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Abstract
Objective: Accurate segmentation of the lung nodule in computed tomography
images is a critical component of a computer-assisted lung cancer detec-
tion/diagnosis system.However, lung nodule segmentation is a challenging task
due to the heterogeneity of nodules. This study is to develop a hybrid deep
learning (H-DL) model for the segmentation of lung nodules with a wide variety
of sizes, shapes, margins, and opacities.
Materials and methods: A dataset collected from Lung Image Database Con-
sortium image collection containing 847 cases with lung nodules manually
annotated by at least two radiologists with nodule diameters greater than 7 mm
and less than 45 mm was randomly split into 683 training/validation and 164
independent test cases.The 50% consensus consolidation of radiologists’anno-
tation was used as the reference standard for each nodule. We designed a
new H-DL model combining two deep convolutional neural networks (DCNNs)
with different structures as encoders to increase the learning capabilities for
the segmentation of complex lung nodules. Leveraging the basic symmetric
U-shaped architecture of U-Net, we redesigned two new U-shaped deep learn-
ing (U-DL) models that were expanded to six levels of convolutional layers. One
U-DL model used a shallow DCNN structure containing 16 convolutional layers
adapted from the VGG-19 as the encoder, and the other used a deep DCNN
structure containing 200 layers adapted from DenseNet-201 as the encoder,
while the same decoder with only one convolutional layer at each level was
used in both U-DL models, and we referred to them as the shallow and deep
U-DL models. Finally, an ensemble layer was used to combine the two U-DL
models into the H-DL model. We compared the effectiveness of the H-DL, the
shallow U-DL and the deep U-DL models by deploying them separately to the
test set. The accuracy of volume segmentation for each nodule was evaluated
by the 3D Dice coefficient and Jaccard index (JI) relative to the reference stan-
dard. For comparison, we calculated the median and minimum of the 3D Dice
and JI over the individual radiologists who segmented each nodule, referred to
as M-Dice, min-Dice, M-JI, and min-JI.
Results: For the 164 test cases with 327 nodules, our H-DL model achieved
an average 3D Dice coefficient of 0.750 ± 0.135 and an average JI of 0.617
± 0.159. The radiologists’ average M-Dice was 0.778 ± 0.102, and the average
M-JI was 0.651 ± 0.127; both were significantly higher than those achieved by
the H-DL model (p < 0.05). The radiologists’ average min-Dice (0.685 ± 0.139)
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and the average min-JI (0.537 ± 0.153) were significantly lower than those
achieved by the H-DL model (p < 0.05). The results indicated that the H-DL
model approached the average performance of radiologists and was superior
to the radiologist whose manual segmentation had the min-Dice and min-JI.
Moreover, the average Dice and average JI achieved by the H-DL model were
significantly higher than those achieved by the individual shallow U-DL model
(Dice of 0.745 ± 0.139, JI of 0.611 ± 0.161; p < 0.05) or the individual deep
U-DL model alone (Dice of 0.739 ± 0.145, JI of 0.604 ± 0.163; p < 0.05).
Conclusion: Our newly developed H-DL model outperformed the individual
shallow or deep U-DL models. The H-DL method combining multilevel features
learned by both the shallow and deep DCNNs could achieve segmentation
accuracy comparable to radiologists’segmentation for nodules with wide ranges
of image characteristics.
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computer-aided diagnosis, deep learning, lung nodule, nodule segmentation

1 INTRODUCTION

Lung cancer is one of the most common cancers and
the leading cause of cancer-related death in men and
women in the United States. According to the American
Cancer Society, about 13% of all new cancers are lung
cancers,with about 235 760 new cases (119 100 in men
and 116 660 in women) and about 131 880 deaths from
lung cancer (69 410 in men and 62 470 in women) in
2021.1 The overall prognosis of lung cancer is poor, with
a 5-year survival rate of only 21%.

Computed tomography (CT) has become a preferred
method for detecting and diagnosing lung cancer. Accu-
rate segmentation of the lung nodule in CT images
not only provides an objective measurement of nodule
size for clinical surveillance of nodule growth2 but also
constitutes a critical component for the development
of a computer-assisted lung cancer detection/diagnosis
system.

Despite the development of computerized methods
over the years, lung nodule segmentation remains a
difficult task because of the wide range of heterogene-
ity in lung nodule characteristics such as shape, size,
and attenuation.The complexity of the lung parenchyma
surrounding the nodules further poses a challenge in
developing robust segmentation models.3 As the exam-
ples shown in Figure 1, it is challenging to segment the
nodules with heterogeneous intensity distribution char-
acterized by a wide range of varied x-ray attenuation
distributed within the nodules containing solid,sub-solid,
nonsolid ground glass opacity (GGO) or mixed compo-
nents, the nodules with “irregular shapes”categorized as
irregular or spiculated margins, and the juxtapleural or
juxtavascular nodules attached to the chest wall, pleural
surface, or pulmonary vessels.

Conventional methods for automated lung nodule
segmentation in CT images4,5 commonly consist of
two steps: the detection of nodule locations and then

the segmentation of the detected nodules from the
surrounding lung parenchyma.6 The features charac-
terizing nodule intensity, textures, and morphologies
are usually extracted to differentiate nodules from
other lung structures during nodule detection. Then,
these features are used to segment the nodules by
various methods such as intensity-based methods with
morphological operations,7,8 region growing methods,9

optimization methods with level set,10 graph cut,11

or reinforcement-learning techniques.12 In an early
study,13 we used 3D active contours guided by gradient
and curvature energies for segmentation and extracted
morphological and texture features to classify malig-
nant and benign lung nodules. In our recent study,14 we
developed a 3D adaptive multicomponent expectation-
maximization (EM) analysis method to segment the
nodule volume including the solid and nonsolid GGO
components and the surrounding lung parenchyma
region. Radiomic features were then extracted to

F IGURE 1 Examples of lung nodules from the Lung Image
Database Consortium image collection (LIDC-IDRI) dataset used in
the test set of this study with different characteristics in computed
tomography (CT) images: (a) ground-glass opacity nodule. (b)
juxtapleural nodule. (c) Cavitary nodule. (d) nodule with irregular
margins
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characterize the CT attenuation distribution patterns
of the nodule components. Our results demonstrated
the feasibility of classifying pathologically invasive nod-
ules, preinvasive nodules, or benign nodules using the
proposed method. Although a wide variety of methods
have been developed, the accuracy and robustness
of the segmentation have yet to be further improved,
especially for nodules with irregular shapes and hetero-
geneous intensity distribution within the nodules (e.g.,
partially solid and nonsolid GGO nodules).8

Supervised deep learning methods are emerging
technologies increasingly used in medical image anal-
ysis, shifting from the classical methods trained with
handcrafted features to the training of deep learning
models in which the features are learned automatically
without manual extraction and selection. Deep convo-
lutional neural network (DCNN)-based deep learning
methods have been used for learning discriminative
features from the training data in various machine
learning applications from image analysis to natural lan-
guage processing. DCNN models, such as VGG,15,16

DenseNet,17 Fast-CNN,18 and some much deeper
CNNs,have been successfully employed for a wide vari-
ety of tasks. The Mask R-CNN19 represents one of
the state-of -the-art DCNNs that uses a region proposal
network followed by a region-based CNN and a seman-
tic segmentation model to simultaneously perform the
tasks of detection and segmentation. Different network
structures have been developed specifically for many
types of lesions or organs to be segmented in various
medical imaging modalities. The U-Net20 model sup-
plements the deeply supervised encoder sub-network
with a decoder sub-network through simple skip con-
nections that allow the network to propagate context
information to higher resolution layers. The iW-Net21

was composed of two U-Nets; the first performed auto-
matic segmentation, while the second U-Net allowed
user correction by marking 2 points along the nodule
boundary to refine the segmentation result of the first
U-Net. The PN-SAMP22 first segmented a nodule using
U-Net and then used the feature maps from the encoder
and the segmentation output from the decoder as inputs
to a CNN to predict the malignancy of the nodule. How-
ever, these previous methods relied on user interaction
to refine the segmentation, such as iW-Net or were
trained for specific types of nodules such as PN-SAMP.
Continued effort is needed to develop new architec-
tures to take advantage of the DCNN-based approach
for the segmentation of heterogeneous lung nodule
volumes.

The key feature of the current U-Net architecture
and its variants for image segmentation is the use of
two DCNN networks with a similar structure as the
encoder and decoder for pixelwise image segmenta-
tion. However, there are still many significant challenges
in advancing U-Net segmentation approaches, including
improving the learning capability of the encoder to dis-

cover enough useful hidden image patterns with large
variations23,24 so as to characterize the differences
between lung cancer and lung parenchyma and a better
understanding of the intricate relationships between a
large number of interdependent variables,25 especially
for segmentation of complex objects in medical images,
such as highly heterogeneous lung nodules. Increasing
the depth of a DCNN to generate deeper and diverse
representations enables the network to progressively
explore different levels of features with different sizes of
the receptive field as it sequentially goes through each
layer is a popular method in the previous years.However,
an excessively deep network can result in saturation and
cause performance degradation,17 and a relatively small
training set, such as our lung cancer dataset, is more
prone to such risks.

Another approach to increasing the learning ability of
a DCNN network is to combine multiple convolutional
sequences that may better characterize complex image
patterns. Convolutional sequences have different struc-
tures, depths, and receptive fields that may allow them
to independently capture different features and focus
on different kinds and levels of patterns. When these
convolutional sequences are hybridized together, they
can learn more complex patterns or capture a larger
combination of patterns.

Following the second approach, in this study, we
designed a new hybrid deep learning (H-DL) model for
the segmentation of lung nodules of a wide range of
heterogeneous characteristics. Compared with the con-
ventional U-Net-related methods, our H-DL model was
an ensemble of two U-shaped architectures (U-shaped
deep learning [U-DL]): one had a shallow DCNN as the
encoder,and the other had a deep DCNN as the encoder
with a different network structure to increase the learn-
ing capability so that different levels of features can
be explored to characterize the highly heterogeneous
lung nodules in CT images. Moreover, unlike the sim-
ple long skip connections utilized in the conventional
U-Net, we adapted a series of nested and dense skip
structures25 to provide alternative pathways to connect
the encoder and the decoder in each U-DL network.
These skip structures further alleviate the vanishing gra-
dient problem that saturates gradient backpropagation
in deeper networks. After a large number of patterns
were captured independently by these two networks, an
ensemble layer was used to hybridize the two different
U-DL networks to the H-DL model to obtain the larger
combinations of patterns. To increase the efficiency of
our H-DL model, we used an asymmetric encoder and
decoder path structure in which the same decoder with
only one convolutional layer at each level was used for
both the shallow and deep U-DL models. The simplified
decoder could not only reduce computational and mem-
ory costs but also provides flexibility to further expand
the H-DL model by adding more DCNNs with different
structures as encoders if needed.
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To evaluate the effectiveness of our H-DL model in
segmenting heterogeneous lung nodules, we deployed
the H-DL and the individual U-DL models separately
to an independent test set with a wide range of char-
acteristics manifested in CT images and demonstrated
the increased learning capability resulting from the
ensemble of two different feature extraction (encod-
ing) networks. We also compared our method with
other methods reported in the literature for lung nod-
ule segmentation. To evaluate the generalizability and
robustness of our H-DL model, we deployed our H-DL
model with the trained weights frozen to the test set
of an offline challenge, the Sub-Challenge B (Nodule
Segmentation) of the Grand Challenge on automatic
lung cancer patient management (LNDb) challenge,26

and demonstrated that our H-DL model can be directly
deployed to an “external” dataset and achieve high
accuracies in lung nodule segmentation.

This paper is organized as follows. Section 2 intro-
duces our H-DL model and the dataset used. Section 3
presents the results of our method. Section 4 provides
the discussion, and Section 5 concludes the paper.

2 MATERIALS AND METHODS

2.1 Dataset

From 1010 patient cases publicly available through
the Lung Image Database Consortium image collection
(LIDC-IDRI) with manually annotated lung nodules,27 a
dataset of 847 cases containing lung nodules marked by
at least two radiologists with nodule diameters greater
than or equal to 7 mm and less than 45 mm were
selected in our study. The CT images were acquired
with different CT scanners manufactured by GE, Philips,
Siemens, and Toshiba. The tube current ranged from 40
to 627 mA (mean: 221.1 mA), the tube peak potential
energies ranged from 120 to 140 kV, the slice thickness
ranged from 0.6 to 5.0 mm with reconstruction inter-
vals from 0.45 to 5.0 mm, and the pixel size in the axial
plane varied from 0.46 to 0.98 mm. We used 683 cases
with 2558 nodules for training and validation and the
remaining 164 cases with 327 nodules for independent
testing.

In the LIDC dataset, the lung nodules were marked
and manually segmented by at least two radiologists.
The LIDC radiologists also subjectively assessed the
nodule characteristics by descriptors and provided rat-
ings on a scale from 1 to 5 for each marked nodule,
including subtlety, spiculated margin, solid opacity, lob-
ulated shape, and the likelihood of malignancy (e.g.,
nodule subtlety, 1 = extremely subtle, 5 = obvious). The
typically used 50% consensus consolidation of radiol-
ogists’ annotations for each nodule was calculated by
the LIDC suggested python package “pylidc” and used
as the reference standard for training and testing. That

is, a voxel was labeled within the nodule when at least
50% of radiologists’ segmentation included that voxel.
Figure 2 shows examples of radiologists’ variabilities in
manual outlining of nodules of various sizes, shapes,
and locations. The dashed contours with different col-
ors (left) are the outlines by four different radiologists,
and the red contour enclosed nodule (right) is the 50%
consensus consolidation of radiologists’ annotations for
that nodule.

In general, lung nodules with smooth shapes and obvi-
ous margins resulted in more similar outlines by the
radiologists, as the boundaries were clearly recogniz-
able. In contrast, lung nodules with irregular shapes and
fuzzy margins caused higher variabilities because their
boundaries were difficult to be clearly identified.

2.2 U-DL model for lung nodule
segmentation

The U-Net neural network architecture20 was initially
developed for biomedical image segmentation and has
been widely used in medical image analysis. Despite
the outstanding overall performance, some studies sug-
gested that the conventional U-Net architecture still has
room for improvement due to its simple series of con-
volutional layers,28,29 plain probable sematic gap,25,29

and relatively shallow network structures.30 Based on
these previous observations, we made the following
targeted innovation. Leveraging the basic U-shaped
architecture of the encoder and decoder paths in a con-
ventional U-Net,we redesigned the DCNN architectures
of the encoder and decoder in two separate U-shaped
networks and combined them into an H-DL model to
improve the learning capabilities for segmentation of
complex lung nodules that have large variations in the
structural and attenuation characteristics. Each of the
U-DL networks consisted of a contracting (encoder)
and an expanding (decoder) path (Figure 3a,b). Com-
pared with the original U-Net that contained five levels
of the same number of nine convolutional layers, we
expanded each of the U-DL networks to six levels in both
paths. In one U-DL network, we used a relatively shal-
low DCNN structure containing 16 convolutional layers
adapted from VGG-19 (the three fully connected layers
in VGG-19 were not used). In the other U-DL network,
we used a deep DCNN structure containing 200 layers
adapted from DenseNet-201 (196 convolutional layers
and four transitional layers in five dense blocks while
dropping the one fully connected layer in DenseNet-
201).We referred to our two U-shaped DCNN backbone
networks as the shallow U-DL (Figure 3a) and deep
U-DL (Figure 3b) models.

We also redesigned the decoder in the expanding
path of the conventional U-Net. In our U-DL models,
the expanding path consisted of only one convolutional
layer at each level that was much fewer than those
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F IGURE 2 Examples of radiologists’ annotations on four different nodules showing the variabilities among radiologists in manual outlining
of nodules (left, dashed contours with different colors). The 50% consensus consolidation of radiologists’ annotations for each nodule was used
as the reference standard (right, red solid contour)

in the contracting path and was not symmetric to the
contracting path. The simplified decoder can not only
reduce computational and memory costs but also pro-
vide flexibility that allows further expansion of the H-DL
model by adding more DCNNs as encoders. Both the
encoding and decoding paths used a 3 × 3 padded
convolution followed by a rectified linear unit. A 2 × 2
max pooling operation with stride two was used for fea-
ture map downsampling in the contracting path. We
experimentally chose the transpose convolution (inverse
convolution) operations for the upsampling operation in
the expanding path by comparing it to the interpolation
(nearest neighbor or bilinear).

In a conventional U-Net model, the supervised
encoder and decoder sub-networks were connected
through simple long skip connections, allowing the net-
work to propagate contextual information to higher
resolution layers. As we utilized deeper encoder net-
work structures in our U-DL models, to further alleviate
the vanishing gradient problem that saturates gradient
backpropagation in deeper networks, we modified our
U-DL models by adding a series of nested and dense
skip structures to provide alternative pathways to con-
nect the encoder and the decoder as shown in Figure 3.
This skipping scheme was derived and modified from
U-Net++,25 a U-Net variant that has the advantage of
reducing the semantic gap between the feature maps
of the encoder and the decoder.

In our hybrid model, the two U-DL models were
separately trained with the training set, and then the
probabilities predicted by the two U-DL models were
combined into the H-DL model through an ensemble
layer to maximize the probabilities of the pixels belong-
ing to a nodule as shown in Figure 4. The ensemble
layer concatenated the vectors output from the two U-
DL models, followed by a 3 × 3 convolutional layer with

the sigmoid activation function and output the multicom-
ponent vectors to a likelihood map indicating pixelwise
the chance that a pixel was inside the lung nodule. A
threshold of 0.5 likelihood value was determined dur-
ing the training process to segment the likelihood map
to a binary image that labeled the interior and exterior
regions of the nodule.

2.3 Data preparation

The Hounsfield unit (HU) is commonly used in CT scans
that measure the radiodensity to characterize the tis-
sue property. As the 12- or 16-bit CT data read directly
from the LIDC DICOM file is not the HU value, we first
converted the data read from the DICOM file to the HU
values by multiplying the pixel values with the rescal-
ing slope and adding the intercept, which is stored in
the metadata of the DICOM header. The CT scans
were originally acquired with a slice interval ranging
from 0.45 to 5.0 mm and a pixel size in the axial plane
varying from 0.46 to 0.98 mm. We resampled all CT
scans to isotropic volumes with a voxel size of 0.5 x
0.5 x 0.5 mm using the 3D spline interpolation method.
For each reference standard nodule marked by radi-
ologists, a volume of interest (VOI) of 64 × 64 × 64
pixels in size centered at the center of the nodule was
cropped. For each VOI, the voxel values were scaled as
follows:

f ′ (x, y, z) = f (x,y,z)−min

max−min
, (1)

where f (x, y, z) is the voxel value at (x, y, z) min and max
are the minimum and maximum voxel values within the
VOI, respectively.



7292 LUNG NODULES IN CT IMAGES

1 64 64

6
4

*6
4

128 128

256256 256

256 512

8
*8

512

512 512

4
*4

512512

512

2
*2

4
*4

4
*4

16

256

64

1
6

*1
6

16

3
2

*3
2

3
2

*3
2

6
4

*6
4

64

3
2

*3
2

128

1
6

*1
6

512

512

6
4

*6
4

8
*8

Level 

(a)

(b)

1

Level 2

Level 3

Level 4

Level 5

Level 6

Convolution layer

Down-sampling

Copy

Up-sampling

Concatenate

128

512

2*
2

4*
4

4*
4

16

256

64

16
*1

6

16

32
*3

2

32
*3

2

64
*6

4

Level 1

Level 2

Level 3

Level 4

Level 5

Level 6

64

Convolution layer

Down-sampling

Copy

Up-sampling

64
*6

4

8*
8

Dense block 1
(6 blocks)

Dense block 2
(12 blocks)

Dense block 3
(48 blocks)

Dense block 4
(32 blocks)

Concatenate

F IGURE 3 The architectures of our two asymmetric U-shaped deep learning backbone networks for lung nodule segmentation in CT
images. (a) VGG19-based encoder path (Shallow U-DL) (upper), and (b) deep DenseNet-based encoder path (Deep U-DL) (bottom). The size
of each feature map is shown at the lower-left edge of the box. The arrows of different colors represent different operations.

2.4 Training of H-DL models

Our H-DL models were trained with the set of 683
LIDC cases containing 2558 nodules marked by at least
two radiologists. This dataset was separated randomly
by case with a ratio of 9:1 as the training set and
the validation set during the training process. For each
64 × 64 × 64-pixel VOI, three 64 × 64-pixel 2D patches
in the axial plane, with the central patch centered at
the nodule center, were sampled with a 1.5 mm inter-
val and treated as three different training samples. With
an image patch as input, the H-DL model outputs the
likelihood map, which indicates pixels the chance that a

pixel is inside the nodule, in the same size as the input
image patch (64 × 64 pixels).

Our H-DL model was trained with mini-batch training
for stochastic optimization and the Adam optimizer.31

The Dice coefficient combined with the binary cross-
entropy was used as the loss function during training.
A mini-batch size of 64 randomly divided from the
training set was used in each training epoch. A nor-
mal distribution with a mean of 0 and a standard
deviation of 0.02 was used to initialize the networks’
weights. The learning rate was initially set to 0.001 as
a compromised balance of slow progress (with a lower
learning rate) and undesirable divergences (with a larger
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F IGURE 4 The overall framework of our hybrid DL (H-DL) model

learning rate) in the loss function and decreased by
10 times when the loss did not continuously decrease
on the validation set after 10 consecutive epochs. The
early stop strategy was used when the loss on the
validation set did not decrease over 30 consecutive
epochs.

2.5 Performance evaluation

The performances of our trained models in lung nodule
segmentation were evaluated by comparing the seg-
mentation results to the reference standard, defined as
the 50% consensus consolidation of radiologists’ anno-
tations. Different from using only three image patches
sampled from each VOI to train the models, the trained
model was deployed to the entire 64 × 64 × 64 VOI slice
by slice. For performance evaluation, the 3D Dice simi-
larity coefficient (Dice) and Jaccard index (JI) applied to
the 64 slices in each VOI were calculated as quantitative
performance measures:

DICE =
2(Obj∩Ref )

Obj+Ref
, (2)

JI =
Obj∩Ref

Obj∪Ref
, (3)

where Obj is the segmented volume, and Ref is the
reference standard.

For comparison, we also calculated the 3D Dice coef-
ficient and JI for each LIDC radiologist relative to the
reference standard. Since the nodules were segmented
by a different number of radiologists (N > = 2) in the
LIDC dataset, we calculated the median (M) and min-
imum (min) of the 3D Dice and JI over all radiologists
who segmented a given nodule, referred to as M-Dice,
min-Dice,M-JI,and min-JI, respectively.The averages of
the above quantitative measures over the entire test set
of nodules were compared with the average 3D Dice
coefficient and JI of the two U-DL models and the com-
bined H-DL model.The two-tailed paired t-test was used
to compare the differences between our models and the
radiologists’ manual segmentations.

3 RESULTS

3.1 LIDC independent test set

Table 1 summarizes the results of our H-DL model,
shallow U-DL and deep U-DL models, and radiologists’
performance. Figure 5 shows the box and whisker plots
of the distributions of the 3D Dice coefficients for the
nodule segmentation.
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F IGURE 5 Box plots showing the distributions of the 3D Dice coefficients for the lung nodule segmentation achieved by the H-DL model,
deep U-DL model, shallow U-DL model, (H-DL, deep, shallow, respectively) and average, maximum, minimum and median of the radiologists’
manual outlines (AvgRad, MaxRad, MinRad, MedRad, respectively) relative to the reference standard. In this plot, the horizontal line represents
the median value, the top line of the box is the 25% quartile, the bottom line of the box is the 75% quartile, the whiskers are the 10th and 90th
percentiles, and the points are outliers.

For 164 test cases with 327 nodules, our H-DL model
achieved an average 3D Dice coefficient of 0.750 ±

0.135 and an average JI of 0.617 ± 0.159. The radi-
ologists’ average M-Dice was 0.778 ± 0.102, and the
average M-JI was 0.651 ± 0.127; both were signifi-
cantly higher than those achieved by the H-DL model
(p< 0.05).On the other hand,both the average min-Dice
(0.685 ± 0.139) and the average min-JI (0.537 ± 0.153)
were significantly lower than the corresponding average
Dice and average JI achieved by the H-DL model. The
results indicated that the automated segmentation by
the H-DL model approached the average performance
of radiologists and was superior to the radiologist whose
manual segmentation had the minimum Dice and JI
among the radiologists in the group outlining the same
nodule.Note that,as the task of nodule marking was ran-
domly assigned to different radiologists for each nodule
in the LIDC study, the minimum Dice and JI could come
from any radiologists.

To assess the effectiveness of combining the shallow
U-DL and deep U-DL models into the H-DL model, we
deployed the separately trained shallow U-DL and deep
U-DL models to the test set. The shallow U-DL model
achieved an average Dice of 0.745 ± 0.139 and an aver-
age JI of 0.611 ± 0.161. The corresponding average
Dice and average JI achieved by the deep U-DL model
were 0.739 ± 0.145 and 0.604 ± 0.163, respectively.
The average Dice and average JI achieved by our H-DL
model were significantly higher than those of the deep
U-DL and shallow U-DL models (p < 0.05). Figure 6

shows examples of nodules segmented by the shallow
U-DL, the deep U-DL, and the final H-DL in comparison
to the radiologists’ segmentation.

For the nodules with different radiologic character-
izations assessed by LIDC radiologists, we used the
median of radiologists’ ratings as the final rating for each
nodule and then separated the nodules into two groups
using the median of the nodules’ final ratings for each
descriptor.Table 1 shows the analysis for the two groups
of each descriptor. For example, a nodule with diame-
ters less than 10.02 mm was considered a small nodule,
and a malignancy rating greater than or equal to 3.0
and a margin greater than or equal to 4.25 indicated
that the nodules had a higher likelihood of malignancy
and sharp margins, respectively. For the nodules with
diameters greater than or equal to 10.02 mm or nodule
subtlety rating greater than or equal to 4.25, the aver-
age Dice coefficients achieved by the H-DL model were
0.782 ± 0.128 and 0.798 ± 0.113, compared to the radi-
ologists’ average M-Dice of 0.790 ± 0.105 and 0.785 ±

0.116. Their differences did not achieve statistical sig-
nificance (p > 0.05), indicating that the segmentation
accuracies achieved by H-DL were comparable to those
of radiologists for relatively large and obvious nodules.
For the nodules with other radiologic characterizations
described by LIDC, the H-DL model achieved average
Dice coefficients of 0.774 ± 0.126,0.776 ± 0.120,0.767
± 0.125, and 0.776 ± 0.125 for nodules with sharp mar-
gins (≥ 4.25), lobulated (≥ 1.75), spiculated (≥ 1.50),
and solid (≥ 5.00) nodules, respectively, which were
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F IGURE 6 Examples showing the differences between the H-DL, shallow U-DL, and deep U-DL models

comparable (p > 0.05) to radiologists’ average M-Dice
coefficients of 0.795 ± 0.094, 0.775 ± 0.113, 0.774 ±

0.112, and 0.794 ± 0.099, respectively. For malignant
(≥ 3.00) nodules, the H-DL model achieved an average
Dice coefficient of 0.783 ± 0.123, compared to the aver-
age M-Dice of 0.785 ± 0.105 achieved by radiologists
(p> 0.05).Similar results of the JI metrics were achieved
by the H-DL model. The details of the comparisons are
shown in Table 1.

To evaluate the robustness of the H-DL model against
the variability of centering the VOI at the nodule,we also
deployed our H-DL model to the VOI obtained by shifting
the LIDC-defined nodule center with a random distance
(up to one-third of the longest diameter of a nodule and
at the same time keeping the nodule within the VOI) in
the horizontal or vertical direction for each test nodule.
This simulates the situation in which the nodule can-
didate is detected automatically in a computer-aided
diagnosis pipeline, where the centroid of the detected
object may not be well centered because the object
boundary is unknown before segmentation but the cen-

troid is still located within the object region. The results
showed that the average 3D Dice coefficient of 0.741 ±
0.142 using our H-DL achieved at the shifted-VOI was
not significantly different (p > 0.05 by paired t-test) from
that of the VOIs centered at the LIDC-defined nodule
centers.

We also compared the segmentation results of our
H-DL model with four nodule segmentation methods
reported in the literature,which were also tested by LIDC
cases. Table 2 shows that our H-DL achieved higher
Dice coefficients and JIs (if reported in their studies).

3.2 LNDb: Grand Challenge on
automatic lung cancer patient
management

We deployed our H-DL model that has been trained with
the LIDC dataset directly without retraining to the test
set of LNDb Sub-Challenge B for lung nodule segmen-
tation with CT images.26 The test set of LNDb Challenge
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TABLE 2 Performance comparisons of our H-DL model with other deep learning methods in the segmentation of lung nodules

Dataset used
Volume of interest
size Dice JI

H-DL model LIDC-IDRI 64 × 64 × 64 0.750 ± 0.135 0.617 ± 0.159

3D U-Net32 LIDC-IDRI 64 × 64 × 64 0.720 ± 0.049 0.380 ± 0.080

iW-Net21 LIDC-IDRI 64 × 64 × 64 – 0.550 ± 0.140

PN-SAMP22 LIDC-IDRI 64 × 64 × 64 0.741±0.357 –

Abbreviation: LIDC-IDRI, Lung Image Database Consortium image collection.

B contained 58 CT scans. LNDb provided challenge
participants with the VOI findings from an automated
lung nodule detection method, in which each CT scan
contained 50 VOIs of nodule candidates, resulting in
a total of 2900 VOIs. Among those 50 VOIs for each
CT, only one or two were the true positive of the nod-
ule, others were false positives from the automated
nodule detection,and LNDb only evaluated the segmen-
tation performance for those true positive nodules that
were manually outlined by LNDb but unknown to the
challenge participants. During the LNDb Challenge B,
the participants trained their lung nodule segmentation
methods with an LNDb training set that contained only
the true nodules with manual outlines and then applied
them to the test set containing 2900 VOIs of true or false
positives and submitted the segmentation results at the
LNDb website for evaluation. Although the submission
for the challenge ranking was closed, the submission
still remains open for those who want to benchmark
algorithms. Without retraining with the LNDb-provided
training set, we directly deployed our H-DL model to the
LNDb test set and submitted the segmentation results
to the LNDb for evaluation. The LNDb evaluation results
showed that our H-DL model achieved a Hausdorff dis-
tance (HD) of 3.05 mm and a JI of 0.468.Compared with
the participants in the leaderboard listed at the LNDb
website, our H-DL model would be ranked at the fifth
place in the total ranking leaderboard, while the teams
of first place achieved an HD of 2.028 mm and a JI
of 0.522, and the original fifth place achieved an HD of
4.406 mm and a JI of 0.403.

4 DISCUSSION

In CT screening of lung cancer, the measurement of
nodule size, especially the volume of a nodule, is a vital
tool that can help differentiate malignant nodules from
benign nodules by the nodule growth rate. The growth
rate is estimated by monitoring the change in nodule
volume in serial CT scans, such as between the base-
line screening CT and the follow-up scans.CT volumetry
also plays an important role in lung cancer treatment
by providing size change information to assess treat-
ment response. Manual segmentation of lung nodules
is a time-consuming and tedious task, and substan-

tial interradiologist variability exists as evident in the
LIDC study.33 Automatic lung nodule segmentation can
provide this valuable information without radiologists’
effort or requiring only minimal effort in identifying the
nodule of interest. Once developed and validated, com-
puterized measurement can be more consistent and
reproducible in segmenting the nodule boundaries and
thus quantifying the volume changes without inter- and
intraradiologist variabilities. Automated nodule segmen-
tation is also a fundamental step in computer-aided
diagnosis that can assist radiologists in classifying lung
nodules as malignant or benign by extracting radiomic
features.

In recent decades, a large number of studies have
investigated diverse methods, and most of the meth-
ods used a single model to segment lung nodules.
These developed models cannot properly represent
the decision bounds of a broad spectrum of nodules
with high heterogeneity. In this study, we developed a
hybrid model that combined two lung nodule segmenta-
tion models with different neural network architectures
and demonstrated that combining multiple models may
have the potential to better adapt to the heterogeneous
data distribution in the lung nodule segmentation task.
Although it has been shown that a feedforward neural
network using only one single hidden layer that con-
tains enough neurons can approximate any model,34 it
is difficult to determine the number of nodes needed.
As the number of neurons used in a multilayer net-
work could be quite large, a deeper neural network
with multiple layers could be more efficient and flexible
to accomplish the tasks.35 With an increased number
of network layers, expression and abstraction learning
abilities will be increased in the network.36–38 However,
in practice, the deepness of architecture has a signifi-
cant drawback because excessive depth may degrade
the accuracy.36,39 In general, each layer will produce a
lossy-compression-like effect after passing through the
convolution kernel. A deeper neural network with multi-
ple levels of convolutions may inevitably extract features
of excessive abstraction and is more difficult to train
than a shallow neural network. In this study,we balanced
a deep network with a shallow network and leveraged
state-of -the-art network structures such as VGG and
DenseNet to increase the learning capabilities of our H-
DL model and exploit different levels of image features
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F IGURE 7 Examples showing the differences between the nodule segmentations by the shallow and deep U-DL models alone. (a) Deep
U-DL outperformed shallow U-DL, (b) shallow U-DL outperformed deep U-DL

from CT images (Figure 4). In Figure 7,we showed some
examples to demonstrate that a deep or shallow net-
work works better or worse than each other for different
kinds of nodules. In summary, a shallow encoding path
will focus on more high-level features, and our results
demonstrated that it had better segmentation for nod-
ules of large sizes with smooth or sharp margins. On
the contrary, a deep encoding path will focus more on
detailed information, and our results demonstrated that
it had better segmentation results for small, nonsolid
nodules with poorly defined margins.

Our results showed that although the segmentation
results are different between shallow U-DL and deep
U-DL when trained with the same training set, the seg-
mentation accuracies achieved by the combined H-DL
model were superior to either one alone for most nod-
ules (Table 1). This result indicated that the different
network structures of the two U-DL models can extract
features at different levels of abstraction and provide
complementary information in the hybrid model.

In the LIDC dataset, the ratings provided by radi-
ologists for the descriptors of the different nodule
characteristics as well as their manual outlines of nodule
boundaries exhibited large variabilities. Table 3 shows
the root-mean-square deviations of the ratings for indi-
vidual nodules provided by radiologists, averaged over
all nodules, for each of the descriptors. To evaluate
the performance of our H-DL model and the separate

shallow U-DL and deep U-DL, we separated the nod-
ules into two groups by using the radiologists’ ratings
for each descriptor as described in the Results sec-
tion. Although the segmentation accuracies achieved by
our H-DL model and those achieved by the radiologists
showed a similar trend for most of the descriptors in
each group (Table 1), there are exceptions. For exam-
ple, both the H-DL model and the radiologists achieved
higher segmentation accuracies for the nodules with
sharp margins (≥ 4.25) than for nodules with fuzzy
margins.On the other hand, radiologists had lower accu-
racy in segmenting the spiculated nodules (spiculated ≥

1.5), compared with nonspiculated nodules (M-Dice of
0.774 vs. 0.783), whereas the H-DL model achieved a
better segmentation result for spiculated nodules than
for nonspiculated nodules (Dice of 0.767 vs. 0.724).
Similarly, radiologists achieved a lower accuracy in seg-
menting lobulated nodules (lobulated ≥ 1.75) than less
lobulated nodules (M-Dice of 0.775 vs 0.782), whereas
the H-DL model had much better performance with lob-
ulated nodules than less lobulated nodules (Dice of
0.776 vs. 0.724). One reason could be the difficulty
in visually judging the nodule boundaries in the pres-
ence of subtle spiculations and lobulations, and another
reason could be that it was too time-consuming for
radiologists to consistently trace the spiculations or lobu-
lations. Because the degree of spiculation or lobulation
of the nodule boundary is strongly correlated with the
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TABLE 3 The root-mean-square deviation (RMSD) of the descriptors of nodule characteristics was provided by different radiologists in the
test set. The ratings of the descriptors were given on a 5-point scale except for the diameter

Diameter (mm) Subtlety Malignancy Margin Lobulated Spiculated Solid Sphericity

RMSD 1.725 0.659 0.787 0.706 0.79 0.709 0.51 0.691

F IGURE 8 The annotations manually outlined by LNDb (left) and
LIDC (right) readers, showing that the LIDC radiologist provided
more refined outlines than those of LNDb, especially for the
irregular-shaped or spiculated nodules

probability of malignancy, an automated segmentation
tool that can segment the boundary of these nodules
accurately, reproducibly, and efficiently will be helpful in
the assessment of screen-detection lung nodules.

We have conducted a preliminary exploration of meth-
ods to hybridize the two U-DL networks. We compared
our current method of using a trained ensemble con-
volutional layer to a simple voting method using a
predefined voting threshold. We observed differences in
the segmentation performance measures for the nod-
ule sub-groups of different characteristics; however, the
latter method achieved an average 3D Dice coefficient
of 0.749 ± 0.141 and an average JI of 0.617 ± 0.162,
which were similar to the former method. This indicated
that the ensemble layer might have learned a similar
strategy as voting but used more adaptive weighting
for different nodule characteristics. Although the results
were similar on average, a potential advantage is that
the ensemble layer method may be more robust as it
achieved smaller variances. Further studies are needed
to evaluate different fusion methods.

To evaluate the performance of our H-DL model with
the LNDb Challenge B test set, we directly deployed
our H-DL model to the LNDb test set that had sev-
eral major differences from the LIDC dataset, including
(1) our LIDC training set only included nodules with
size > = 7 mm, and the LNDb included many small
nodules down to 3 mm. (2) The annotations of LNDb
nodules were relatively rough and lacked details of
the nodule boundary compared with LIDC annotation,
especially for the irregular-shaped or spiculated nod-
ules (Figure 8). (3) LNDb cropped the VOI to a size of
80 × 80 × 80 pixels with the image resolution normalized

to 0.6375 x 0.6375 x 0.6375 mm, which was different
from our VOI of 64 × 64 × 64 pixels with a resolution of
0.5 x 0.5 x 0.5 mm. Since we did not retrain the network
and kept the input dimension as before, we automati-
cally cut the VOI symmetrically from 80 × 80 × 80 to
64× 64× 64 and then padded zeros to the segmentation
results’ periphery to recover 80 × 80 × 80 VOI.

Despite the differences, we were still able to achieve
competitive performance without retraining with the
LNDb training dataset, demonstrating the generaliz-
ability and robustness of our H-DL model in lung
nodule segmentation. Among the LNDb Challenge B
leaderboards, most participants used the 3D U-Net
structure40–42, which may have inherent advantages
for volume segmentation of nodules in 3D CT images.
However, the 3D U-Net usually requires more training
time and more GPU/CPU memories, and the accura-
cies achieved by those 3D networks were widely ranked
across the leaderboard, indicating that the 3D network
architectures may not be the major reason to achieve
better results. Additionally, as the LNDb allowed the par-
ticipants to submit their results multiple times,the higher-
ranked models also used some pre- or postprocessing
methods to improve the test performance, such as the
methods of attention mechanism convolutional block
attention module (CBAM) and switchable normalization
for fine-tuning of the loss functions and hyperparame-
ters based on the feedbacks of submitted test results43

or using a self -supervised learning method44 combined
with their own dataset with LNDb training set to train the
model. Among the participated methods, a DL model44

used the similar training method as ours: It trained a
model with the LIDC dataset and then deployed it to
the LNDb test set. This model employed a conventional
3D U-net structure and achieved an HD of 9.12 mm
and JI of 0.22, which were significantly lower than those
achieved by our H-DL model.

There are several limitations in this study. In our H-DL
method, the two U-DL base models shared a simi-
lar U-shaped structure that could limit the networks
to explore more diverse features to better character-
ize lung nodules. We will study other state-of -the-art
networks with different architectures, such as Mask R-
CNN19 or YOLO45, that can be adapted to our U-DL
models to further improve the hybrid model for lung nod-
ule segmentation. Another limitation is that we have not
extensively optimized the fusion method and explored
methods such as attention structures to hybridize the
outputs from the U-DL models. These limitations will be
addressed in future studies.



LUNG NODULES IN CT IMAGES 7301

5 CONCLUSION

In this study, we developed a new H-DL method for vol-
ume segmentation of lung nodules with large variations
in size, shape, margin, and opacity in CT scans. The H-
DL model combined two asymmetric U-shaped network
architectures, one with a 16-layer shallow DCNN and
the other with a 200-layer deep DCNN as encoders for
feature extraction. The results demonstrated that our H-
DL model outperformed the individual shallow or deep
U-DL models. The H-DL method combining multilevel
features learned by both the shallow and deep DCNNs
could achieve high segmentation accuracy compara-
ble to radiologists’ segmentation for nodules with wide
ranges of image characteristics.
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