when either the spec-
tral or temporal models do not describe the behavior of
the data. Incorrect models will invariably bias the fitting
results for both the 1D and 2D approaches, although it is
unclear whether it should affect one or the other more
severely. Assessing the effects of incorrect modeling is
outside the scope of this work, which has carried out com-
parisons under the assumption that the temporal model
is known and almost identical between the 1D and 2D
approaches.

5 CONCLUSION

By calculating the theoretical CRLB for both 1D and 2D
approaches, we have shown that 2D fitting uniformly out-
performs 1D fitting, with exponential gains when peaks
overlap spectrally. Our work strongly motivates the transi-
tion to spectral-temporal fitting packages for all dynamic
MRS datasets.
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