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Abstract
Commonly used semiparametric estimators of causal effects specify parametric
models for the propensity score (PS) and the conditional outcome. An exam-
ple is an augmented inverse probability weighting (IPW) estimator, frequently
referred to as a doubly robust estimator, because it is consistent if at least one of
the two models is correctly specified. However, in many observational studies,
the role of the parametric models is often not to provide a representation of the
data-generating process but rather to facilitate the adjustment for confounding,
making the assumption of at least one true model unlikely to hold. In this paper,
we propose a crude analytical approach to study the large-sample bias of estima-
tors when the models are assumed to be approximations of the data-generating
process, namely, when all models are misspecified. We apply our approach to
three prototypical estimators of the average causal effect, two IPW estimators,
using a misspecified PS model, and an augmented IPW (AIPW) estimator, using
misspecified models for the outcome regression (OR) and the PS. For the two
IPWestimators, we show that normalization, in addition to having a smaller vari-
ance, also offers some protection against bias due to model misspecification. To
analyze the question of when the use of two misspecified models is better than
one we derive necessary and sufficient conditions for when the AIPW estima-
tor has a smaller bias than a simple IPW estimator and when it has a smaller
bias than an IPW estimator with normalized weights. If the misspecification of
the outcome model is moderate, the comparisons of the biases of the IPW and
AIPW estimators show that the AIPW estimator has a smaller bias than the IPW
estimators. However, all biases include a scaling with the PS-model error and
we suggest caution in modeling the PS whenever such a model is involved. For
numerical and finite sample illustrations, we include three simulation studies
and corresponding approximations of the large-sample biases. In a dataset from
the National Health and Nutrition Examination Survey, we estimate the effect of
smoking on blood lead levels.
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1 INTRODUCTION

Identifying an average causal effect of a treatment with observational data requires adjustment for background variables
that affect both the treatment and the outcome under study. Often parametric models are assumed for parts of the joint
distribution of the treatment, outcome, and background variables (covariates) and large-sample properties of estimators
are derived under the assumption that the parametric models are correctly specified.
Inverse probability weighting (IPW) estimators use the difference between the weighted means of the outcomes for the

treatment groups as an estimator of the average causal effect. See, for example, the early paper by Hirano et al. (2003)
for a nonparametric implementation of standard IPW estimators of the average causal effect. Under an assumption of
no unmeasured confounding, IPW estimators reweight the observed outcomes to represent a full sample of potential
outcomes, missing and observed, by letting each observed outcome account for itself and other individuals with similar
characteristics. IPW estimators can be found in applied literature (see Chang et al., 2017; Kwon et al., 2015 for examples)
and their properties have been generalized by Robins, Rotnitzky, and others (Robins & Rotnitzky, 1994; Robins et al., 1995,
2000) to address both confounding bias in observational studies and bias due to missing data. Vansteelandt et al. (2010)
and Seaman and White (2013) provide reviews.
Properties of IPW estimators for estimating the average causal effect under the assumption that a parametric propensity

score (PS)model is correctly specified have been described (il Kimet al., 2019; Lunceford&Davidian, 2004; Yao et al., 2010).
Other studies of IPW estimators includes investigating properties when using different weights, for example, stabilized
(Hernán et al., 2000; Hernán & Robins, 2006), normalized (Busso et al., 2014; Hirano & Imbens, 2001), or trimmed (Ma &
Wang, 2020).
To decrease reliance on the choice of a parametric model and increase the efficiency of augmented IPW (AIPW) estima-

tors, Robins and Rotnitzky (1994) proposed including a combination of regression adjustment with weighting based on
the PS. See also the review by Seaman and Vansteelandt (2018). The AIPW estimators are referred to as doubly robust (DR)
estimators (Bang & Robins, 2005; Tsiatis, 2007) because they are consistent estimators of the average causal effect if either
a model for the PS or the outcome regression (OR)model is correct (Scharfstein et al., 1999). The efficiency of different DR
estimators is a key property and the variances of the estimators have been described under correct specification of at least
one of the models (Cao et al., 2009; Tan, 2010). When both models are correct, the estimator reaches the semiparametric
efficiency bound described in Robins and Rotnitzky (1994). The large-sample properties of IPW estimators with standard,
normalized and variance minimized weights, together with an AIPW estimator were studied and compared in Lunceford
and Davidian (2004) under correct specification of the PS and ORmodels. Multiply robust estimators allow several candi-
date models for the PS and OR, respectively. The property of multiple robustness means that the estimators are consistent
for the true average treatment effect if any one of the multiple models is correctly specified (Han &Wang, 2013).
There are few studies of doubly or multiply robust estimators under misspecification of both (all) the PS and the OR

models. Kang and Schafer (2007) studied and compared the performance of an AIPW estimator for missing data under
misspecification of both the PS and OR model. They concluded that many DR methods perform better than simple IPW.
However, a regression-based estimator under amisspecifiedmodel was not improved upon. The paper was commented on
and the relevance of the results was discussed by several authors. See, for example, Tsiatis andDavidian (2007), Tan (2007),
and Robins et al. (2007). In Waernbaum (2012), a matching estimator was compared to IPW and AIPW estimators under
misspecification of both the PS andORmodels. Here, a robustness class for thematching estimator undermisspecification
of the PS model was described. Formulated in the missing data framework, Tan (2010) evaluated several semiparametric
estimators, including IPW and AIPW estimators. In the evaluation, additional criteria were proposed describing robust-
ness classes of the estimators. Vermeulen and Vansteelandt (2015) proposed a bias-reduced AIPW estimator that locally
minimizes the squared first-order asymptotic bias under misspecification of both working models. One of the difficulties
in the estimation of PSs occurs when the treatment groups have substantially different covariate distributions resulting
in some PSs being close to zero or one. This lack of overlap raises issues with respect to model specification. Parametric
binary response models, such as the commonly used probit and logit models, are similar in the middle areas of their argu-
ments. However, for probabilities closer to zero or one, they tend to differmore resulting in the specified parametricmodel
being more influential. In Zhou et al. (2020), misspecification of the PS linked to limited overlap is investigated for causal
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effect estimators using balancing weights (Li et al., 2018). Comparing IPW estimators with and without trimming with
overlap weights, matching weights, and entropy weights, they find in extensive simulations that the latter three methods
outperform the former (IPW and trimmed IPW) with respect to bias, root-mean-squared error and coverage (Zhou et al.,
2020).
In this paper, we describe two commonly used IPW estimators and a prototypical AIPW estimator of the average causal

effect under the assumption that none of the working models is correctly specified. For this purpose, we study the differ-
ence between the probability limit of the estimator under model misspecification and the true average causal effect. The
purpose of this definition of the bias is that the estimators under study converge to a well-defined limit, that is not, how-
ever, necessarily consistent for the true average causal effect. We study the biases of the (A)IPW estimators and compare
them under the same misspecification of the PS model. The three estimators contain an error involving the ratio of the
true PS and the limiting misspecified PS; however, the error affects the estimators in different ways. As the biases for the
three estimators can be in different directions, we describe sufficient and necessary conditions using inequalities involv-
ing the absolute value of the biases. For a simple and a normalized IPW estimator, we show that the normalization in
general moderates the bias due to the PS model misspecification. Comparing the IPW estimators to the AIPW estimator,
the biases provide a means to describe when two wrong models are better than one, which would normally be the case
for a moderate misspecification of the outcome model. Three simulation studies are performed to investigate the biases
for finite samples. The data-generating processes and the misspecified models from the simulation designs are also used
for numerical approximations of the large-sample properties derived in the paper.
The paper proceeds as follows. Section 2 presents themodel and theory togetherwith the estimators and their properties

when the working models are correctly specified. Section 3 presents a general approach and associated assumptions to
study model misspecification. In Section 4, the generic biases are derived and comparisons between the estimators are
performed.We present three simulation studies in Section 5 containing both finite sample properties of the estimators and
numerical large-sample approximations. We apply the estimators under study on an observational dataset in Section 6
where we evaluate the effect of smoking on blood lead levels, and thereafter we conclude with a discussion.

2 MODEL AND THEORY

The potential outcome framework defines a causal effect as a comparison of potential outcomes that would be observed
under different treatments (Rubin, 1974). Let 𝑋 be a vector of pretreatment variables, referred to as covariates, 𝑇 a binary
treatment, with realized value 𝑇 = 1 if treated and 𝑇 = 0 if control. Under SUTVA (Rubin, 1980), the causal effect of the
treatment is defined as a contrast between two potential outcomes, for example, the difference, 𝑌(1) − 𝑌(0), where 𝑌(1)
is the potential outcome under treatment and 𝑌(0) is the potential outcome under the control treatment. The observed
outcome 𝑌 is assumed to be the potential outcome for each level of the treatment 𝑌 = 𝑇𝑌(1) + (1 − 𝑇)𝑌(0), so that the
data vector that we observe is (𝑇𝑖, 𝑋𝑖, 𝑌𝑖), where 𝑖 = 1, … , 𝑛 are assumed independent and identically distributed copies.
In the remainder of the paper, we will drop the subscript i for the random variables when not needed. Since each indi-
vidual only can be subject to one treatment, either 𝑌(1) or 𝑌(0) will be missing. If the treatment is randomized, the
difference between the sample averages of the treated and controls will be an unbiased estimator of the average causal
effectΔ = 𝐸[𝑌(1) − 𝑌(0)], the parameter of interest. In the following, wewill use the notation𝜇1 = 𝐸[𝑌(1)], 𝜇0 = 𝐸[𝑌(0)]
for the marginal expectations and 𝜇1(𝑋) = 𝐸(𝑌(1)|𝑋), 𝜇0(𝑋) = 𝐸(𝑌(1)|𝑋) for their conditional counterparts. We denote
the probability of being treated conditional on the covariates, the PS by 𝑒(𝑋) = 𝑃(𝑇 = 1|𝑋). When the treatment is not
assigned randomly,common identification criteria include assumptions of no unmeasured confounding and overlap:

Assumption 1: (No unmeasured confounding). 𝑌(𝑡) ⟂⟂ 𝑇|𝑋, 𝑡 = 0, 1,
Assumption 2: (Overlap). 𝜂 < 𝑃(𝑇 = 1|𝑋 = 𝑥) < 1 − 𝜂, ∀𝑥 and some 𝜂 > 0,
where the assumption that 𝑃(𝑇 = 1|𝑋 = 𝑥) is bounded away from zero and one guarantees the existence of a consistent
estimator (Khan & Tamer, 2010). Under Assumptions 1 and 2, we can estimate the average causal effect by weighting the
observed outcomes with the inverse of the PSs, because

Δ = 𝐸

[
TY
𝑒(𝑋)

−
(1 − 𝑇)𝑌

1 − 𝑒(𝑋)

]
,
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leading to an estimator Δ̂IPW1
defined by:

Δ̂IPW1
=
1

𝑛

𝑛∑
𝑖=1

𝑇𝑖𝑌𝑖

𝑒(𝑋𝑖)
−
1

𝑛

𝑛∑
𝑖=1

(1 − 𝑇𝑖)𝑌𝑖

1 − 𝑒(𝑋𝑖)
. (1)

A common version of the simple IPW estimator in (1) is an IPW estimator Δ̂IPW2
with normalized weights

Δ̂IPW2
=

(
𝑛∑
𝑖=1

𝑇𝑖

𝑒(𝑋𝑖)

)−1 𝑛∑
𝑖=1

𝑇𝑖𝑌𝑖

𝑒(𝑋𝑖)
−

(
𝑛∑
𝑖=1

1 − 𝑇𝑖

1 − 𝑒(𝑋𝑖)

)−1 𝑛∑
𝑖=1

(1 − 𝑇𝑖)𝑌𝑖

1 − 𝑒(𝑋𝑖)
. (2)

Using parametric IPW, we assume a finite-dimensional model for 𝑒(𝑋) = 𝑒(𝑋, 𝛽), 𝛽 ∈ 𝑅𝑝.

Assumption 3: (PS model). The PS 𝑒(𝑋) follows a model 𝑒(𝑋, 𝛽) parameterized by, 𝛽 = (𝛽1, … , 𝛽𝑝), and 𝑒(𝑋) is the
estimated PS 𝑒(𝑋, 𝛽), with 𝛽 a consistent estimator of 𝛽.

Under Assumptions 1–3, the IPW estimators are consistent estimators of the average causal effect Δ with asymptotic
distribution

√
𝑛(Δ̂IPW𝑘

− Δ) ∼ 𝑁(0, 𝜎2IPW𝑘), 𝑘 = 1, 2. Asymptotic properties of (1) and (2) are described in Lunceford and
Davidian (2004) under an assumption of a logistic regression model for the treatment assignment.
Similar to themodeling of the PS, it can be assumed that the OR follows a parametric model 𝜇𝑡(𝑋) = 𝜇𝑡(𝑋, 𝛼𝑡), 𝛼𝑡 ∈ 𝑅𝑝,

𝑡 = 0, 1.

Assumption 4: (OR model). The conditional expectation, 𝜇𝑡(𝑋) = 𝐸(𝑌(𝑡)|𝑋), 𝑡 = 0, 1, follows a model 𝜇𝑡(𝑋, 𝛼𝑡), 𝑡 = 0, 1
parameterized by 𝛼𝑡 = (𝛼𝑡1, … , 𝛼𝑡𝑞𝑡 ), and �̂�𝑡(𝑋) is the estimated OR 𝜇𝑡(𝑋, �̂�𝑡), with �̂�𝑡 a consistent estimator of 𝛼𝑡.

In addition, we study a prototypical AIPW estimator (Lunceford & Davidian, 2004; Tsiatis, 2007)

Δ̂AIPW =
1

𝑛

𝑛∑
𝑖=1

𝑇𝑖𝑌𝑖 − (𝑇𝑖 − 𝑒(𝑋𝑖))�̂�1(𝑋𝑖)

𝑒(𝑋𝑖)

−
1

𝑛

𝑛∑
𝑖=1

(1 − 𝑇𝑖)𝑌𝑖 + (𝑇𝑖 − 𝑒(𝑋𝑖))�̂�0(𝑋𝑖)

1 − 𝑒(𝑋𝑖)
. (3)

Under Assumptions 1–4 and regularity conditions, the large-sample distribution is
√
𝑛(Δ̂AIPW − Δ) ∼ 𝑁(0, 𝜎

2
AIPW).

For example, a model assumption for the treatment assignment could be a logistic regression model 𝑒(𝑋, 𝛽) = [1 +
exp(−𝑋′𝛽)]−1 with 𝑒(𝑋) the fitted values of the PS when 𝛽 is a maximum likelihood estimator of 𝛽. The OR model could
be a linearmodel𝜇𝑡(𝑋, 𝛼𝑡) = 𝑋′𝛼𝑡 where �̂�𝑡(𝑋), 𝑡 = 0, 1 are the fitted valueswhen �̂�𝑡 is the ordinary least squares estimator.

3 MODELMISSPECIFICATION

Our interest lies in the behaviors of the estimators when the PS and the ORmodels are misspecified. For this purpose, we
replace Assumptions 3 and 4 with two other assumptions defining the probability limit of the estimators under a general
misspecification. The misspecifications will further be used to define a general bias of the IPW and DR estimators. When
the PS is misspecified an estimator, for example, a quasi-maximum likelihood estimator (QMLE) is not consistent for 𝛽 in
Assumption 3. However, a probability limit for an estimator undermodelmisspecification exists under general conditions,
see, for example, White (1982, Theorem 2.2) for QMLE or Wooldridge (2010, Section 12.1) and Boos and Stefanski (2013,
Theorem 7.1) for estimators that can be written as a solution of an estimating equation (M-estimators).
In the following, and as an alternative to Assumptions 1 and 4, we will assume that such limits exist. Below we define

an estimator 𝑒∗(𝑋) of the PS under a misspecified model 𝑒(𝑋, 𝛽∗).

Assumption 5 (Misspecified PS-model parameters). Let 𝛽∗ be an estimator under model misspecification, 𝑒(𝑋, 𝛽∗), then
𝛽∗

𝑝
⟶ 𝛽∗.
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Under model misspecification, the probability limit of 𝛽∗ is generally well defined; however, 𝑒(𝑋, 𝛽∗) is not equal to
the true PS 𝑒(𝑋). In the following, we use the notation 𝑒∗(𝑋) as the estimated PS under model misspecification and
𝑒∗(𝑋) = 𝑒(𝑋, 𝛽∗) under Assumption 5. Below we give an example for true and misspecified parametric models, how-
ever, for Assumption 5, we do not need the existence of a true parametric model. We use the concept of quasi-maximum
likelihood used for maximum likelihood estimators when parts of the distribution are misspecified.

Example 1. For one confounder 𝑋 and a true PS model, 𝑒(𝑋, 𝛽) = [1 + exp(−𝛽0 − 𝛽1𝑋 − 𝛽2𝑋2)]−1 assume that we
misspecify the PS with a probit model 𝑒(𝑋, 𝛽∗) = Ψ(−𝛽∗

0
− 𝛽∗

1
𝑋), that is, we misspecify the link function and omit a

second-order term. Let 𝛽∗ = (𝛽∗
0
, 𝛽∗
1
) be the QML estimator of the parameters in 𝑒(𝑋, 𝛽∗) obtained by maximizing the

quasi-likelihood

ln =

𝑛∑
𝑖=1

(𝑇𝑖 ln 𝑒(𝑋𝑖, 𝛽
∗) + (1 − 𝑇𝑖) ln(1 − 𝑒(𝑋𝑖, 𝛽

∗))).

Then 𝑒∗(𝑋) = Ψ(−𝛽∗
0
− 𝛽∗

1
𝑋), 𝛽∗ = (𝛽∗

0
, 𝛽∗
1
)

𝑝
⟶ 𝛽∗ = (𝛽∗

0
, 𝛽∗
1
) under Assumption 5 and 𝑒∗(𝑋) = Ψ(−𝛽∗

0
− 𝛽∗

1
𝑋), where

Ψ() is the CDF of a standard normal random variable.

When considering the existence of true andmisspecified parametric models, as illustrated in Example 1, the parameters
in 𝛽 and the limiting parameters 𝛽∗ under the misspecified model need not to be of the same dimension. For instance, the
true model could contain higher order terms and interactions that are not present in the estimation model.
The next assumption concerns overlap under model misspecification.

Assumption 6: (Overlap under misspecification). 𝜈 < 𝑒∗(𝑋) < 1 − 𝜈, for some 𝜈 > 0.

In addition to the PS model, we also consider misspecified OR models, 𝜇𝑡(𝑋, 𝛼∗𝑡 ), 𝑡 = 0, 1. Denote by �̂�
∗
𝑡 , 𝑡 = 0, 1 the

estimator of the parameters in 𝜇𝑡(𝑋, 𝛼∗𝑡 ).

Assumption 7: (Misspecified OR model parameters). Let �̂�∗𝑡 be an estimator under model misspecification 𝜇𝑡(𝑋, 𝛼
∗
𝑡 ),

𝑡 = 0, 1, then �̂�∗𝑡
𝑝
⟶ 𝛼∗𝑡 , 𝑡 = 0, 1.

In the following, we use the notation �̂�∗𝑡 (𝑋) as the estimated OR under model misspecification and 𝜇
∗
𝑡 (𝑋) = 𝜇𝑡(𝑋, 𝛼

∗
𝑡 )

under Assumption 7 and 𝜇∗𝑡 for the expected value 𝐸[𝜇
∗
𝑡 (𝑋)], 𝑡 = 0, 1.

Assumptions 5 and 7 are defined for misspecified PS and OR models for the purpose of describing their influence on
the estimation of Δ. The estimators (1)–(3) can be written by estimating equations where the equations solving for the
PS and OR parameters are set up below the main equation for the (A)IPW estimators. See, for example, Lunceford and
Davidian (2004) and Williamson et al. (2014). Assuming parametric PS and OR models, the IPW estimators correspond
to solving 2 + 𝑝 estimating equations

∑𝑛

𝑖=1
𝜓(𝜃, 𝑌𝑖, 𝑇𝑖, 𝑋𝑖) = 0 for the parameters 𝜃IPW𝑘

= (𝜇1, 𝜇0, 𝛽), 𝑘 = 1, 2, and for the
AIPW estimator 2 + 𝑝 + 𝑞1 + 𝑞0 estimating equations for the parameters 𝜃AIPW = (𝜇1, 𝜇0, 𝛽, 𝛼1, 𝛼0). Using the notation
for the misspecified models in Assumptions 5 and 7, the estimating equations change according to the dimensions of the
parameters 𝛽∗ and𝛼∗𝑡 , 𝑡 = 0, 1. A key condition forAssumptions 5 and 7 to hold is that themisspecification of the PS and/or
OR provides estimating equations that uniquely define the parameters 𝛽∗ and 𝛼∗𝑡 , 𝑡 = 0, 1, although, as a consequence of
themisspecification, the resulting (A)IPW estimators will be biased. In the next section, we present the asymptotic bias for
the (A)IPW estimators under study with general expressions including the limits of the misspecified PS and OR models.

4 BIAS RESULTING FROMMODELMISSPECIFICATION

4.1 General biases

We study the large-sample bias of Δ̂IPW1
, Δ̂IPW2

, and Δ̂AIPW undermodel misspecification and define the estimators Δ̂∗IPW1
,

Δ̂∗IPW2
, and Δ̂∗AIPW by replacing 𝑒(𝑋) in Equations (1)–(3) with 𝑒∗(𝑋). For theAIPWestimator, we additionally replace �̂�𝑡(𝑋)

with �̂�∗𝑡 (𝑋), 𝑡 = 0, 1.
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To assess the properties of the estimators, we assume 1, 2, 5, 6, and 7 and regularity conditions (see Appendix A.1). We
evaluate the difference between the probability limits of the estimators under model misspecification and the average
causal effect Δ for the (A)IPW estimators.
Under Assumptions 1–2 and 5–6, the biases under model misspecification for Δ̂∗IPW1

and Δ̂∗IPW2
are

Δ̂∗IPW1
− Δ

𝑝
⟶ 𝐸

[
𝑒(𝑋)

𝑒∗(𝑋)
𝜇1(𝑋)

]
− 𝐸

[
1 − 𝑒(𝑋)

1 − 𝑒∗(𝑋)
𝜇0(𝑋)

]
− (𝜇1 − 𝜇0), (4)

Δ̂∗IPW2
− Δ

𝑝
⟶

𝐸
[
𝑒(𝑋)

𝑒∗(𝑋)
𝜇1(𝑋)

]
𝐸
[
𝑒(𝑋)

𝑒∗(𝑋)

] −

𝐸
[
1−𝑒(𝑋)

1−𝑒∗(𝑋)
𝜇0(𝑋)

]
𝐸
[
1−𝑒(𝑋)

1−𝑒∗(𝑋)

] − (𝜇1 − 𝜇0). (5)

Under Assumptions 1–2 and 5–7, the bias under model misspecification for Δ̂∗AIPW is

Δ̂∗AIPW − Δ
𝑝
⟶𝐸

[
(𝑒(𝑋) − 𝑒∗(𝑋))

(
𝜇1(𝑋) − 𝜇

∗
1
(𝑋)

)
𝑒∗(𝑋)

]

+ 𝐸

[
[𝑒(𝑋) − 𝑒∗(𝑋)]

(
𝜇0(𝑋) − 𝜇

∗
0
(𝑋)

)
(1 − 𝑒∗(𝑋))

]
. (6)

We refer to Equations (4)–(6) as the biases of the respective estimators, that is, Bias(Δ̂∗IPW1
), Bias(Δ̂∗IPW2

), andBias(Δ̂∗AIPW)
although they are the difference between the probability limits of the estimators and the true Δ and not the difference in
expectations. The double robustness property of Δ̂∗AIPW is displayed by Equation (6) because if either 𝑒(𝑋) = 𝑒∗(𝑋) or

𝜇𝑡(𝑋) = 𝜇
∗
𝑡 (𝑋), 𝑡 = 0, 1, we have that Δ̂

∗
AIPW

𝑝
⟶ Δ.

4.2 Comparisons

The consequences of model misspecification for the estimators, respectively, can further be investigated from the general
biases in Equations (4)–(6).
To study the role of the model misspecification, we compare the biases in Section 4.1 for two separate parts of the

estimator. The first part concerns the bias with respect to 𝜇1 and the second part with respect to 𝜇0. Themotivation behind
this component-wise comparison is that if each of the estimators of 𝜇1, 𝜇0 is unbiased, then the resulting estimator of Δ =
𝜇1 − 𝜇0 is also unbiased. The inverse relationship between the model errors 𝑒(𝑋)∕𝑒∗(𝑋) and (1 − 𝑒(𝑋))∕(1 − 𝑒∗(𝑋)) has
the result that the contribution to the overall bias from 𝜇1 and 𝜇0 may, in general, be of the same sign (see Appendix A.3).
We define Bias1(Δ̂∗IPW1

), Bias1(Δ̂∗IPW2
), and Bias1(Δ̂∗AIPW) as

Bias1(Δ̂∗IPW1
) = 𝐸

[
𝑒(𝑋)

𝑒∗(𝑋)
𝜇1(𝑋)

]
− 𝜇1, (7)

Bias1(Δ̂∗IPW2
) =

𝐸
[
𝑒(𝑋)

𝑒∗(𝑋)
𝜇1(𝑋)

]
𝐸
[
𝑒(𝑋)

𝑒∗(𝑋)

] − 𝜇1, (8)

Bias1(Δ̂∗AIPW) = 𝐸
[(

𝑒(𝑋)

𝑒∗(𝑋)
− 1

)(
𝜇1(𝑋) − 𝜇

∗
1
(𝑋)

)]
. (9)

For Δ̂∗IPW1
, the expression in (7) shows that the bias consists of a scaling between the model error 𝑒(𝑋)∕𝑒∗(𝑋) and the con-

ditional outcome 𝜇1(𝑋). If the distribution of 𝑒(𝑋)∕𝑒∗(𝑋) is positively skewed resulting in over estimation of the weighted
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mean 𝐸[ 𝑒(𝑋)
𝑒∗(𝑋)

𝜇1(𝑋)], we see that for Δ̂∗IPW2
, the bias is mitigated because 𝐸[𝑒(𝑋)∕𝑒∗(𝑋)] > 1. A similar effect is obtained

for a negatively skewed distribution of 𝑒(𝑋)∕𝑒∗(𝑋) where 𝐸[𝑒(𝑋)∕𝑒∗(𝑋)] < 1. There is no correspondence to this bias
reduction for Bias1(Δ̂∗IPW1

).
The sign of the two biases in (7) and in (8) depends on the covariance of the PS-model errors and the conditional outcome

cov[ 𝑒(𝑋)
𝑒∗(𝑋)

, 𝜇1(𝑋)], because

Bias1(Δ̂∗IPW1
) = cov

[
𝑒(𝑋)

𝑒∗(𝑋)
, 𝜇1(𝑋)

]
+ 𝐸

[
𝑒(𝑋)

𝑒∗(𝑋)
− 1

]
𝜇1,

and

Bias1(Δ̂∗IPW2
) =

cov
[
𝑒(𝑋)

𝑒∗(𝑋)
, 𝜇1(𝑋)

]
𝐸
[
𝑒(𝑋)

𝑒∗(𝑋)

] ,

implying that the biases can be in different directions for the same model misspecification. Here, Bias1(Δ̂∗IPW2
) depends

only on the sign of the covariance, cov[ 𝑒(𝑋)
𝑒∗(𝑋)

, 𝜇1(𝑋)], whereas this is not the case for Bias1(Δ̂∗IPW1
). It is not surprising that

the covariance of 𝑒(𝑋)∕𝑒∗(𝑋) and 𝜇1(𝑋) plays a role for the bias of the estimators. If 𝜇1(𝑋) was a constant, it could be
taken out of the expectations of the first terms in (7) and (8) and the PS-model ratio, 𝑒(𝑋)∕𝑒∗(𝑋), would be canceled by
the denominator 𝐸[𝑒(𝑋)∕𝑒∗(𝑋)] in (8). In this case, the bias for Δ̂∗IPW2

would be 0.
Next, we investigate inequalities involving the absolute values of the biases in Equations (7)–(9). (All derivations are

given in Appendix A.3). The results can be directly applied for 𝜇0 by replacing 𝑒(𝑋)∕𝑒∗(𝑋), with (1 − 𝑒(𝑋))∕(1 − 𝑒∗(𝑋))
and 𝜇1(𝑋) with 𝜇0(𝑋), see Appendix A.3.
First, to study the role of normalization for the IPW estimators, we compare Bias1(Δ̂∗IPW1

) and Bias1(Δ̂∗IPW2
).

A sufficient and necessary condition for

|||Bias1(Δ̂∗IPW2
)
||| < |||Bias1(Δ̂∗IPW1

)
|||, (10)

is that

|||||cov
[
𝑒(𝑋)

𝑒∗(𝑋)
, 𝜇1(𝑋)

]||||| <
|||||𝐸
[
𝑒(𝑋)

𝑒∗(𝑋)

]
𝐸

[
𝑒(𝑋)

𝑒∗(𝑋)
𝜇1(𝑋)

]
− 𝜇1

|||||. (11)

That is, the absolute value of the covariance between the PS-model ratio and the conditional outcome is smaller than the
absolute value of Bias1(Δ̂∗IPW2

) scaled with the PS-model ratio.
To study the issue of misspecifying two models instead of one, we investigate the difference between the bias of the

IPW estimators (7) and (8) and the bias of the AIPW estimator (9). We give a necessary condition for the bias of the AIPW
estimator to be smaller than the bias of the simple IPW estimator:
If

|||Bias1(Δ̂∗AIPW)||| < |||Bias1(Δ̂∗IPW1
)
|||,

then

|||||𝐸
[(

𝑒(𝑋)

𝑒∗(𝑋)
− 1

)
𝜇∗
1
(𝑋)

]||||| < 2 ⋅
|||||𝐸
[(

𝑒(𝑋)

𝑒∗(𝑋)
− 1

)
𝜇1(𝑋)

]|||||. (12)

By (12), we see that if the AIPW estimator improves upon the simple IPW estimator under misspecification of both the
PS and the OR model, then the absolute value of the misspecified outcome model is less than double the absolute value
of the true conditional mean under the same scaling of the PS-model error, 𝑒(𝑋)∕𝑒∗(𝑋) − 1.
A sufficient condition for the AIPW estimator to have a smaller bias than the simple IPW estimator can be expressed

as a comparison between the misspecified OR model and the true conditional outcomes under the same PS-model error.
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If |||||𝐸
[(

𝑒(𝑋)

𝑒∗(𝑋)
− 1

)
𝜇∗
1
(𝑋)

]||||| < 2 ⋅
|||||𝐸

[(
𝑒(𝑋)

𝑒∗(𝑋)
− 1

)
𝜇1(𝑋)

]||||| ,
and 𝐸

[(
𝑒(𝑋)

𝑒∗(𝑋)
− 1

)
𝜇∗
1
(𝑋)

]
and 𝐸

[(
𝑒(𝑋)

𝑒∗(𝑋)
− 1

)
𝜇1(𝑋)

]
,

(13)

are either both positive or both negative, then |Bias1(Δ̂∗AIPW)| < |Bias1(Δ̂∗IPW1
)|.

To provide a numerical example, we assume a second-order model in one variable and obtain the misspecified models’
limits by omitting the second order term in both the PS (logistic regression) and the OR model (linear model). We use
numerical approximations to provide values for the parameters in 𝑒∗(𝑋) and 𝜇∗𝑡 (𝑋), 𝑡 = 0, 1 under the given true and
misspecified models.

Example 2. For a covariate 𝑋 ∼ 𝑈𝑛𝑖𝑓𝑜𝑟𝑚(−2, 2) and a binary treatment 𝑇 ∼ 𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(𝑒(𝑋)), we assume a logistic PS
model and a linear conditional outcome and misspecified nonlinearities in the models

𝑒(𝑋) =
[
1 + exp[(1 + 0.5𝑋 − 0.1𝑋2)

]−1
, 𝑒∗(𝑋) = [1 + exp(0.87 + 0.52𝑋)]

−1
,

𝜇1(𝑋) = 3.5 + 𝑋 + 0.7𝑋
2, 𝜇∗

1
(𝑋) = 4.42 + 0.76𝑋.

In this example, we have that the inequality in (11) holds

cov
[
𝑒(𝑋)

𝑒∗(𝑋)
, 𝜇1(𝑋)

]
= 0.12,

𝐸

[
𝑒(𝑋)

𝑒∗(𝑋)

]
𝐸

[
𝑒(𝑋)

𝑒∗(𝑋)
𝜇1(𝑋)

]
− 𝜇1 = 0.16.

We expect based on previous calculations that |Bias1(Δ̂∗IPW2
)| < |Bias1(Δ̂∗IPW1

)|. Here, we have that Bias1(Δ̂∗IPW1
) = 0.16,

Bias1(Δ̂∗IPW2
) = 0.12, confirming the result. To compare Bias1(Δ̂∗IPW1

) with Bias1(Δ̂∗AIPW), we check to see that

𝐸

[(
𝑒(𝑋)

𝑒∗(𝑋)
− 1

)
𝜇∗
1
(𝑋)

]
= 0.07,

𝐸

[(
𝑒(𝑋)

𝑒∗(𝑋)
− 1

)
𝜇1(𝑋)

]
= 0.16,

are both positive, which is consistent with the sufficient conditions for|Bias1(Δ̂∗AIPW)| < |Bias1(Δ̂∗IPW1
)| of Equation (13). To confirm, Bias1(Δ̂∗AIPW) = 0.09 that is smaller than 0.16.

Comparing the biases between the AIPW estimator and the IPW estimator with normalized weights, we investigate
the inequality |Bias1(Δ̂∗AIPW)| < |Bias1(Δ̂∗IPW2

)|. Here, we see that for |Bias1(Δ̂∗AIPW)| < |Bias1(Δ̂∗IPW2
)| to be true, the

misspecified OR model is included in the necessary condition:

𝐸

[(
𝑒(𝑋)

𝑒∗(𝑋)
− 1

)
(𝜇1(𝑋))

]
−

||||cov
[
𝑒(𝑋)

𝑒∗(𝑋)
, 𝜇1(𝑋)

]||||
𝐸
[
𝑒(𝑋)

𝑒∗(𝑋)

] < 𝐸

[(
𝑒(𝑋)

𝑒∗(𝑋)
− 1

)
𝜇∗
1
(𝑋)

]

<𝐸

([
𝑒(𝑋)

𝑒∗(𝑋)
− 1

]
[𝜇1(𝑋)]

)
+

||||cov
[
𝑒(𝑋)

𝑒∗(𝑋)
, 𝜇1(𝑋)

]||||
𝐸
[
𝑒(𝑋)

𝑒∗(𝑋)

] . (14)

By (14), we see that in order for the AIPW estimator to improve upon the normalized IPW estimator, the (PS-error scaled)
outcomemisspecificationmust lie within an interval defined by the true conditional outcome and the absolute value of the
covariance of 𝑒(𝑋)∕𝑒∗(𝑋) and 𝜇1(𝑋). This means that the smaller the covariance, the greater the accuracy of the outcome
model for Δ̂∗AIPW to be less biased than Δ̂∗IPW2

.



WAERNBAUM and PAZZAGLI 9 of 27

−2 −1 0 1 2

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

x

P
S

−
m

od
el

s e(X)
e*(X)

−2 −1 0 1 2

0.
9

1.
0

1.
1

1.
2

1.
3

x

e(
x)

/e
*(

x)
−2 −1 0 1 2

0
2

4
6

8

x

C
on

di
tio

na
l o

ut
co

m
es μ1(X)

μ1∗(X)

0.9 1.0 1.1 1.2 1.3

3
4

5
6

7
8

e(X)/e∗(X)
C

on
di

tio
na

l o
ut

co
m

es

μ1(X)
μ1∗(X)

cov(e(X)/e∗(X),μ1(X))=0.12
cov(e(X)/e∗(X)μ1∗(X))=0.03

F IGURE 1 Illustration of the components of the biases using the data-generating process from Example 2. Top left: 𝑒(𝑋) and 𝑒∗(𝑋) by 𝑋;
top right: 𝑒(𝑋)∕𝑒∗(𝑋) by 𝑋; bottom left: 𝜇1(𝑋) and 𝜇∗1(𝑋) by 𝑋; and bottom right: 𝜇1(𝑋) and 𝜇∗1(𝑋) by 𝑒(𝑋)∕𝑒

∗(𝑋)

For a sufficient condition for |Bias1(Δ̂∗AIPW)| < |Bias1(Δ̂∗IPW2
)|, we have that if

𝐸

[(
𝑒(𝑋)

𝑒∗(𝑋)
− 1

)
𝜇1(𝑋)

]
and cov

[
𝑒(𝑋)

𝑒∗(𝑋)
, 𝜇1(𝑋)

]
are either both positive or both negative, and

|||||𝐸
[(

𝑒(𝑋)

𝑒∗(𝑋)
− 1

)
𝜇∗
1
(𝑋)

]||||| <
|||||||𝐸
[(

𝑒(𝑋)

𝑒∗(𝑋)
− 1

)
𝜇1(𝑋)

]
+

cov
[
𝑒(𝑋)

𝑒∗(𝑋)
, 𝜇1(𝑋)

]
𝐸
[
𝑒(𝑋)

𝑒∗(𝑋)

] |||||||,
(15)

then

|||||𝐸
[(

𝑒(𝑋)

𝑒∗(𝑋)
− 1

)(
𝜇1(𝑋) − 𝜇

∗
1
(𝑋)

)]||||| <
|||||||
𝐸
[
𝑒(𝑋)

𝑒∗(𝑋)
𝜇1(𝑋)

]
𝐸
[
𝑒(𝑋)

𝑒∗(𝑋)

] − 𝜇1

|||||||.
Illustrating the sufficient conditions with the data-generating process in Example 2

𝐸

[(
𝑒(𝑋)

𝑒∗(𝑋)
− 1

)
𝜇1(𝑋)

]
= 0.16 , cov

[
𝑒(𝑋)

𝑒∗(𝑋)
, 𝜇1(𝑋)

]
= 0.12

are both positive, and

|||||𝐸
[(

𝑒(𝑋)

𝑒∗(𝑋)
− 1

)
𝜇∗
1
(𝑋)

]||||| <
||||||||
𝐸

[(
𝑒(𝑋)

𝑒∗(𝑋)
− 1

)
(𝜇1(𝑋))

]
+

||||cov
[
𝑒(𝑋)

𝑒∗(𝑋)
, 𝜇1(𝑋)

]||||
𝐸
[
𝑒(𝑋)

𝑒∗(𝑋)

]
||||||||
,

0.07 < 0.28,

in agreement with (15).
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TABLE 1 Simulation Designs A–C

True model MISSPECIFIEDMODEL
Models Class Linear predictor and parameter values Class Linear predictor
Simulation 1

𝛽 = (−1, 0.6, 0.1, −0.9, 0.1, 0.7), 𝛼0 =

(3, 0.5, 0.2, 0.5, 0.2, 0.2), 𝛼1 = (4, 1.1, 0.1, 0.5, 0.3, 0.2)

Design A
PS Binomial, logit 1, 𝑋1, 𝑋2, 𝑋

2
1
, 𝑋2

2
, 𝑋3 Binomial, logit 1, 𝑋1, 𝑋2, 𝑋

2
2
, 𝑋3

OR Gaussian, identity 1, 𝑋1, 𝑋2, 𝑋
2
1
, 𝑋2

2
, 𝑋3 Gaussian, identity 1, 𝑋1, 𝑋2, 𝑋

2
2
, 𝑋3

Design B
PS Binomial, logit 1, 𝑋1, 𝑋2, 𝑋

2
1
, 𝑋2

2
, 𝑋3 Binomial, logit 1, 𝑋1, 𝑋2, 𝑋3

OR Gaussian, identity 1, 𝑋1, 𝑋2, 𝑋
2
1
, 𝑋2

2
, 𝑋3 Gaussian, identity 1, 𝑋1, 𝑋2, 𝑋3

Design C
PS Binomial, cauchit 1, 𝑋1, 𝑋2, 𝑋

2
1
, 𝑋2

2
, 𝑋3 Binomial, logit 1, 𝑋1, 𝑋2, 𝑋3

OR Gamma, identity 1, 𝑋1, 𝑋2, 𝑋
2
1
, 𝑋2

2
, 𝑋3 Gaussian, identity 1, 𝑋1, 𝑋2, 𝑋3

Simulation 2
𝛽 = (−0.9, 1, 1.4, 1, 0.2, 0.3), 𝛼0 = (0, 1, 1, 2, 0.5, 1),

𝛼1 = (1.5, 1.5, 2, −0.8, 0.9, 0.4)

1, 𝑍1 = 𝑋1 + 𝑋2 + 𝑋3, 𝑍2 = 𝑋1 + 𝑋3 + 𝑋4,
1, 𝑍3 = 𝑋1 + 𝑋2, 𝑍4 = 𝑋1 + 𝑋3

Design A
PS Binomial, logit 1, 𝑋1, 𝑋2, 𝑋

2
1
, 𝑋2

2
, 𝑋3 Binomial, logit 1, 𝑋1, 𝑋2, 𝑋3

OR Gaussian, identity 1, 𝑋1, 𝑋3, 𝑋
2
1
, 𝑋2

3
, 𝑋4 Gaussian, identity 1, 𝑋1, 𝑋3, 𝑋4

Design B
PS Binomial, logit 1, 𝑋1, 𝑋2, 𝑋

2
1
, 𝑋2

2
, 𝑋3 Binomial, logit 1, 𝑍1

OR Gaussian, identity 1, 𝑋1, 𝑋3, 𝑋
2
1
, 𝑋2

3
, 𝑋4 Gaussian, identity 1, 𝑍2

Design C
PS Binomial, logit 1, 𝑋1, 𝑋2, 𝑋

2
1
, 𝑋2

2
, 𝑋3 Binomial, logit 1, 𝑍3

OR Gaussian, identity 1, 𝑋1, 𝑋3, 𝑋
2
1
, 𝑋2

3
, 𝑋4 Gaussian, identity 1, 𝑍4

Summarizing the results of the comparisons of the bias conditions, we note that the expected values of the product
of the PS-model error and the true and misspecified conditional outcomes play important roles. Here, the covariances
of the PS-model ratio and the true and misspecified conditional outcomes are two of their respective components. In
Figure 1, we illustrate these parts with the data-generating processes from Example 2. The PS-model ratio deviates from 1
for both small and large values of 𝑋, but more so for larger values of 𝑋. Since both conditional outcomes 𝜇1(𝑋) and 𝜇∗1(𝑋)
are strictly increasing, both covariances are positive (cov[𝑒(𝑋)∕𝑒∗(𝑋), 𝜇1(𝑋)] = 0.12 and cov[𝑒(𝑋)∕𝑒∗(𝑋), 𝜇∗1(𝑋)] = 0.03)
owing to the PS-model ratio being larger for larger values of 𝑋. The interval characterization of the described conditions
implies that if the two covariances are of the same magnitude, the bias of Δ̂∗AIPW will often be smaller than the biases
of Δ̂∗IPW1

and Δ̂∗IPW2
.

5 SIMULATION STUDIES

5.1 Design

To investigate the asymptotic biases described in Section 4 and also the finite-sample performance of Δ̂∗IPW1
, Δ̂∗IPW2

, and
Δ̂∗AIPW under model misspecification, we perform three simulation studies with three different designs A–C. The first part
of the simulations evaluates the finite-sample performance of the estimators and consist of 1000 replications of sample
sizes 500, 1000, and 5000. In addition to the simulation results, we also give numerical approximations to the asymptotic
biases by fitting the misspecified models with a large sample 𝑁 = 1, 000, 000. The simulations and numerical approxi-
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TABLE 2 Simulation Designs A–C

True model MISSPECIFIEDMODEL
Models Class Linear predictor and parameter values Class Linear predictor
Simulation 3

𝛽 = (−0.20, 0.30, 0.15, 0.22, 0.15, −0.15), 𝛼0 =

(9, −0.05, 0.05, −0.05), 𝛼1 = (10, −0.05, 0.05, −0.05)

1,𝑀1 = exp(0.10𝑋1),𝑀2 = 𝑋2(1 + 𝑋1) + 10,𝑀3 =

(0.04𝑋3 + 0.60)
2,𝑀4 = (𝑋4 + 20)

2

Design A
PS Binomial, logit 1, 𝑋1, 𝑋2, 𝑋3, 𝑋4, 𝑋5 = 𝑋1

2 Binomial, logit 1,𝑀1,𝑀2,𝑀3,𝑀4

OR Poisson, log 1, 𝑋1, 𝑋2, 𝑋3, 𝑋4 Gaussian, identity 1,𝑀1,𝑀2,𝑀3,𝑀4

𝛽 = (−0.40, 0.60, 0.30, 0.44, 0.30, −0.30), 𝛼0 =

(9, −0.05, 0.05, −0.05), 𝛼1 = (10, −0.05, 0.05, −0.05)

1,𝑀1 = exp(0.10𝑋1),𝑀2 = 𝑋2(1 + 𝑋1) + 10,𝑀3 =

(0.04𝑋3 + 0.60)
2,𝑀4 = (𝑋4 + 20)

2

Design B
PS Binomial, logit 1, 𝑋1, 𝑋2, 𝑋3, 𝑋4, 𝑋5 = 𝑋1

2 Binomial, logit 1,𝑀1,𝑀2,𝑀3,𝑀4

OR Poisson, log 1, 𝑋1, 𝑋2, 𝑋3, 𝑋4 Gaussian, identity 1,𝑀1,𝑀2,𝑀3,𝑀4

𝛽 = (−0.60, 0.90, 0.45, 0.66, 0.45, −0.45), 𝛼0 =

(9, −0.05, 0.05, −0.05), 𝛼1 = (10, −0.05, 0.05, −0.05)

1,𝑀1 = exp(0.10𝑋1),𝑀2 = 𝑋2(1 + 𝑋1) + 10,𝑀3 =

(0.04𝑋3 + 0.60)
2,𝑀4 = (𝑋4 + 20)

2

Design C
PS Binomial, logit 1, 𝑋1, 𝑋2, 𝑋3, 𝑋4, 𝑋5 = 𝑋1

2 Binomial, logit 1,𝑀1,𝑀2,𝑀3,𝑀4

OR Poisson, log 1, 𝑋1, 𝑋2, 𝑋3, 𝑋4 Gaussian, identity 1,𝑀1,𝑀2,𝑀3,𝑀4

mations are carried out using R (R Core Team, 2020). The misspecified models are fitted with the glm() function and
were selected in order to be well-known simple models that could have been chosen in practice by a data analyst. The
link functions together with the true parameter values are given in Tables 1 and 2, which also contain the details for the
misspecified models.

5.1.1 Simulation 1

The covariates (𝑋1, 𝑋2, 𝑋3) are generated𝑋1 ∼Uniform(1,4),𝑋2 ∼ Poisson(3) and𝑋3 ∼ Bernoulli(0.4). Generalized linear
models are used to generate a binary treatment 𝑇 and potential outcomes 𝑌(𝑡), 𝑡 = 0, 1with second-order terms of𝑋1 and
𝑋2 in both the PS and OR models, see Table 1. The PS distributions for the treated and controls are bounded away from 0
and 1 under the true models and under the model misspecifications (see Figure 2). The PS and OR models (for the AIPW
estimator) are stepwise misspecified in the three designs (A, B, C).

A: a quadratic term 𝑋1
2 is omitted in the PS and OR models;

B: two quadratic terms, 𝑋1
2 and 𝑋2

2, are omitted in the PS and OR models;
C: two quadratic terms are omitted and both the OR and PS link functions are misspecified.

5.1.2 Simulation 2

The design is inspired by the simulation study of Funk et al. (2011). We generate the same covariates (𝑋1, 𝑋2, 𝑋3, 𝑋4)
where 𝑋1 ∼ Normal(0,1), 𝑋2 ∼ Normal(0,1), 𝑋3 ∼ Uniform(0.1), and 𝑋4 ∼ Normal(0,1). The treatment and outcomes are
generated with second-order terms of 𝑋1 and 𝑋2 in both the PS and OR models given in Table 1. In Figure 4, we see that
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F IGURE 2 Illustration of the bias reduction in Δ̂∗IPW2
of the means 𝐸[𝑒(𝑋)∕𝑒∗(𝑋)] and 𝐸[(1 − 𝑒(𝑋))∕(1 − 𝑒∗(𝑋))] of the PS errors in

Designs A, Simulation 1 (top), 2 (middle), and 3 (bottom)

the PS distributions, under both the true and misspecified models, have poorer overlap and values that are close to 0 and
1. The PS and OR models (for the AIPW estimator) are stepwise misspecified in three designs where:

A: two quadratic terms, 𝑋1
2 and 𝑋2

2, are omitted in the PS model and 𝑋1
2 and 𝑋3

2 in the OR models;
B: two quadratic terms, 𝑋1

2 and 𝑋2
2, are omitted in the PS model and 𝑋1

2 and 𝑋3
2 in the OR models; and transforma-

tions of the first-order terms, 𝑍1 = 𝑋1 + 𝑋2 + 𝑋3 and 𝑍2 = 𝑋1 + 𝑋3 + 𝑋4, are applied in the PS and the OR models,
respectively;

C: two quadratic terms, 𝑋1
2 and 𝑋2

2, are omitted in the PS model and 𝑋1
2 and 𝑋3

2 in the OR models, 𝑋3 and 𝑋4 are
omitted in the PS and the OR models, respectively; and transformations of the first-order terms, 𝑍3 = 𝑋1 + 𝑋2 and
𝑍4 = 𝑋1 + 𝑋3, are applied in the PS and the OR models, respectively.

5.1.3 Simulation 3

The design replicates the covariates and PS models of Zhou et al. (2020), in the setting referred to as medium treatment
prevalence and PS distributions with good, moderate, and poor overlap (see Figure 5). In our design, the PS and OR
models (for the AIPW estimator) are misspecified using the following variable transformations: 𝑀2 = 𝑋2(1 + 𝑋1) + 10,
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F IGURE 3 Overlap plots for the propensity score distributions, 𝑒(𝑋) and 𝑒∗(𝑋) for treated and controls for Design A (top), B (middle),
and C (bottom) in Simulation 1

𝑀3 = (0.04𝑋3 + 0.06)
2, and (𝑀1,𝑀4) = (exp(0.10𝑋1), (𝑋4 + 20)

2). Similarly,we generate𝐗 = (𝑋1, … , 𝑋5) such that
(
𝑋1
𝑋2

)
∼ Normal

[(
2

4

)
,

(
1 0.2

0.2 1

)]
,

(
𝑋3
𝑋4

)
∼ Normal

[(
2

4

)
,

(
1 0.2

0.2 1

)]
. 𝑋5 = 𝑋21

The three simulation designs are:

A: good PS distribution overlap, variable transformation, and misspecified link function for the OR model;
B: moderate PS distribution overlap, variable transformation, and misspecified link function for the OR model;
C: poor PS distribution overlap, variable transformation, and misspecified link function for the OR model.

5.2 Results

In Tables 3 and 4, we give the simulation bias, standard error, and mean squared error (MSE) of the three estima-
tors. Tables 5–7 give numerical approximations for Bias(Δ̂∗IPW1

), Bias(Δ̂∗IPW2
), and Bias(Δ̂∗AIPW) using a sample size of

𝑛 = 1, 000, 000. When using the true models, that is, when studying the estimators Δ̂IPW1
, Δ̂IPW2

, and Δ̂AIPW, the bias
is small and decreases as the sample size increases. In Simulations 1 and 2, the standard errors follow the expected order
with the smallest for Δ̂AIPW followed by Δ̂IPW2

and Δ̂IPW1
(Lunceford & Davidian, 2004). In Simulation 3, the standard
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F IGURE 4 Overlap plots for the propensity score distributions, 𝑒(𝑋) and 𝑒∗(𝑋) for treated and controls for Design A (top), B (middle),
and C (bottom) in Simulation 2

F IGURE 5 Overlap plots for the propensity score distributions, 𝑒(𝑋) and 𝑒∗(𝑋) for treated and controls for Design A (good overlap), B
(moderate overlap), and C (poor overlap) in Simulation 3
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TABLE 3 Results for Simulations 1 and 2 for sample sizes 500, 1000, and 5000. In Simulation 1, Designs A and B share the same true
models. In Simulation 2, the true models are the same in Designs A–C. All true models are given in Table 1.

Estimators
Simulation 1
�̂�∗IPW𝟏

�̂�∗IPW𝟐
�̂�∗AIPW

n Models Design Bias SD MSE Bias SD MSE Bias SD MSE
500 True A B 0.030 0.396 0.158 0.010 0.143 0.020 0.003 0.110 0.012

False A 0.127 0.410 0.184 0.017 0.142 0.020 0.025 0.118 0.014
False B 0.316 0.372 0.238 0.044 0.124 0.017 0.026 0.117 0.014
True C 0.011 0.422 0.178 0.010 0.153 0.024 0.009 0.111 0.012
False C 0.235 0.336 0.168 −0.051 0.140 0.022 0.047 0.118 0.016

1000 True A B 0.010 0.254 0.065 0.002 0.098 0.010 −0.003 0.075 0.006
False A 0.112 0.270 0.085 0.008 0.097 0.009 0.018 0.079 0.007
False B 0.283 0.253 0.144 0.033 0.085 0.008 0.019 0.078 0.006
True C −0.003 0.278 0.077 0.005 0.106 0.011 0.003 0.078 0.006
False C 0.219 0.223 0.098 −0.055 0.095 0.012 0.040 0.083 0.008

5000 True A B 0.002 0.110 0.012 0.001 0.044 0.002 −0.000 0.035 0.001
False A 0.108 0.120 0.026 0.009 0.044 0.002 0.022 0.037 0.002
False B 0.291 0.107 0.096 0.036 0.039 0.003 0.023 0.036 0.002
True C −0.003 0.123 0.015 0.000 0.044 0.002 −0.000 0.033 0.001
False C 0.219 0.098 0.057 −0.060 0.041 0.005 0.038 0.036 0.003

Estimators
Simulation 2
�̂�∗IPW𝟏

�̂�∗IPW𝟐
�̂�∗AIPW

n Models Design Bias SD MSE Bias SD MSE Bias SD MSE
500 True A B C 0.006 0.853 0.727 0.033 0.393 0.155 0.010 0.213 0.045

False A 0.635 0.650 0.826 0.236 0.334 0.167 0.403 0.708 0.664
False B 0.440 0.732 0.728 0.084 0.381 0.152 0.217 0.582 0.385
False C 0.608 0.607 0.737 0.271 0.361 0.203 0.597 0.708 0.858

1000 True A B C 0.011 0.662 0.438 0.029 0.292 0.086 0.013 0.154 0.024
False A 0.698 0.724 1.012 0.248 0.286 0.143 0.450 0.824 0.880
False B 0.455 0.681 0.669 0.084 0.340 0.123 0.230 0.531 0.335
False C 0.619 0.413 0.554 0.266 0.257 0.137 0.606 0.461 0.579

5000 True A B C 0.004 0.307 0.094 0.010 0.175 0.031 0.010 0.094 0.009
False A 0.669 0.217 0.494 0.238 0.129 0.073 0.434 0.266 0.259
False B 0.430 0.231 0.238 0.078 0.142 0.026 0.217 0.176 0.078
False C 0.646 0.327 0.524 0.282 0.183 0.113 0.650 0.422 0.601

errors of Δ̂AIPW and Δ̂IPW2
have similar magnitude. Figure 3 gives an illustration of the suppressing effect obtained by

the normalization in Δ̂∗IPW2
. For Design A in Simulations 1–3, the figure gives histograms for the simulation model errors

𝑒(𝑋)∕𝑒∗(𝑋) and (1 − 𝑒(𝑋))∕(1 − 𝑒∗(𝑋)) together with vertical lines for the corresponding means.
Under misspecification, the bias in all three simulations and all designs are close to the asymptotic approximations,

at least for the largest sample size. For example, in Design C in Simulation 3 with poor overlap, the bias of Δ̂∗IPW2
is

smaller than Δ̂∗AIPW when 𝑁 = 1000 although for 𝑁 = 5000, the bias of Δ̂∗AIPW is smaller than Δ̂∗IPW2
that is what we see

in the asymptotic approximation. For the simulations with poor overlap (both in Simulation 2 and Simulation 3, Design
C), the bias is very large because the model misspecification for Δ̂IPW1

, and both Δ̂IPW2
and Δ̂∗AIPW have substantially

smaller biases.
In Simulation 1, Bias(Δ̂∗IPW1

) is the largest. Bias(Δ̂∗IPW2
) and Bias(Δ̂∗AIPW) are similar, although Bias(Δ̂

∗
AIPW) is slightly

smaller in most cases. In Simulation 2, with poorer overlap, Bias(Δ̂∗IPW2
) is the smallest for all three study designs, demon-
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TABLE 4 Results for Simulation 3 for sample sizes 500, 1000, and 5000. The true and false models for Designs A–C are described in
Table 2.

Estimators
Simulation 3
�̂�∗IPW𝟏

�̂�∗IPW𝟐
�̂�∗AIPW

n Models Design Bias SD MSE Bias SD MSE Bias SD MSE
500 True A −0.011 0.350 0.123 −0.003 0.328 0.108 −0.003 0.329 0.108

False A −0.091 0.367 0.143 0.002 0.332 0.110 −0.001 0.329 0.108
True B −0.050 1.133 1.284 −0.000 0.655 0.429 −0.019 0.697 0.486
False B −1.388 2.402 7.691 0.045 0.778 0.607 0.004 0.856 0.731
True C 0.059 3.546 12.566 −0.018 1.260 1.587 −0.033 1.430 2.043
False C −10.041 23.663 660.216 0.077 1.579 2.496 0.031 4.416 19.487

1000 True A 0.010 0.250 0.063 0.012 0.239 0.057 0.012 0.239 0.057
False A −0.078 0.257 0.072 0.015 0.242 0.059 0.010 0.239 0.057
True B −0.016 0.703 0.493 −0.006 0.440 0.194 −0.008 0.445 0.198
False B −1.379 1.473 4.068 0.031 0.542 0.294 −0.001 0.558 0.311
True C −0.139 2.347 5.522 −0.000 0.952 0.906 −0.002 1.028 1.055
False C −12.065 28.245 942.510 0.118 1.364 1.872 −0.159 6.912 47.752

5000 True A 0.008 0.110 0.012 0.009 0.107 0.012 0.009 0.107 0.012
False A −0.076 0.114 0.019 0.014 0.108 0.012 0.010 0.107 0.012
True B 0.001 0.291 0.085 0.005 0.206 0.042 0.005 0.206 0.043
False B −1.356 0.598 2.197 0.042 0.260 0.069 0.006 0.255 0.065
True C −0.033 0.988 0.976 0.008 0.449 0.202 0.007 0.462 0.213
False C −12.955 12.913 334.401 0.166 0.933 0.898 0.010 3.233 10.442

strating the stabilizing effect of the normalization. Here, in Designs A and B, Bias(Δ̂∗AIPW) is smaller than Bias(Δ̂
∗
IPW1

)

but for Design C, they are similar. In Simulation 3, for the largest sample size, Bias(Δ̂∗AIPW) is the smallest for all three
Designs A–C.
For the MSE in Simulation 1, Δ̂∗AIPW is the smallest; however, the difference with regard to Δ̂∗IPW2

is not large. In Simu-
lation 2, Designs A and B, the MSE of Δ̂∗IPW2

is the smallest, followed by the MSE of Δ̂∗AIPW and Δ̂∗IPW1
. For Design C, the

MSE of Δ̂∗AIPW is greater than the MSE of Δ̂∗IPW1
. In Simulation 3, the MSE of Δ̂∗IPW2

and Δ̂∗AIPW is similar for Designs A
and B. For Design C, with poor overlap, the MSE is much smaller for Δ̂∗IPW2

.
Studying the two different parts of the biases illustrate how-not only the variances, but also the biases, get inflated from

the lack of overlap in the PS distribution. In Simulation 3 in the design with poor overlap (see Table 7), we have that
Bias1(Δ̂∗IPW1

) is small but Bias2(Δ̂∗IPW1
) is very large. This result is owing to the ratio (1 − 𝑒(𝑋))∕(1 − 𝑒∗(𝑋)) being instable

because of sparse data for values close to 0. Correspondingly, we see that the mean 𝐸(1 − 𝑒(𝑋))∕(1 − 𝑒∗(𝑋)) is far away
from 1. In the previous section, we described the stabilizing properties of the normalized IPW, counteracting the model
misspecification error. The standard errors under misspecification follow the same pattern as under the true models,
which can be expected under regularity conditions from semiparametric theory, see, for example, Boos and Stefanski
(2013, Chapter 7.2). In Simulation 2, the standard errors of Δ̂∗IPW2

are the smallest followed by Δ̂∗AIPW for Designs A and B
and Δ̂∗IPW1

for Design C. In Simulation 3, the standard errors of Δ̂∗IPW2
are the smallest followed by Δ̂∗AIPW and Δ̂∗IPW1

for
Designs B and C corresponding to moderate and poor PS distribution overlap.
To relate the simulations to the sufficient and necessary conditions derived in Section 4.2, the related expressions from

the asymptotic approximations are shown in Tables 5–7. The expectations and covariances that are used for the necessary
and sufficient conditions in Equations (11)–(15) can be applied to draw the corresponding conclusions of the estima-
tors. As an example, we see that the necessary condition for the absolute values of Bias𝑡(Δ̂∗AIPW) to be smaller than the
absolute value of Bias𝑡(Δ̂∗IPW1

) holds for both 𝑡 = 0, and 𝑡 = 1 in Simulation 1, but the same condition is not satisfied in
Simulation 2.
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TABLE 5 Asymptotic approximations from Designs A–C in Simulation 1

Design
Parameter A B C
𝜇1 11.128 11.128 12.130
𝜇∗
1

11.094 11.094 12.098
𝜇0 8.630 8.627 9.633
𝜇∗
0

8.579 8.575 9.582
Bias(Δ̂∗IPW1

) 0.106 0.298 0.212
Bias(Δ̂∗IPW2

) 0.009 0.037 −0.058
Bias(Δ̂∗AIPW) 0.021 0.025 0.037
Bias1(Δ̂∗IPW1

) 0.029 0.197 0.130
Bias1(Δ̂∗IPW2

) −0.028 0.023 −0.089
Bias1(Δ̂∗AIPW) 0.011 0.013 0.029
𝐸[

𝑒(𝑋)

𝑒∗(𝑋)
] 1.005 1.016 1.019

cov[ 𝑒(𝑋)
𝑒∗(𝑋)

, 𝜇1(𝑋)] −0.028 0.022 −0.094

cov[ 𝑒(𝑋)
𝑒∗(𝑋)

, 𝜇∗
1
(𝑋)] −0.038 0.009 −0.121

𝐸[
𝑒(𝑋)

𝑒∗(𝑋)
− 1]𝜇1 0.057 0.175 0.225

𝐸[(
𝑒(𝑋)

𝑒∗(𝑋)
− 1)𝜇1(𝑋)] 0.029 0.197 0.132

𝐸[(
𝑒(𝑋)

𝑒∗(𝑋)
− 1)𝜇∗

1
(𝑋)] 0.018 0.184 0.104

Bias2(Δ̂∗IPW1
) 0.078 0.101 0.082

Bias2(Δ̂∗IPW2
) 0.038 0.014 0.031

Bias2(Δ̂∗AIPW) 0.011 0.012 0.008
𝐸[

1−𝑒(𝑋)

1−𝑒∗(𝑋)
] 0.996 0.990 0.994

cov[ 1−𝑒(𝑋)
1−𝑒∗(𝑋)

, 𝜇0(𝑋)] −0.035 −0.015 −0.034

cov[ 1−𝑒(𝑋)
1−𝑒∗(𝑋)

, 𝜇∗
0
(𝑋)] −0.025 −0.004 −0.024

𝐸[
1−𝑒(𝑋)

1−𝑒∗(𝑋)
− 1]𝜇0 −0.037 −0.088 −0.054

𝐸[(
1−𝑒(𝑋)

1−𝑒∗(𝑋)
− 1)𝜇0(𝑋)] −0.072 −0.103 −0.087

𝐸[(
1−𝑒(𝑋)

1−𝑒∗(𝑋)
− 1)𝜇∗

0
(𝑋)] −0.062 −0.091 −0.078

6 DATA EXAMPLE

As a motivating example, we analyze data from the National Health and Nutrition Examination Survey (NHANES, 2007–
2008) for the purpose of estimating the effect of smoking on blood lead levels. Earlier studies have suggested that increased
blood lead levels are associated with chronic kidney disease and peripheral arterial diseases (Muntner et al., 2005). Higher
blood lead levels are also associated with mortality in the general U.S. population (Menke et al. 2006). The NHANES
dataset studiedhere is a subset of the data previously analyzed byHsu and Small (2013) evaluating the relationship between
smoking and blood lead levels for the treated population (ATT) with a matching approach. To improve overlap for the
estimation of the average causal effect, Δ, we select the study population of males, 𝑁 = 1392. The covariate set is also
expanded with four more covariates from the original NHANES demographic data. The treated individuals are defined
as daily smokers (𝑁1 = 386) and the controls are individuals who had smoked fewer than 100 cigarettes during their life
and no cigarettes in the last 30 days (𝑁0 = 1006). The outcome of interest is blood lead levels (micrograms per deciliter,
𝜇g/dL). We control for the covariates, age, army service, marriage, birth country, education, family size, and income-to-
poverty level, see Table 8. For this dataset, we apply the three estimators using a logistic propensity score model and for
the AIPW estimator, we additionally use a linear OR model with the same covariates. The overlap is displayed in the
mirror histogram of Figure 6a together with balance diagnostics in Figure 6b. Here, we see that the balance reduction
achieved from the weighing seems satisfactory for most of the covariates, having standardized mean differences within
a balance threshold of 0.10. However, for the age squared, army service, college education group, and the group born in
Spanish-speaking countries other than Mexico, they have standardized mean differences just exceeding this threshold.



18 of 27 WAERNBAUM and PAZZAGLI

TABLE 6 Asymptotic approximations from Designs A–C in Simulation 2

Design
Parameter A B C
𝜇1 3.529 3.530 3.535
𝜇∗
1

3.460 3.953 3.472
𝜇0 1.337 1.331 1.335
𝜇∗
0

1.166 1.398 1.171
Bias(Δ̂∗IPW1

) 0.642 0.422 0.622
Bias(Δ̂∗IPW2

) 0.216 0.060 0.264
Bias(Δ̂∗AIPW) 0.397 0.203 0.631
Bias1(Δ̂∗IPW1

) 0.453 0.325 0.451
Bias1(Δ̂∗IPW2

) 0.091 0.024 0.150
Bias1(Δ̂∗AIPW) 0.302 0.147 0.532
𝐸[

𝑒(𝑋)

𝑒∗(𝑋)
] 1.102 1.081 1.080

cov[ 𝑒(𝑋)
𝑒∗(𝑋)

, 𝜇1(𝑋)] 0.102 0.033 0.166

cov[ 𝑒(𝑋)
𝑒∗(𝑋)

, 𝜇∗
1
(𝑋)] −0.202 −0.151 −0.359

𝐸[
𝑒(𝑋)

𝑒∗(𝑋)
− 1]𝜇1 0.359 0.285 0.283

𝐸[(
𝑒(𝑋)

𝑒∗(𝑋)
− 1)𝜇1(𝑋)] 0.462 0.317 0.449

𝐸[(
𝑒(𝑋)

𝑒∗(𝑋)
− 1)𝜇∗

1
(𝑋)] 0.151 0.168 −0.082

Bias2(Δ̂∗IPW1
) 0.198 0.097 0.171

Bias2(Δ̂∗IPW2
) 0.133 0.036 0.113

Bias2(Δ̂∗AIPW) 0.103 0.056 0.100
𝐸[

1−𝑒(𝑋)

1−𝑒∗(𝑋)
] 0.947 0.953 0.952

cov[ 1−𝑒(𝑋)
1−𝑒∗(𝑋)

, 𝜇0(𝑋)] −0.124 −0.036 −0.116

cov[ 1−𝑒(𝑋)
1−𝑒∗(𝑋)

, 𝜇∗
0
(𝑋)] −0.031 0.024 −0.017

𝐸[
1−𝑒(𝑋)

1−𝑒∗(𝑋)
− 1]𝜇0 −0.071 −0.062 −0.064

𝐸[(
1−𝑒(𝑋)

1−𝑒∗(𝑋)
− 1)𝜇0(𝑋)] −0.195 −0.099 −0.180

𝐸[(
1−𝑒(𝑋)

1−𝑒∗(𝑋)
− 1)𝜇∗

0
(𝑋)] −0.093 −0.042 −0.073

F IGURE 6 NHANES; data example
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TABLE 7 Asymptotic approximations from Designs A–C in Simulation 3

Design
Parameter A B C
𝜇1 9.903 9.899 9.899
𝜇∗
1

9.902 9.899 9.898
𝜇0 8.897 8.910 8.900
𝜇∗
0

8.895 8.909 8.904
Bias(Δ̂∗IPW1

) −0.087 −1.349 −12.072
Bias(Δ̂∗IPW2

) 0.005 0.046 0.151
Bias(Δ̂∗AIPW) −0.000 0.009 0.035
Bias1(Δ̂∗IPW1

) −0.009 −0.022 −0.006
Bias1(Δ̂∗IPW2

) −0.001 −0.001 0.003
Bias1(Δ̂∗AIPW) −0.000 −0.000 0.003
𝐸[

𝑒(𝑋)

𝑒∗(𝑋)
] 0.999 0.998 0.997

cov[ 𝑒(𝑋)
𝑒∗(𝑋)

, 𝜇1(𝑋)] −0.000 −0.001 −0.001

cov[ 𝑒(𝑋)
𝑒∗(𝑋)

, 𝜇∗
1
(𝑋)] −0.000 −0.001 −0.001

𝐸[
𝑒(𝑋)

𝑒∗(𝑋)
− 1]𝜇1 −0.008 −0.021 −0.030

𝐸[(
𝑒(𝑋)

𝑒∗(𝑋)
− 1)𝜇1(𝑋)] −0.009 −0.022 −0.031

𝐸[(
𝑒(𝑋)

𝑒∗(𝑋)
− 1)𝜇∗

1
(𝑋)] −0.009 −0.022 −0.031

Bias2(Δ̂∗IPW1
) −0.077 −1.328 −12.040

Bias2(Δ̂∗IPW2
) 0.006 0.047 0.153

Bias2(Δ̂∗AIPW) 0.000 0.009 0.036
𝐸[

1−𝑒(𝑋)

1−𝑒∗(𝑋)
] 1.009 1.160 2.427

cov[ 1−𝑒(𝑋)
1−𝑒∗(𝑋)

, 𝜇0(𝑋)] −0.005 −0.050 −0.376

cov[ 1−𝑒(𝑋)
1−𝑒∗(𝑋)

, 𝜇∗
0
(𝑋)] −0.005 −0.046 −0.344

𝐸[
1−𝑒(𝑋)

1−𝑒∗(𝑋)
− 1]𝜇0 0.083 1.426 12.714

𝐸[(
1−𝑒(𝑋)

1−𝑒∗(𝑋)
− 1)𝜇0(𝑋)] 0.077 1.376 12.338

𝐸[(
1−𝑒(𝑋)

1−𝑒∗(𝑋)
− 1)𝜇∗

0
(𝑋)] 0.077 1.379 12.366

Applying the simple IPW estimator, Δ̂∗IPW1
, smoking increases the blood lead levels with 1.10 𝜇g/dL (95% CI: 0.63–1.56),

whereas the normalized version, Δ̂∗IPW2
results in a smaller estimated effect of 0.88 𝜇g/dL and a smaller standard error

(95% CI: 0.59–1.18). The AIPW estimator, Δ̂∗AIPW, further reduces the effect estimate to 0.86 𝜇g/dL and the standard error
(95% CI:0.57–1.14, see Table 9). Although applying the estimators to the data does not give information on possible bias
due to model misspecification, our results from Section 4 provide guidance to rely on the estimates from Δ̂∗IPW2

or Δ̂∗AIPW,
that is, 0.88 or 0.86 𝜇g/dLwith corresponding confidence intervals, rather than the higher value from Δ̂∗IPW1

, of 1.10 𝜇g/dL.

7 DISCUSSION

In this paper, we investigate biases of two IPW estimators and an AIPW estimator under model misspecification. For this
purpose, we use a generic probability limit, under misspecification of the PS and OR models, which exists under general
conditions. Since the PS enters the estimator in different ways for the IPW estimators under study, the consequences of
the model misspecification are not the same. The bias of the IPW estimators depends on the covariance between the PS-
model error and the conditional outcome in differentways and the resulting bias can be in opposite directions. For the IPW
estimators, normalization has the potential of reducing the bias because it scales the estimator in a mitigating manner.
Comparing the bias of the AIPW estimator with a simple IPW estimator, the necessary condition for the AIPW estimator
to have a smaller bias is that the expectation of the outcome model under misspecification is less than twice the true con-
ditional outcome, where the expectations include a scaling with the PS-model error. For comparison with the normalized
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TABLE 8 Summary statistics for covariates in the NHANES data. Means and sd for lead, age, income-to-poverty level and family size,
proportions for education, missing income, race, army service, marriage indicator, and birth country

Nonsmokers Smokers Overall
Variables 𝑵𝟎 = 𝟏𝟎𝟎𝟔 𝑵𝟏 = 𝟑𝟖𝟔 𝑵 = 𝟏𝟑𝟗𝟐

Blood lead level (𝜇g/dL) 1.91 (1.70) 2.77 (2.37) 2.15 (1.95)
Age 48.7 (17.5) 46.0 (14.7) 48.0 (16.0)
Education
Less than 9th grade 131 (13.0%) 51 (13.2%) 182 (13.1%)
9–11th grade 126 (12.5%) 99 (25.6%) 225 (16.2%)
High school graduate 243 (24.2%) 132 (34.2%) 375 (26.9%)
Some college 238 (23.7%) 86 (22.3%) 324 (23.3%)
College 268 (26.6%) 18 (14.7%) 286 (20.5%)
Income
Income-to-poverty level 2.79 (1.55) 2.14 (1.48) 2.61 (1.56)
Missing 86 (8.5%) 23 (6.0%) 109 (7.8%)
Not missing 920 (91.5%) 363 (94.0%) 1283 (92.2%)
Race
White 428 (42.5%) 241 (62.4%) 669 (48.1%)
Black 190(18.9%) 78 (20.2%) 268 (19.3%)
Mexican American 206 (20.5%) 24 (6.2%) 230 (16.5%)
Other Hispanic 120 (11.9%) 22 (5.7%) 142 (10.2%)
Other races 62 (6.2%) 21 (5.4%) 83 (6.0%)
Served in Army
Yes 192 (19.1%) 90 (23.3%) 282 (20.2%)
No 814 (80.9%) 296 (76.7%) 1100 (79.7%)
Married
Yes 640 (46.0%) 164 (11.8%) 804 (57.8%)
No 366 (26.3%) 222 (15.9%) 588 (42.2%)
Birth country
Born in 50 U.S. states or Washington, DC 685(68.0%) 341 (88.3%) 1026 (73.7%)
Born in Mexico 126 (12.5%) 10(2.6%) 136(9.8%)
Born in other Spanish speaking country 97 (9.6%) 17 (4.4%) 116 (8.3%)
Born in other Non-Spanish speaking country 98 (9.7%) 18 (4.7%) 114 (8.2%)
Family size 3.04 (1.67) 2.87 (1.76) 2.99 (1.70)

TABLE 9 Results from (A)IPW estimators, effect of smoking on blood lead levels

Estimator �̂� s.e. 95% CI
Δ̂∗IPW1

1.10 0.24 (0.63 − 1.56)

Δ̂∗IPW2
0.88 0.15 (0.59 − 1.18)

Δ̂∗AIPW 0.86 0.14 (0.57 − 1.14)

IPW estimator, the (PS-error scaled) misspecified outcome involves an interval defined by the true conditional outcome
adding and subtracting the absolute value of the covariance between the PS-model error and the conditional outcome.
The biases and conditions are exemplified in three simulation studies where the fitted misspecified models fails in

specifying nonlinearities, functional form (through misspecified link functions), and covariates. The simulation studies
are also accompanied by numerical approximations of the large-sample biases. The third simulation study specifically
compares the impact of good, moderate, and poor overlap on the bias due to model misspecification. Here, we see that it
is not only the variance that gets inflated from PS values close to 0 or 1, but the bias due to model misspecification also
increases rapidly. The normalized IPW and AIPW estimators show a more stable performance. The bias expressions of
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the IPW and AIPW estimators suggest that the AIPW estimator has a smaller bias than the IPW estimators even under
moderate misspecification of the outcome model. For the AIPW estimator, poor overlap and large differences between
𝑒(𝑋) and 𝑒∗(𝑋) are compensated for by outcome model assumptions in the area where data are sparse. However, in the
simulations, the normalized IPW estimator also performs well due to the implicit stabilization from the PS-model errors.
Since all biases include the PS-model error, we suggest that a researcher should be careful when modeling the PS even
though an OR model is additionally involved.
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APPENDIX A
A.1 Regularity conditions
The convergence in probability of Δ̂∗IPW1

, Δ̂∗IPW2
, and Δ̂∗AIPW to their corresponding expectations would follow directly from

a weak law of large numbers (WLLN) for an iid sample of (𝑇𝑖, 𝑋𝑖, 𝑌𝑖) except for the estimated parameters 𝛽∗ in 𝑒∗(𝑋𝑖) and
�̂�∗𝑡 in �̂�

∗
𝑡 (𝑋𝑖), 𝑡 = 0, 1. To justify the biases in Section 4, consider a general representation of a function 𝑔[𝑇, 𝑌, 𝑋, �̂�]where

�̂�
𝑝
⟶ 𝜃0 and

1

𝑛

∑
𝑔
[
𝑇𝑖, 𝑋𝑖, 𝑌𝑖, �̂�

] 𝑝
⟶ 𝐸[𝑔(𝑇, 𝑋, 𝑌, 𝜃0)]. (A1)

The �̂� in (A1) corresponds to 𝛽∗ for Δ̂∗IPW1
, Δ̂∗IPW2

, and (�̂�∗, 𝛽∗) for Δ̂∗AIPW and under Assumptions 5 and 7, the consistency
of �̂� is ensured. Regularity conditions for the function 𝑔 can be given, see, for example, Boos and Stefanski (2013, Theorem
7.3) who show that (A1) holds for differentiable functions with bounded derivatives (w.r.t. 𝜃). The regularity conditions for
𝑔[𝑋𝑖, 𝑇𝑖, 𝑌𝑖, �̂�], for the three estimators, imply conditions on the models 𝑒∗(𝑋, 𝛽∗) and 𝜇∗𝑡 (𝑋, 𝛼

∗
𝑡 ) such that the regularity

condition for 𝑔 is satisfied. Under (A1), we can insert the limiting values 𝛽∗ and 𝛼∗ and their corresponding 𝑒∗(𝑋) and
𝜇∗𝑡 (𝑋), 𝑡 = 0, 1 when taking a WLLN.

A.2 Biases
Under the regularity conditions and Assumptions 5–6 (IPW) and 5–7 (AIPW), we derive the bias in Equation (4). For
Δ̂∗IPW1

:

1

𝑛

𝑛∑
𝑖=1

𝑇𝑖𝑌𝑖

𝑒∗(𝑋𝑖)
−
1

𝑛

𝑛∑
𝑖=1

(1 − 𝑇𝑖)𝑌𝑖

1 − 𝑒∗(𝑋𝑖)

𝑝
⟶ 𝐸

[
𝑇𝑌

𝑒∗(𝑋)

]
− 𝐸

[
(1 − 𝑇)𝑌

(1 − 𝑒∗(𝑋))

]
,

and

𝐸

[
𝑇𝑌

𝑒∗(𝑋)

]
− 𝐸

[
(1 − 𝑇)𝑌

(1 − 𝑒∗(𝑋))

]
= 𝐸

[
𝐸

[
𝑇𝑌

𝑒∗(𝑋)

||||𝑋
]]
− 𝐸

[
𝐸

[
(1 − 𝑇)𝑌

[1 − 𝑒∗(𝑋)]

||||𝑋
]]

= 𝐸

[
𝑒(𝑋)

𝑒∗(𝑋)
𝜇1(𝑋)

]
− 𝐸

[
(1 − 𝑒(𝑋))

(1 − 𝑒∗(𝑋))
𝜇0(𝑋)

]
,

subtracting with Δ gives

Bias(Δ̂∗IPW1
) =𝐸

[
𝑒(𝑋)

𝑒∗(𝑋)
𝜇1(𝑋)

]
− 𝐸

[
1 − 𝑒(𝑋)

1 − 𝑒∗(𝑋)
𝜇0(𝑋)

]
− (𝜇1 − 𝜇0).

The biases of Equations (5) and (6) are derived similarly.

A.3 Comparisons
To study the consequences of model misspecification for the estimators, we compare each difference involving 𝜇1(𝑋) and
𝜇0(𝑋) separately. For example, we study the bias of Δ̂∗IPW1

Δ̂∗IPW1
− Δ

𝑝
⟶𝐸

[
𝑒(𝑋)

𝑒∗(𝑋)
𝜇1(𝑋)

]
− 𝐸

[
1 − 𝑒(𝑋)

1 − 𝑒∗(𝑋)
𝜇0(𝑋)

]
− (𝜇1 − 𝜇0)

=𝐸

[
𝑒(𝑋)

𝑒∗(𝑋)
𝜇1(𝑋)

]
− 𝜇1 + 𝜇0 − 𝐸

[
1 − 𝑒(𝑋)

1 − 𝑒∗(𝑋)
𝜇0(𝑋)

]
.

Since the errors 𝑒(𝑋)∕𝑒∗(𝑋) and (1 − 𝑒(𝑋))∕(1 − 𝑒∗(𝑋)) are inversely related, we would normally not expect that
the biases from the two parts 𝐸[ 𝑒(𝑋)

𝑒∗(𝑋)
𝜇1(𝑋)] − 𝜇1 and 𝜇0 − 𝐸[

1−𝑒(𝑋)

1−𝑒∗(𝑋)
𝜇0(𝑋)] cancel each other out. For example, if

𝐸[
𝑒(𝑋)

𝑒∗(𝑋)
𝜇1(𝑋)] − 𝜇1 > 0, then we might expect that 𝜇0 − 𝐸[

1−𝑒(𝑋)

1−𝑒∗(𝑋)
𝜇0(𝑋)] > 0 and similarly for negative values. However,

if there is large effect modification on the difference scale, the two components might be in different directions.
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Inequalities concerning the biases are made with respect to the absolute values for two parts separately, for example,
for Bias(Δ̂∗IPW1

), we investigate

|||Bias1(Δ̂∗IPW1
)
||| = |||||𝐸

[
𝑒(𝑋)

𝑒∗(𝑋)
𝜇1(𝑋)

]
− 𝜇1

|||||. (A2)

Since | − 𝑎| = |𝑎|, the second part is
|||Bias2(Δ̂∗IPW1

)
||| = |||||𝐸

[
1 − 𝑒(𝑋)

1 − 𝑒∗(𝑋)
𝜇0(𝑋)

]
− 𝜇0

|||||, (A3)

and similarly for (8). The conditions derived for the first part of the biases, (7) and (8), can be directly applied to the second
part of the biases replacing 𝑒(𝑋)∕𝑒∗(𝑋), with (1 − 𝑒(𝑋))∕(1 − 𝑒∗(𝑋)) and 𝜇1(𝑋) with 𝜇0(𝑋). In a similar manner, we have
for Bias2(Δ̂∗AIPW)

||||||𝐸
[
(1 − 𝑒(𝑋)) − (1 − 𝑒∗(𝑋))

(
𝜇0(𝑋) − 𝜇

∗
0
(𝑋)

)
(1 − 𝑒∗(𝑋))

]|||||| =
||||||𝐸
[
(𝑒(𝑋) − 𝑒∗(𝑋))

(
𝜇0(𝑋) − 𝜇

∗
0
(𝑋)

)
(1 − 𝑒∗(𝑋))

]||||||,
and the conditions derived for the first part of the bias, (9), can be directly applied to (A3) additionally replacing 𝜇∗

1
(𝑋)

with 𝜇∗
0
(𝑋).

Necessary and sufficient condition for |Bias1(Δ̂∗IPW2
)| < |Bias1(Δ̂∗IPW1

)| in (10)
|||||||
𝐸
[
𝑒(𝑋)

𝑒∗(𝑋)
𝜇1(𝑋)

]
𝐸
[
𝑒(𝑋)

𝑒∗(𝑋)

] − 𝜇1

||||||| < 𝐸
[
𝑒(𝑋)

𝑒∗(𝑋)
𝜇1(𝑋)

]
− 𝜇1.

1. Assuming that 𝐸[ 𝑒(𝑋)
𝑒∗(𝑋)

𝜇1(𝑋) − 𝜇1] > 0:
We have

−𝐸

[
𝑒(𝑋)

𝑒∗(𝑋)

](
𝐸

[
𝑒(𝑋)

𝑒∗(𝑋)
𝜇1(𝑋)

]
− 𝜇1

)
< cov

[
𝑒(𝑋)

𝑒∗(𝑋)
, 𝜇1(𝑋)

]
< 𝐸

[
𝑒(𝑋)

𝑒∗(𝑋)

](
𝐸

[
𝑒(𝑋)

𝑒∗(𝑋)
𝜇1(𝑋)

]
− 𝜇1

)
. (A4)

2. Assuming that 𝐸[ 𝑒(𝑋)
𝑒∗(𝑋)

𝜇1(𝑋)] − 𝜇1 < 0:

|||||||
𝐸
[
𝑒(𝑋)

𝑒∗(𝑋)
𝜇1(𝑋)

]
𝐸
[
𝑒(𝑋)

𝑒∗(𝑋)

] − 𝜇1

||||||| < −𝐸
[
𝑒(𝑋)

𝑒∗(𝑋)
𝜇1(𝑋)

]
− 𝜇1.

Here, we have

𝐸

[
𝑒(𝑋)

𝑒∗(𝑋)

](
𝐸

[
𝑒(𝑋)

𝑒∗(𝑋)
𝜇1(𝑋)

]
− 𝜇1

)
< cov

[
𝑒(𝑋)

𝑒∗(𝑋)
, 𝜇1(𝑋)

]
< −𝐸

[
𝑒(𝑋)

𝑒∗(𝑋)

](
𝐸

[
𝑒(𝑋)

𝑒∗(𝑋)
𝜇1(𝑋)

]
− 𝜇1

)
, (A5)

by A4 and A5, we have|cov[ 𝑒(𝑋)
𝑒∗(𝑋)

, 𝜇1(𝑋)]| < |𝐸[ 𝑒(𝑋)
𝑒∗(𝑋)

](𝐸[
𝑒(𝑋)

𝑒∗(𝑋)
𝜇1(𝑋)] − 𝜇1|).
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Necessary condition for |Bias1(Δ̂∗AIPW)| < |Bias1(Δ̂∗IPW1
)| in (12)

1. Assuming that 𝐸[( 𝑒(𝑋)
𝑒∗(𝑋)

− 1)𝜇1(𝑋)] > 0:

|||||𝐸
[(

𝑒(𝑋)

𝑒∗(𝑋)
− 1

)(
𝜇1(𝑋) − 𝜇

∗
1
(𝑋)

)]||||| < 𝐸
[(

𝑒(𝑋)

𝑒∗(𝑋)
− 1

)
𝜇1(𝑋)

]
.

Here, we have

−𝐸

[(
𝑒(𝑋)

𝑒∗(𝑋)
− 1

)
𝜇1(𝑋)

]
< 𝐸

[(
𝑒(𝑋)

𝑒∗(𝑋)
− 1

)(
𝜇1(𝑋) − 𝜇

∗
1
(𝑋)

)]
< 𝐸

[(
𝑒(𝑋)

𝑒∗(𝑋)
− 1

)
𝜇1(𝑋)

]
,

and

0 < 𝐸

[(
𝑒(𝑋)

𝑒∗(𝑋)
− 1

)
𝜇∗
1
(𝑋)

]
< 2 ⋅ 𝐸

[(
𝑒(𝑋)

𝑒∗(𝑋)
− 1

)
𝜇1(𝑋)

]
. (A6)

2. Assuming that 𝐸[( 𝑒(𝑋)
𝑒∗(𝑋)

− 1)𝜇1(𝑋)] < 0:

|||||𝐸
[(

𝑒(𝑋)

𝑒∗(𝑋)
− 1

)(
𝜇1(𝑋) − 𝜇

∗
1
(𝑋)

)]||||| < −𝐸
[(

𝑒(𝑋)

𝑒∗(𝑋)
− 1

)
𝜇1(𝑋)

]
.

Here, we have

𝐸

[(
𝑒(𝑋)

𝑒∗(𝑋)
− 1

)
𝜇1(𝑋)

]
< 𝐸

[(
𝑒(𝑋)

𝑒∗(𝑋)
− 1

)(
𝜇1(𝑋) − 𝜇

∗
1
(𝑋)

)]
< −𝐸

[(
𝑒(𝑋)

𝑒∗(𝑋)
− 1

)
𝜇1(𝑋)

]
,

2 ⋅ 𝐸

[(
𝑒(𝑋)

𝑒∗(𝑋)
− 1

)
𝜇1(𝑋)

]
< 𝐸

[(
𝑒(𝑋)

𝑒∗(𝑋)
− 1

)
𝜇∗
1
(𝑋)

]
< 0, (A7)

and by (A6) and (A7),

|||||𝐸
[(

𝑒(𝑋)

𝑒∗(𝑋)
− 1

)
𝜇∗
1
(𝑋)

]||||| ≤ 2 ⋅
|||||𝐸
[(

𝑒(𝑋)

𝑒∗(𝑋)
− 1

)
𝜇1(𝑋)

]|||||.
Sufficient condition for |Bias1(Δ̂∗AIPW)| < |Bias1(Δ̂∗IPW1

)| in (13)
The sufficient condition follows from the above by adding to the necessary condition that

𝐸

[(
𝑒(𝑋)

𝑒∗(𝑋)
− 1

)
𝜇∗
1
(𝑋)

]
and 𝐸

[(
𝑒(𝑋)

𝑒∗(𝑋)
− 1

)
𝜇1(𝑋)

]

are either both positive or both negative, since then either (A6) or (A7) holds.

Necessary condition of Equation 14

1. Assuming that:

cov
[
𝑒(𝑋)

𝑒∗(𝑋)
, 𝜇1(𝑋)

]
> 0 ⟺

𝐸
[
𝑒(𝑋)

𝑒∗(𝑋)
𝜇1(𝑋)

]
𝐸
[
𝑒(𝑋)

𝑒∗(𝑋)

] − 𝜇1 > 0.
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Here, we have

−

𝐸
[
𝑒(𝑋)

𝑒∗(𝑋)
𝜇1(𝑋)

]
𝐸
[
𝑒(𝑋)

𝑒∗(𝑋)

] + 𝜇1 < 𝐸

[(
𝑒(𝑋)

𝑒∗(𝑋)
− 1

)(
𝜇1(𝑋) − 𝜇

∗
1
(𝑋)

)]
<

𝐸
[
𝑒(𝑋)

𝑒∗(𝑋)
𝜇1(𝑋)

]
𝐸
[
𝑒(𝑋)

𝑒∗(𝑋)

] − 𝜇1,

−cov
[
𝑒(𝑋)

𝑒∗(𝑋)
, 𝜇1(𝑋)

]
< 𝐸

[
𝑒(𝑋)

𝑒∗(𝑋)

]
𝐸

[(
𝑒(𝑋)

𝑒∗(𝑋)
− 1

)(
𝜇1(𝑋) − 𝜇

∗
1
(𝑋)

)]
< cov

[
𝑒(𝑋)

𝑒∗(𝑋)
, 𝜇1(𝑋)

]
,

and

𝐸

[(
𝑒(𝑋)

𝑒∗(𝑋)
− 1

)
𝜇1(𝑋)

]
−

cov
[
𝑒(𝑋)

𝑒∗(𝑋)
, 𝜇1(𝑋)

]
𝐸

[
𝑒(𝑋)

𝑒∗(𝑋)

] < 𝐸

[(
𝑒(𝑋)

𝑒∗(𝑋)
− 1

)
𝜇∗1(𝑋)

]
< 𝐸

[(
𝑒(𝑋)

𝑒∗(𝑋)
− 1

)
𝜇1(𝑋)

]
+

cov
[
𝑒(𝑋)

𝑒∗(𝑋)
, 𝜇1(𝑋)

]
𝐸

[
𝑒(𝑋)

𝑒∗(𝑋)

] .

(A8)

2. Assuming that:

cov
[
𝑒(𝑋)

𝑒∗(𝑋)
, 𝜇1(𝑋)

]
< 0 ⟺

𝐸
[
𝑒(𝑋)

𝑒∗(𝑋)
𝜇1(𝑋)

]
𝐸
[
𝑒(𝑋)

𝑒∗(𝑋)

] − 𝜇1 < 0,

it follows that

𝐸
[
𝑒(𝑋)

𝑒∗(𝑋)
𝜇1(𝑋)

]
𝐸
[
𝑒(𝑋)

𝑒∗(𝑋)

] − 𝜇1 < 𝐸

[(
𝑒(𝑋)

𝑒∗(𝑋)
− 1

)(
𝜇1(𝑋) − 𝜇

∗
1
(𝑋)

)]
< −

𝐸
[
𝑒(𝑋)

𝑒∗(𝑋)
𝜇1(𝑋)

]
𝐸
[
𝑒(𝑋)

𝑒∗(𝑋)

] + 𝜇1

cov
[
𝑒(𝑋)

𝑒∗(𝑋)
, 𝜇1(𝑋)

]
< 𝐸

[
𝑒(𝑋)

𝑒∗(𝑋)

]
𝐸

[(
𝑒(𝑋)

𝑒∗(𝑋)
− 1

)(
𝜇1(𝑋) − 𝜇

∗
1
(𝑋)

)]
< −𝑐𝑜𝑣

[
𝑒(𝑋)

𝑒∗(𝑋)
, 𝜇1(𝑋)

]
,

and

𝐸

[(
𝑒(𝑋)

𝑒∗(𝑋)
− 1

)
𝜇1(𝑋)

]
+

cov
[
𝑒(𝑋)

𝑒∗(𝑋)
, 𝜇1(𝑋)

]
𝐸

[
𝑒(𝑋)

𝑒∗(𝑋)

] < 𝐸

[(
𝑒(𝑋)

𝑒∗(𝑋)
− 1

)
𝜇∗1(𝑋)

]
< 𝐸

[(
𝑒(𝑋)

𝑒∗(𝑋)
− 1

)
𝜇1(𝑋)

]
−

𝑐𝑜𝑣

[
𝑒(𝑋)

𝑒∗(𝑋)
, 𝜇1(𝑋)

]
𝐸
[
𝑒(𝑋)

𝑒∗(𝑋)

] ,

(A9)

by (A8) and (A9), we have that

𝐸

[(
𝑒(𝑋)

𝑒∗(𝑋)
− 1

)
𝜇1(𝑋)

]
−

|||||cov
[
𝑒(𝑋)

𝑒∗(𝑋)
, 𝜇1(𝑋)

]|||||
𝐸

[
𝑒(𝑋)

𝑒∗(𝑋)

] < 𝐸

[(
𝑒(𝑋)

𝑒∗(𝑋)
− 1

)
𝜇∗1(𝑋)

]
< 𝐸

[(
𝑒(𝑋)

𝑒∗(𝑋)
− 1

)
𝜇1(𝑋)

]
+

|||||cov
[
𝑒(𝑋)

𝑒∗(𝑋)
, 𝜇1(𝑋)

]|||||
𝐸

[
𝑒(𝑋)

𝑒∗(𝑋)

] ,

Sufficient condition of (15)
If 𝐸[( 𝑒(𝑋)

𝑒∗(𝑋)
− 1)𝜇1(𝑋)] and cov[

𝑒(𝑋)

𝑒∗(𝑋)
, 𝜇1(𝑋)] are both positive

then,

𝐸

[(
𝑒(𝑋)

𝑒∗(𝑋)
− 1

)
𝜇1(𝑋)

]
+
|||||cov

[
𝑒(𝑋)

𝑒∗(𝑋)
, 𝜇1(𝑋)

]||||| =
|||||𝐸
[(

𝑒(𝑋)

𝑒∗(𝑋)
− 1

)
𝜇1(𝑋)

]
+ cov

[
𝑒(𝑋)

𝑒∗(𝑋)
, 𝜇1(𝑋)

]|||||
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and

−
|||||𝐸
{[

𝑒(𝑋)

𝑒∗(𝑋)
− 1

]
𝜇1(𝑋)

}
+ cov

[
𝑒(𝑋)

𝑒∗(𝑋)
, 𝜇1(𝑋)

]||||| < 𝐸
[(

𝑒(𝑋)

𝑒∗(𝑋)
− 1

)
𝜇1(𝑋)

]
+
|||||cov

[
𝑒(𝑋)

𝑒∗(𝑋)
, 𝜇1(𝑋)

]|||||.
If 𝐸[( 𝑒(𝑋)

𝑒∗(𝑋)
− 1)𝜇1(𝑋)] and cov[

𝑒(𝑋)

𝑒∗(𝑋)
, 𝜇1(𝑋)] are both negative, then we have

𝐸

[(
𝑒(𝑋)

𝑒∗(𝑋)
− 1

)
𝜇1(𝑋)

]
+
|||||cov

[
𝑒(𝑋)

𝑒∗(𝑋)
, 𝜇1(𝑋)

]||||| <
|||||𝐸
[(

𝑒(𝑋)

𝑒∗(𝑋)
− 1

)
𝜇1(𝑋)

]
+ cov

[
𝑒(𝑋)

𝑒∗(𝑋)
, 𝜇1(𝑋)

]|||||,
and

−
|||||𝐸
[(

𝑒(𝑋)

𝑒∗(𝑋)
− 1

)
𝜇1(𝑋)

]
+ cov

[
𝑒(𝑋)

𝑒∗(𝑋)
, 𝜇1(𝑋)

]||||| = 𝐸
[(

𝑒(𝑋)

𝑒∗(𝑋)
− 1

)
𝜇1(𝑋)

]
+
|||||cov

[
𝑒(𝑋)

𝑒∗(𝑋)
, 𝜇1(𝑋)

]|||||,
and the necessary condition from Equation (14) follows.
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