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ABSTRACT: Mass spectrometry is widely used for quantitative
proteomics studies, relative protein quantification, and differential
expression analysis of proteins. There is a large variety of
quantification software and analysis tools. Nevertheless, there is a
need for a modular, easy-to-use application programming interface
in R that transparently supports a variety of well principled
statistical procedures to make applying them to proteomics data,
comparing and understanding their differences easy. The prolfqua
package integrates essential steps of the mass spectrometry-based
differential expression analysis workflow: quality control, data
normalization, protein aggregation, statistical modeling, hypothesis
testing, and sample size estimation. The package makes integrating
new data formats easy. It can be used to model simple experimental
designs with a single explanatory variable and complex experiments with multiple factors and hypothesis testing. The implemented
methods allow sensitive and specific differential expression analysis. Furthermore, the package implements benchmark functionality
that can help to compare data acquisition, data preprocessing, or data modeling methods using a gold standard data set. The
application programmer interface of prolfqua strives to be clear, predictable, discoverable, and consistent to make proteomics data
analysis application development easy and exciting. Finally, the prolfqua R-package is available on GitHub https://github.com/fgcz/
prolfqua, distributed under the MIT license. It runs on all platforms supported by the R free software environment for statistical
computing and graphics.
KEYWORDS: proteomics, statistical software, differential expression analysis

■ INTRODUCTION
Proteins carry out the most crucial functions and give structure
to living cells. Hence, measuring changes in protein abundance is
the subject of active research.1 Bottom-up mass spectrometric
methods, where proteins are specifically and reproducibly
digested into protein fragments�peptides, are employed to
identify and quantify proteins in complex samples containing
hundreds to thousands of proteins.2,3 The peptides are first
separated by their chemical and physical properties using liquid
chromatography (LC). Afterward, they are ionized, weighed,
identified, and quantified using mass spectrometric techniques,
e.g., electro-spray-ionization mass spectrometry (ESI-MS).
Finally, peptide identification is achieved by fragmenting and
matching the measured fragment masses to theoretical masses
computed from known peptide sequences.4−6 For quantifica-
tion, intact peptide ions7,8 or products of peptide ion
fragmentation9,10 are counted and aggregated to obtain peptide
abundances. Finally, the identified and quantified peptides are
assigned to proteins based on protein sequence information.11

Proteomics quantification experiments enable monitoring of
the relative abundances of thousands of proteins in biological

samples. Most studies use parallel-group designs, where one or
many treatment groups are compared to the control group.12,13

More recently, more complex experimental designs with an
increasing number of samples have been studied, e.g., factorial
designs and longitudinal studies (time series), sometimes with
repeated measurements on the same subject.14,15 The data can
be modeled using linear fixed-, mixed-, or random-effects
models.16 Based on these models, tests can be applied to
examine whether specific factors and factor interactions are
significant; e.g., it can be tested if differences in protein
abundance between groups are statistically significant.
An important aspect of mass spectrometric data are missing

peptide and protein quantifications. Rubin17 classified missing
data problems into three categories: missing completely at
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random (MCAR), missing at random (MAR), and missing not
at random (MNAR). For instance, in data-dependent
acquisition (DDA) MS, only a limited number of MS1 signals
are selected for fragmentation and identified. Peptide
quantification algorithms transfer identification information
between MS1 features in different samples by aligning the data
using retention time and mass information, thus reducing the
amount of missing data. Nevertheless, highly abundant proteins
can suppress the detection of other proteins in a sample, a MAR
mechanism. Furthermore, a weak correlation between the
number of missing measurements in a group and the abundance
of the quantified protein can be observed, caused by the limit of
detection (LOD), an MNAR mechanism.18

Several data analysis packages exist to model MS protein
quantification experiments, e.g., limma,19 MSstats,20 PECA,21

msqrob2,22 or proDA,23 to mention some, all implemented in
R.24 Each of them has some unique features; for example,
MSstats determines the statistical model from the structure of
the sample annotation, which allows users with limited statistical
knowledge to perform differential expression analysis (DEA). At
the same time, limma enables the specification of a design matrix
using a linear model formula and implements the empirical
Bayes variance shrinkage method. The package PECA performs
a roll-up of peptide level differences and peptide level p-value
estimates obtained from limma or PECA, to protein level
estimates. Furthermore,msqrob2 combines robust linear models
fitted to protein abundances and a quasibinomial generalized
linear model fitted to peptide counts into Hurdle model. Finally,
the proDA package implements a linear probabilistic dropout
model to account for missing data without imputation.
Of note are the various approaches to handling missing

observations, which are inherent in mass spectrometric bottom-
up experiments. For instance, MSstats handles missing data by
feature filtering and imputation. Other means of modeling
missing observations are the Hurdle models discussed by
Goeminne et al.,25 while the R-package proDA models
missingness using probabilistic dropout models.23

We can use all the R-packages discussed when analyzing
parallel-group designs using a single explanatory variable and
contrasting groups. However, we can use only some of them to
model factorial designs or repeated measurements. Table 1 gives

an overview of the models and features these packages support.
We see that, for instance, limma and proDA allow us to fit a
comprehensive variety of models and test various hypotheses;
however, good knowledge of the design matrix specification
using the R formula interface is required.26

When developing the R-package prolfqua,we were inspired by
the R-package caret27 which enables us to call various machine
learning (ML) methods and makes selecting the best ML
algorithm for your problem easy. We aimed for a similar R-
package for the DEA of quantitative proteomics data. However,
the existing packages differ widely regarding supported designs,
model specifications, and output formats. At the same time, they
share the following features: fitting linear models to either
peptide or protein abundances, determining differences among
groups, and afterward applying empirical Bayes variance
shrinkage. Therefore, the revised goal was to provide a modular
object-oriented design, with R linear models as a core, and add
features such as p-value aggregation, variance shrinkage, or
modeling of missing observations.
Furthermore, prolfqua also includes methods specific to

proteomics data. For example, we implemented strategies to
estimate protein intensities from peptide intensities: top N,28

Tukey’s median polish,29 and robust linear models.25 Peptide or
protein abundances can then be scaled and transformed using
robust scaling, quantile normalization, or vsn to remove
systematic differences among samples and heteroscedasticity.
In this respect, prolfqua can be compared with R-packages such
as DEP30 or POMA31, which support the entire DEA pipeline.
Since group sizes are relatively small, typically with four or five

subjects per group, the high power of the tests is a relevant
criterion to assess themodelingmethod. The quantified proteins
can be ranked using the estimated fold-change, t-statistics, or
scaled p-value and subjected to gene set enrichment (GSEA) or
over-representation analysis32 to determine up or down-
regulated groups of proteins. Furthermore, the statistical
model must provide an unbiased estimate of the false discovery
rate (FDR) to manage expectations when selecting protein lists
for follow-up experiments. We will use the partial area under the
receiver operator curve (ROC) to assess the power of the tests
and compare the FDR with the false discovery proportion
(FDP). We use the IonStar33 and CPTAC34 data sets, processed
with MaxQuant and FragPipe, to benchmark the modeling
methods implemented in prolfqua and to compare our results
with those of MSstats, msqrob2, and proDA. Although other
benchmark data sets exist,35,36 the IonStar data set has the
advantage that the expected differences, for the spike in proteins,
among groups are small compared to other benchmark data sets,
making DEA more difficult and enabling us to see performance
differences among the modeling methods.

■ METHODS

Implementation

We store all the data needed for analysis in a data frame as tidy
data; i.e., every column is a variable, every row an observation,
and every cell a single value.37 Using an R638 configuration
object (Figure 1), we specify which variable is in which column
making it easy to integrate new inputs in prolfqua if provided as
tidy data. For example, to visualize tidy Spectronaut,39 DiaNN,10

Skyline40 outputs, or data inMSstats20 format, only a few lines of
code are needed to update the prolfqua AnalysisTable-
Configuration configuration. The configuration encapsu-
lates the differences among the various input formats in column
names and enables the using methods without additional
arguments. An example code for creating a FragPipe7

configuration can be found in Section S3, “Creating a Prolfqua
Configuration”. We implemented methods that transform the
data into tidy data for popular software like MaxQuant,8 or

Table 1. Models supporteda by R-Packages used for
differential protein expression analysis.

pd rm eb fd int mem md

PECA Y Y Y NA NA NA NA
limma Y Y Y Y Y NA NA
MSstats Y Y NA Y Y Y NA
proDA Y Y Y Y Y NA Y
msqrob2 Y Y Y Y Y Y Y
prolfqua Y Y Y Y Y Y Y

apd, parallel design; rm, repeated measurements; fd, factorial design;
int, interactions among factors; mem, mixed effect models; eb,
empirical Bayes; md, missing data modelling (no imputation needed);
Y, yes.
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FragPipe, which stores the same variable, e.g., intensity, in
multiple columns, one for each sample. Relying on the tidy data
table enables us to interface with many data manipulation,
visualization, and modeling methods, implemented in base R24

and the tidyverse41 easily. We use R6 classes to structure the
functionality of the package (see Figures 1 and 2). R6 classes are
well supported by command-line completion features (see
Figure S8 in the SI) in RStudio,42 and help to implement
argument-free functions.

R’s formula interface for linear models is flexible, widely used,
and well documented.26,43 We use the formula interface to
specify the models, making it easy to reproduce an analysis
performed with prolfqua in other statistical programming
languages. In addition, we implement features specific to high-
throughput experiments, such as the empirical Bayes variance
and p-value moderation, which utilizes the parallel structure of
the protein measurements and the analysis.19 We also compute
probabilities of differential protein regulation based on peptide-
level models.21 We used R6 classes to encapsulate the statistical
modeling functionality in prolfqua (see Figure 2). We specify a
contrast interface (ContrastsInterface). Several im-
plementations allow the performance of DEA given linear or
mixed effect models (Contrasts), variance shrinkage
(ContrastsModerated), or to estimate contrasts in
cases when observations are missing for an entire group of
samples (ContrastsMissing). Further implementations
of the interface encapsulate and integrate DEA results of external
tools such as proDA or SAINTexpress44 used to analyze data
from protein interaction studies.

Data Sets for Benchmarking

IonStar. To evaluate the performance of DEA, we use the
IonStar benchmark data set,33 available from the Proteomics
Identifications Database (PRIDE) identifier PXD003881.
DH5α Escherichia coli lysate was spiked in human pancreatic
cancer cells (Panc-1) lysate at five levels: 3%, 4.5%, 6%, 7.5%,
and 9% E. coli. We annotated these dilutions from smallest to
largest with the letters a−e. By comparing the various dilutions,
we obtain different effect sizes; e.g., when comparing dilution e
(9%) against dilution d (7.5%), the expected difference is 1.2 for
E. coli proteins and 1 for human proteins. There are four
technical replicates for each dilution, hence 20 raw files in total.
To compare the performance of the various methods
implemented in prolfqua, we use only the contrasts resulting
in minor differences Δ = (1.20, 1.25, 1.30, 1.50), because for
bigger differences, all models perform similarly.

IonStar/MaxQuant. We processed the raw data of the
IonStar data set using MaxQuant8 Version 1.6.10.43, with
MaxQuant default settings for Orbitrap data. The text files
generated by MaxQuant are available in the prolfquadata R-
package.45 MaxQuant produces various output files which can
be used for DEA. We are using the quantification results
reported in the “peptide.txt” file for DEA. However, MSstats is
using the “evidence.txt” file for the DEA.

IonStar/FragPipe.We processed the raw data of the IonStar
data set using FragPipe7 Version 14, with the default workflow
for label-free quantification with match between runs enabled.
The text files generated by FragPipe are available in the
prolfquadata R-package.45 Similarly to MaxQuant, the FragPipe
software produces various outputs which can be used for DEA.

Figure 1. Class diagram of classes representing the proteomics data. The LFQData class encapsulates the quantitative proteomics data stored in a
table of tidy data. An instance of the AnalysisTableConfiguration class specifies a mapping of table columns to sample names, peptide or protein
identifiers, explanatory variables, and response variables. The LFQDataPlotter class and other classes decorate the LFQData class with
additional functionality. For instance, the LFQDataStats and LFQDataSummary reference the LFQData class and group methods for
variance and sample size estimation or summarizing peptide and protein counts. Furthermore, the LFQDataTransformer and
LFQDataAggregator classes group functions for data normalization and estimating protein from peptide intensities.
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We used the total protein intensities reported in the
“combined_protein.tsv” file as input for the DEA and called
this data set IonStar/FragPipe/combined_protein.tsv. Alter-
natively, we benchmarked the DEA using the “MSstats.tsv” file
as input and called this data set IonStar/FragPipe/MSstats.tsv.

CPTAC/MaxQuant. We used the CPTAC data set, available
in the R-package msdata, and described in reference 22. In brief,
the Sigma Universal Protein Standard mixture 1 (UPS1)
containing 48 different human proteins was spiked in a protein
background of 60 ng/μL Saccharomyces cerevisiae strain BY4741.
Two different spike-in concentrations were used, 6A (0.25 fmol
UPS1 proteins/μL) and 6B (0.74 fmol UPS1 proteins/μL).

Three replicates are available for each concentration. The data
were searched with MaxQuant version 1.5.2.8.
Data Preprocessing for Model Comparison

The peptide abundances (from the MaxQuant peptide.txt file)
were log2 transformed and subsequently scaled, where median
and the mean absolute deviation was obtained from the human
proteins only. We removed one-hit wonders, i.e., proteins with a
single peptide assignment. Protein abundances are inferred from
the peptide intensities using Tukey’s median polish. Finally, we
fitted the fixed effect linear models, the dropout model proDA to
protein abundances, the mixed effect linear model, the ROPECA
model, and the hurdle model implemented in msqrob2 to
peptide intensities.
Benchmark Metrics

The IonStar data set contains Homo sapiens proteins with
constant concentrations and E. coli proteins with varying
concentrations. We know that for H. sapiens proteins, the
difference β between two dilutions should be β = 0, while for E.
coli proteins, we know that the difference between dilutions
should be β ≠ 0.
We can use various statistics to examine the alternative

hypothesis β ≠ 0: the contrast estimate, i.e., the log2 fold-change
β, the t-statistic

var( )
, or the p-value and moderated p-value.

For each statistic and each value of the statistics we then
compute a confusion matrix (see Table 3). From the confusion
matrix we obtain measures such as true positive rate (TPR), false
positive rate (FPR), or false discovery proportion (FDP) which
are given in Table 3 with

Figure 2. Unified modeling language (UML) diagram of modeling- and contrast-related classes. Different strategies, e.g., lm, lmer, and glm (Table 2),
reference methods to fit models, and compute contrasts. The model builder method fits the statistical model given the data and a strategy. The models
are used to analyze variance (ANOVA) or to estimate contrasts. All classes estimating contrasts implement the ContrastsInterface. Results of external
tools, e.g., SAINTexpress, or proDA are adapted to implement the Contrasts interface.

Table 2. prolfqua Functions That Can Be Used to Fit Various
Models

prolfqua functions model

strategy_lm, Contrasts linear modeling of peptide or protein abundances
and group difference estimation

strategy_lmer, Contrasts mixed effect modeling of peptide or protein
abundances and group differences estimation

ContrastsMissing group difference estimation when no observations
in one of the groups

ContrastsROPECA estimating group differences for proteins by
summarizing peptide differences

ContrastsModerated empirical Bayes variance shrinkage for group
difference estimates (limma)

runSaint,
ContrastsSAINTexpress

protein interaction scoring (SAINTexpress)

strategy_proDA,a
ContrastsProDA

adapter to the probabilistic dropout model
implemented in proDA

aIn development.
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=
+

=TPR
TP

TP FN
TP
P (1)

=
+

=FPR
FP

FP TN
FP
N (2)

=
+

=FDP
FP

TP FP
FP
R (3)

In order to compute the confusion matrices based on the p-
value we first need to rescale it (see eq 11).
By plotting the TPR versus the FPR we obtain the receiver

operator characteristic curve (ROC curve).46 The area under
the curve (AUC) or partial areas under the curve (pAUC), at
various values of the FPR, are measures of performance derived
from the ROC curve. Using these measures, we can compare the
performances of the statistics for a single model or the various
models and test if the differences are statistically significant,
using a test to compare ROC curves.
Modeling

Robust Scaling of the Data. Val̈ikangas et al.47 discuss and
benchmark various methods of peptide or protein intensity
normalization, such as variance stabilizing normalization48 or
quantile normalization.49 In this work, we use a robust version of
the z-score, where instead of the mean we use the median x̃, and
instead of the standard deviation we use the median absolute
deviation S̃:

=z
x x

S (4)

Because we need to estimate the differences among groups on
the original scale, we must multiply the z-score by the average
standard deviation of all the n samples in the experiment.

= ·
=

z z
n

S1

i

n

i
1 (5)

To apply this transformation, we need to estimate two
parameters per sample; therefore, it works for experiments with
thousands of proteins and experiments where only a few
hundred proteins per sample are measured. For the Ionstar data
set, we used the intensities of H. sapiens proteins, whose
concentrations do not change, to determine x̃ and S̃ and then
applied it to all the intensities (including E. coli) in the sample.

Estimating Differences between Groups. Given a linear
model y = βX, we can compute the difference βc between two
groups by the dot product of weights c and model parameters β,
where c is a column vector with as many elements as there are
coefficients β in the linear model. If c has 0 for one or more of its
rows, then the corresponding coefficient in β is not involved in
determining the contrast.50

The difference estimate βc is given by the dot product

= cc
T

(6)

and the variance of βc by

= c X X cvar( ) ( )c
T 2 T 1

(7)

with X being the design matrix. The degrees of freedom for the
contrast are equal to the residual degrees of freedom of the linear
model. For estimating contrasts from mixed effects models we
used the function contest implemented in the R-package
lmerTest and used the Satterthwaite51 method to estimate the
denominator degrees of freedom. Thesemethods are available in
the class Contrast (see Figure 2).
The package prolfqua provides functions to determine the

vector of parameter weights c, from a linear model and a contrast
specification string. In section Material S10 in the SI, we
provided an example of how to specify contrasts for a data set
with two explanatory variables and an interaction term.

Contrast Estimation in the Presence of Missing Data
Using LOD. Missing observations lead to different group sizes,
which results in unbalanced designs. Linear and mixed effect
models can handle unbalanced designs. As long as at least one
observation in a group is available, and sufficient observations to
estimate the variance are available, they will produce unbiased
estimates. Therefore, no imputation is needed.
However, if there is no observation in a group the model fit

fails. For example, suppose a protein is unobserved in all the
samples of a group. In that case, a plausible explanation is that
the protein abundance is below the limit of detection (LOD) of
the MS instrument. In such a case, we will substitute the group
mean using the expected protein abundance A at the LOD ALOD.
To estimate ALOD we are using the protein abundances of those
groups where the protein was observed in only a single sample
(see section Material S8 “Estimating ALOD”, in the SI). Typically
there are many such cases, and hence we take the median.
When computing differencesΔ among two groups a and b, we

will use either the group mean a ̅ or b̅ estimated from the data.
However, if for instance no observations are present in group b,
we will use =b ALOD. Furthermore, if <a ALOD, we also set

=a ALOD, or more formally

l
moo
noo

=
>
<

a A a A

a A

if

0 if
LOD LOD

LOD

We use the pooled variance in all groups to estimate the protein
variance, assuming they are the same. The pooled variance sp2 is
given by

= =

=

s
n s

n

( 1)

( 1)
p

i
k

i i

i
k

i

2 1
2

1 (8)

with ni the number of observations, and si the standard deviation
in each group. The standard deviation for the t-statistics is then
given by

=s
n s

n

2 g p
2

(9)

Where ng is the number of groups, and n is the number of
observations. If variance cannot be estimated for a protein,
because there are too few observations in other groups, we use
the median pooled variance of all other proteins in the data set.
This method is implemented in the class ContrastsMiss-
ing (see Figure 2).

Table 3. Confusion Matrixa

prediction/truth E. coli H. sapiens total

beta != 0 TP FP R
beta == 0 FN TN
total P N m

aTP, true positive; FP, false positive; FN, false negative; TN, true
negatives; P, all positive cases (all E. coli proteins); N, all negative
cases (all H. sapiens proteins); m, all proteins.
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p-Value Moderation. From the linear and the mixed effect
models, we can obtain the residual standard deviation σ, and
degrees of freedom df. Smyth52 discuss how to use the σ and df of
all models to estimate the corresponding priors and posterior σ̃.
These can be used to moderate the t-statistics by

=t
t s

spj
pj p

p (10)

We implemented this method in the class ContrastMod-
erated (Figure 2).

Summarizing Peptide Level Differences and p-Values
on Protein Level. To summarize peptide level models to
protein models, we apply the method suggested by Suomi and
Elo21 that uses the median scaled p-value of the peptide models
and the cumulative distribution function of the Beta distribution
(CDF) to determine a regulation probability of the protein.
To obtain the p̃ of a protein we first rescaled the peptide p-

values by taking the sign of the fold-change β̂ into account, i.e.:

l
m
ooo
n
ooo=

>
p

p

p

1 , if 0

1, otherwises
(11)

Afterward, the median scaled p-value ps is determined and,
using the transformation below, transformed back onto the
original scale:

= | |p p1 s (12)

Because we use the median with the ith order statistic
= +i 0.5n

2
, we parametrize the CDF of the Beta distribution

w i t h = = +i 0.5n
2

a n d

= + = + + = + =( )n i n1 0.5 1 0.5n n
2 2

. We im-

plemented this method in the class ContrastROPECA
(Figure 2).

■ RESULTS AND DISCUSSION

Example Analysis Workflow

The code snippets in this section demonstrate how a DEA
workflow can be implemented using the prolfqua R-package (see
Material S1 "How to Install prolfqua and prolfquabenchmark" in
the SI). To speed up the computation of these examples, we use
a subset of the Ionstar data set generated by randomly selecting
400 proteins. First, we remove all proteins with a single peptide
and all observations for which MaxQuant reports zero
intensities, leaving 332 proteins. Next, peptide abundances are
log2 transformed and robust z-score scaled using the method
robscale. Then, using the LFQDataPlotter class, we
show the distribution of the normalized peptide abundances in
Figure 3A. Afterward, protein intensities are estimated from
peptide intensities using Tukey’s median polish. Figure 3B
shows the peptide intensities and the estimated protein
intensities. Next, we compute the standard deviation of all the
proteins in each group and display their distribution using violin

Figure 3. (A) Density plot of peptide intensity distributions for 20 samples. For each sample a line with a different color is shown. (B) Peptide
intensities for protein HFQ_ECOLI are shown using lines of different colors, and the protein intensity estimate is shown using a fat black line. (C)
Distribution of standard deviations of all proteins in each dilution group (a−e) and overall (all). (D) Distribution of protein intensities of Protein
HFQ_ECOLI in each dilution group.
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plots (Figure 3C). Finally, we create a box plot (Figure 3D)
showing the abundance of one protein.

The following code example illustrates how we compute
differences among groups. First, the linear model and the
differences are specified. Afterward, the model is fitted to the
data using the build_model function. Next, we estimate the
contrasts from the linear model using the Contrasts class or
directly from the data using the ContrastsMissing class.
Afterward, we apply t-statistic moderation using the Con-
trastModerated class. Finally, the merge_con-
trasts_results function merges both sets of contrast
estimates, preferring the one obtained from the linear model if
both are available. Then we create the plots shown in Figure 4.
Figure 4A shows the distribution of the p-values, Figure 4B is the

volcano plot for each comparison, and Figure 4C is a Bland−
Altman plot reporting the difference between groups as a
function of the rank of the protein abundance.

The R linear and mixed effect models allow modeling parallel
designs, repeated measurements, factorial designs, and many
more features. Models in prolfqua are specified using R’s linear
andmixedmodel formula interface. Therefore, knowledge of the
R regression model infrastructure43,53 is advantageous when
using our package. Furthermore, this glass box approach should
make it easy to reimplement an analysis performed with prolfqua
using base R or other programming languages by reading the
analysis script. However, in the package documentation, we
showcase how a user, without this knowledge, can analyze
experiments with a parallel-group design and a factorial design.
Using the data frame of tidy data ensures interoperability with

other proteomics-related packages that manage their data with
tidy-tables, e.g., protti.54 To simplify the integration of prolfqua
with Bioconductor-based workflows, we provide a method that
converts theLFQData class into a SummarizedExperiment. The

Figure 4. (A) Histogram showing the distribution of p-values for 332 proteins for contrasts “e_vs_d” and “d_vs_c”. (B) Volcano plot showing −log10
transformed FDR as a function of the difference between groups for 332 proteins. With black dots, we show effect size and FDR estimates obtained
from the linear model, while in green, we plot those obtained using imputation. (C) Difference between groups, as a function of the rank of the
abundance of the proteins.
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use of R6 classes, which encapsulate the configuration and the
data, allow for writing very concise code where functions can
have few arguments. Autocompletion support for R6 classes in
the RStudio editor makes it easy for novices to explore prolfqua’s
functionality (see Figure S8 in the SI).
To ease the usage barriers of the R-package to users not

familiar with statistics and R programming, we developed an
application based on the prolfqua package into our data
management platform B-Fabric.55,56 The B-Fabric system runs
a computing infrastructure controlled by a local resource
management system that supports cloud-bursting.57 This

integration enables users to select the input data and basic
settings in a graphical user interface (GUI). This way, prolfqua,
and B-Fabric help scientists meet requirements from funding
agencies, journals, and academic institutions while publishing
their data according to the FAIR58 data principles. We are
working on creating a shiny standalone application with the
described functionality and making it available soon.
Benchmarking Modeling Approaches

Using a benchmark data set with known ground truth (see the
Methods section), we assessed the performance of different
modeling approaches implemented in prolfqua, MSstats, proDA,

Table 4. All Benchmarked Modelsa

label description abundance input file

MSstats preprocess with default parameters precusor evidence.txt
msqrob2 merge of msqrobHurdleIntensity and msqrobHurdleCount (msqrobHurdle) protein and peptide peptide.txt
proDA probabilistic dropout model protein peptide.txt
prolfqua_missing ContrastsMissing, ContrastsModerated protein peptide.txt
prolfqua_lm_mod strategy_lm, Contrasts, ContrastsModerated protein peptide.txt
prolfqua_merged addContrastResults(prefer = proflqua_lm_mod, add = prolfqua_missing)b protein peptide.txt
prolfqua_mix_eff_mod strategy_lmer, Contrasts, ContrastsModerated peptide peptide.txt
prolfqua_ropeca strategy_lm, Contrasts, ContrastsModerated, ContrastsROPECA peptide peptide.txt

aLabel, name of the method; description, functions used in the respective packages; abudances, indicates if model is fitted to peptide or protein
abundances; input file, name of MaxQuant file used as input. b“prolfqua_merged”, augments estimates which are missing in “prolfqua_lm_mod”
with those from “prolfqua_missing”.

Figure 5. (A) Number of estimated contrasts for each modeling method (higher is better). (B) Partial area under the ROC curve at 10% FPR
(pAUC10) for all contrasts and three different statistics: the difference among groups (diff, panel B left), the scaled p-value (sign(diff)·p.value)
(scaled.p.value, panel B center), and the t-statistics (statistic, panel B right), where a higher pAUC10 is better. The red line indicates the average area
under the curve of all methods. (C) Plot of the false discovery proportion (FDP) as a function of the FDR. Ideally, the FDR should be equal to the FDP.
Therefore, larger distances from the diagonal are worse.
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and msqrob2. Table 4 summarizes which methods we have
evaluated, which MaxQuant files we used as input, and if the
models are fitted to peptide or protein intensities. We make the
R-markdown files to replicate the benchmarking available at
prolfquabenchmark (see Material S2 “Benchmark Vignettes
(IonStar/MaxQuant)” in the SI).
The IonStar/MaxQuant data set (see the Methods section)

captures only the variance from the chromatography, electro-
spray, and mass spectrometric measurements since only
technical replicates are available for each dilution. Therefore,
essential sources of variation typically present in other
experiments, such as biochemical and biological ones, are not
measured. Furthermore, this data set with a parallel-group
design does not allow for benchmarking models with
interactions. Thus, while we can extrapolate some of the results
to more realistic data sets, we must be careful not to
overinterpret our findings. Specifically, the observed variances
will be higher in data sets with biological replicates, and the
power will be lower for the same number of samples.
Furthermore, the proportion of missing observations in real-
life data sets might be higher or distributed differently in groups.
When comparing DEA performance, a relevant parameter is

the number of differences among conditions a method can
estimate (see Figure 5A). For each protein, we tried to
determine four differences [Δ = (1.20, 1.25, 1.30, 1.50)], and
therefore, given 4178 proteins with at least two peptides, there
are, in total, 16712 possible differences. Since msqrob2, proDA,
prof lqua_missing, and prolfqua_merged directly model missing
observations, they estimate all possible contrasts. However,
some models fail to estimate differences when abundances are
unobserved or rely on imputation. For instance, when using the
mixed effect models, sensitive to missing data, we estimate the
fewest number of contrasts with 15756.
The benchmark functionality of prolfqua includes receiver

operator curves (ROC) and computes partial areas under those
curves (pAUC) and other scores, e.g., the false discovery
proportion FDP. Since the set of effect size estimates will differ
for some methods, e.g., 16712 vs. 15756 (see Figure 5A), this
introduces a bias when computing receiver operator curves and
the pAUC. Hence, to conclude that onemethod performs better,
it does not suffice if the pAUC is greater, but the number of
proteins with differential expression results needs to be equal or
larger. However, for proDA, msqrob2, and prolfqua_merged, we
can compare the pAUC to asses which method performs best.
Figure 5B shows how various estimates obtained from the

models, i.e., the difference between groups, t-statistics, and
scaled p-values, allow identifying true positives (TP) given a
false positive rate (FPR) of 10% by displaying the partial area
under the ROC (pAUC10). Ordering proteins by the t-statistic or
p-value leads to a higher pAUC10 than when ordering by the
estimated difference among groups.
We can conclude that if we want to sort the proteins according

to the likelihood of being differentially regulated to perform gene
set enrichment analysis,32 the t-statistic is better suited than the
fold-change estimate. When computing the p-values from the t-
statistics, we incorporate the degrees of freedom, improving the
inferences (see Figure 5B, center versus left). There is no such
improvement for the mixed effect model. The reason is an
erroneous denominator degree of freedom estimation for many
proteins, a known problem in the case of mixed effect models.
Furthermore, for the fixed effect linear model, the empirical
Bayes variance shrinkage, as suggested by Smyth,52 consistently
improves the ranking of proteins compared with the

unmoderated estimates (not shown). However, since also for
this method, a correct degree of freedom estimate is required, it
does not work for mixed effect models.
Suppose an accurate estimate of the difference among groups

is essential. In that case, among the models fitted to protein
intensities, calculated using Tukey’s median polish, the proDA
model performed best (see Figure 5B left). The dropout model
more accurately models the posterior protein intensities,
compared with prolfqua_missing, which uses a point estimate
of the LOD. Furthermore, the prolfqua_ropeca model that first
fits peptide level models and then summarizes differences
performed worst. We speculate that the peptide-level outliers do
not affect the protein estimates when using Tukey’s median
polish method.
We also benchmark if the FDR obtained from a model is an

unbiased estimate of the false discovery proportion FDP. Figure
5C shows the FDP, obtained from the confusion matrix, as a
function of the FDR determined from the model. Most lines are
below the diagonal, which indicates that the FDR estimates are
modestly conservative for this particular benchmark data set. In
the case of MSstats, we observe a high proportion of false
discoveries for small FDR values. In the case of the
prolfqua_ropeca method, the FDR estimates, obtained by
applying the Benjamini−Hochberg correction to the Beta
distribution-based regulation probabilities, strongly overesti-
mate the FDP.
However, computing the t-statistics at the peptide level and

then summarizing it for each protein using their median
produces the highest pAUC10 scores among all the tested models
(see Figure 5B prolfqua_ropeca). Furthermore, by using the Beta
distribution to model the number of peptides observed, we can
further improve the pAUC scores (see Figure 5B center).
However, the properties of Beta-based probabilities need to be
better understood; their distribution is not uniform under the
null hypothesis (see section Material S9 “The probabilities
produced by ROPECA are not p-values” in the SI). Therefore,
the resulting FDR estimates are biased (see Figure 5C).
Consequently, we cannot recommend this method if an
unbiased estimate of FDR is essential, which is frequently the
case. In addition, peptides are more strongly affected by missing
values, reducing the number of contrasts we could estimate for
the data set using this method (see Figure 5C).
The R-packages proDA, msqrob2, and prolfqua do not impute

missing data but integrate them into the statistical model, while
MSstats filters and imputes the data using an accelerated failure
model. Despite imputation, MSstats estimates fewer group
differences (16038) and does not achieve a higher pAUC10 (see
Figure 5). Furthermore, Figure 5C shows that when using
MSstats, the proportion of false discoveries might be very high
for a low FDR because of false positives. Hence, augmenting the
linear model for handle missing observations using the quasi-
binomial generalized linear model, the dropout model, or
estimating missing differences using the LOD simplifies the
analysis pipeline since no imputation is needed and improves the
quality of the estimates.
Of note, MSStats uses the evidence.txt file, while all the other

methods use peptide.txt files as input (see Table 4). Furthermore,
MSstats uses equalized medians normalization, while all the
other methods use robust scaling (see the Methods section).
These are possible confounding factors to consider. Finally,
while prolfqua, as well as proDA, is highlymodular, and to a lesser
extent msqrob2, enabling us to use the same data preprocessing
and normalization,MSstats is monolithic, making it unfeasible to

Journal of Proteome Research pubs.acs.org/jpr Article

https://doi.org/10.1021/acs.jproteome.2c00441
J. Proteome Res. 2023, 22, 1092−1104

1100

https://pubs.acs.org/doi/suppl/10.1021/acs.jproteome.2c00441/suppl_file/pr2c00441_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acs.jproteome.2c00441/suppl_file/pr2c00441_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acs.jproteome.2c00441/suppl_file/pr2c00441_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acs.jproteome.2c00441/suppl_file/pr2c00441_si_001.pdf
pubs.acs.org/jpr?ref=pdf
https://doi.org/10.1021/acs.jproteome.2c00441?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


use a preprocessing or normalization method not available in
MSstats.
We obtained difference and FDR estimates for all proteins and

comparisons, as shown in Figure 5A when using (a) the
probabilistic dropout model (proDA), (b) the hurdle model
(msqrobHurdle), and (c) prolfqua_merged. We observe that the
performance of the scaled p-values or the t-statistics are
comparable among these three methods (Figure 5B). We tested
if there was a significant difference between the pAUC10 for all
threemethods, but did not reject the null hypothesis that there is
no such difference (section Material S3 “DEA benchmark:
IonStar/MaxQuant/peptide.txt - Significance test” in the SI).
Also, the FDR estimates (Figure 5C) are comparable for all three
methods.
Furthermore, all three models perform similarly when

examined using a different benchmark data set CPTAC/
MaxQuant (see the Methods section). For this data set,
proDA performed slightly but not significantly better than
prolfqua and msqrobHurdle (and section Material S4 “DEA
benchmark: CPTAC/MaxQuant/peptide.txt” in the SI).
In addition, we examined the DEA performance when using

protein intensities reported by quantification software FragPipe
for the IonStar data set as input. Using protein abundances as
input significantly simplifies the analysis and interpretation and
might benefit from optimization implemented in the quantifi-
cation software. However, we can only fit the proDA and
prolfqua_merged (see Table 4) models to protein abundances,
while MSstats and msqrobHurdle require peptide spectrum
match or peptide level abundances. In this DEA benchmark,
prolfqua performed slightly but not significantly better than
proDA (section Material S5 “DEA benchmark: IonStar/
FragPipeV14/combined_protein.tsv” in the SI).
Finally, we also compared the DEA performances when

starting the analysis from the precursor abundances reported in
the “MSstats.tsv” file, generated by FragPipe v14, from the
IonStar data set. SinceMSstats,msqrob2, proDA, and prolfqua all
read MStstats.tsv files, we could eliminate a confounding
factor, i.e., different input abundances (section Material S6
“DEA benchmark: IonStar/FragPipeV14/MSstats.tsv” in the
SI). In this DEA benchmark, msqrob2 and prolfqua_merged
perform best but not significantly better than proDA orMSstats.
Furthermore, by processing the IonStar data set with both
MaxQuant and FragPipe, we can compare their performances
(section Material S7 “Comparing DEA results for MaxQuant
and FragPipe” in the SI).
We focused our benchmark on comparing the statistical

modeling methods while we fixed the preprocessing steps.
However, some of these steps are of utmost significance when
performing differential expression analysis.59 One of them is the
normalization of the abundances within the samples to remove
systematic differences.60 Themethod used to infer proteins from
peptide identifications11 and protein abundances from peptide
abundances is an additional important factor.28 For instance, the
original proDA publication uses MaxLFQ61 protein estimates.
However, when using MaxLFQ abundances reported by
MaxQuant, the pAUC10 is lower [pAUC10(t-statistics) = 66%]
compared with results obtained when protein abundances are
estimated from peptide abundances using Tukey’s median
polish [pAUC10(t-statistics) = 72%]. Last but not least, the
software7,8 used to identify and quantify proteins significantly
contributes to the entire pipeline’s performance altering the
number of identified proteins and the sensitivity and specificity
of the differential expression analysis. In section Material S7

“Comparing DEA results forMaxQuant and FragPipe” in the SI,
we compare DEA benchmarking results for the quantification
software. While the number of proteins identified with two
peptides is practically the same, the DEA benchmark perform-
ance differs significantly by ∼10% for the pAUC10 score. This
difference is more significant than the differences due to the
choice of the modeling method.

■ CONCLUSION
prolfqua is a feature-rich, object-oriented, and modular R-
package to analyze quantitative mass spectrometric data with
simple or complex experimental designs. While other R-
packages for differential expression analysis of proteins typically
only implement one modeling approach, prolfqua supports
various models (see Figure 2 and Table 2). Furthermore, the
contrast specification is explicit and consistent for all models and
allows for testing interactions. The modular design of prolfqua
enables adding new features, e.g., generalized linear models to
model the presence or absence of a protein quantification, or
robust linear models, in the future. Furthermore, the developed
framework can integrate other modeling methods, e.g., the
probabilistic dropout model23 or accurate variance estimation.62

Hence, prolfqua enables the implementation of applications
where the user can select an alternative normalization method,
protein abundance estimation method, or DEA algorithms.
Furthermore, this R-package can analyze other types of
quantitative proteomics data, e.g., label-free DIA or labeling-
based TMT data.
When comparing statistical modeling methods for the DEA,

we assessed performance measures such as the number of
estimated contrasts, the pAUC, and if the FDR is an unbiased
estimate of the FDP. It is relevant that an analysis pipeline shows
good performance in all these categories. The examined models
prolfqua_merged, proDa, andmsqrob2 performed well in all these
categories. Leveraging these computational experiments, we can
provide the following advice: (i) Estimate protein abundances
from peptide abundances using a robust or nonparametric
regression method. (ii) Fit linear models to protein abundances.
(iii) Do not impute missing observation but statistically model
missingness to estimate parameters, i.e., group differences. (iv)
Explicitly report the model used. (v) If the measurements are
correlated, as for technical replicates, mixed effect models might
work if the sample sizes are large; if not, aggregate the replicates
and fit a linear model instead. (vi) If you use fixed effect linear
models, apply variance moderation to improve the t-statistics
and p-value estimates. (vii) If you want to sort your protein lists
to perform gene set enrichment analysis, use the t-statistic
instead of the difference.

■ ASSOCIATED CONTENT
*sı Supporting Information
The Supporting Information is available free of charge at
https://pubs.acs.org/doi/10.1021/acs.jproteome.2c00441.

Material S1: How to Install prolfqua and prolfquabench-
mark; Material S2: Benchmark Vignettes; Material S3:
DEA benchmark IonStar/MaxQuant/peptide.txt -S
ignificance test; Material S4: DEA benchmark :
CPTAC/MaxQuant/peptide.txt; Material S5: DEA
benchmark : IonStar/FragPipeV14/combined_pro-
tein.tsv; Material S6: DEA benchmark : IonStar/
FragPipeV14/MSstats.tsv; Material S7: Comparing
DEA results for MaxQuant and FragPipe; Material S8:

Journal of Proteome Research pubs.acs.org/jpr Article

https://doi.org/10.1021/acs.jproteome.2c00441
J. Proteome Res. 2023, 22, 1092−1104

1101

https://pubs.acs.org/doi/suppl/10.1021/acs.jproteome.2c00441/suppl_file/pr2c00441_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acs.jproteome.2c00441/suppl_file/pr2c00441_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acs.jproteome.2c00441/suppl_file/pr2c00441_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acs.jproteome.2c00441/suppl_file/pr2c00441_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acs.jproteome.2c00441/suppl_file/pr2c00441_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acs.jproteome.2c00441/suppl_file/pr2c00441_si_001.pdf
https://pubs.acs.org/doi/10.1021/acs.jproteome.2c00441?goto=supporting-info
pubs.acs.org/jpr?ref=pdf
https://doi.org/10.1021/acs.jproteome.2c00441?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


Estimating ALOD; Material S9: Probabilities produced by
ROPECA, which are not p-values; Material S10: Specify-
ing Contrasts forModels with two Factors and Interaction
Term; and Material S11: Creating a prolfqua config-
uration (PDF)

■ AUTHOR INFORMATION
Corresponding Author

Witold E. Wolski − Functional Genomics Center Zurich
(FGCZ)−University of Zurich/ETH Zurich, CH-8057
Zurich, Switzerland; Swiss Institute of Bioinformatics (SIB)
Quartier Sorge−Batiment Amphipole, 1015 Lausanne,
Switzerland; orcid.org/0000-0002-6468-120X;
Phone: +41 (0)44 6353910; Email: wew@fgcz.ethz.ch

Authors
Paolo Nanni − Functional Genomics Center Zurich

(FGCZ)−University of Zurich/ETH Zurich, CH-8057
Zurich, Switzerland; orcid.org/0000-0001-8429-3557

Jonas Grossmann − Functional Genomics Center Zurich
(FGCZ)−University of Zurich/ETH Zurich, CH-8057
Zurich, Switzerland; Swiss Institute of Bioinformatics (SIB)
Quartier Sorge−Batiment Amphipole, 1015 Lausanne,
Switzerland

Maria d’Errico − Functional Genomics Center Zurich
(FGCZ)−University of Zurich/ETH Zurich, CH-8057
Zurich, Switzerland; Swiss Institute of Bioinformatics (SIB)
Quartier Sorge−Batiment Amphipole, 1015 Lausanne,
Switzerland

Ralph Schlapbach − Functional Genomics Center Zurich
(FGCZ)−University of Zurich/ETH Zurich, CH-8057
Zurich, Switzerland

Christian Panse − Functional Genomics Center Zurich
(FGCZ)−University of Zurich/ETH Zurich, CH-8057
Zurich, Switzerland; Swiss Institute of Bioinformatics (SIB)
Quartier Sorge−Batiment Amphipole, 1015 Lausanne,
Switzerland; orcid.org/0000-0003-1975-3064

Complete contact information is available at:
https://pubs.acs.org/10.1021/acs.jproteome.2c00441

Notes
The authors declare no competing financial interest.

■ ACKNOWLEDGMENTS
The authors thank the Technology Platform Fund (TPF) of the
University of Zurich and all FGCZ proteomics colleagues for
fruitful discussions.

■ ABBREVIATIONS
API, application programming interface; AUC, area under the
curve; CDF, cumulative distribution function; DEA, differential
expression analysis; DIA, data independent acquisition; ESI-MS,
electro-spray-ionization mass spectrometry; FAIR, findable,
accessible, interoperable, and reusable; FDP, false discovery
proportion; FDR, false discovery rate; FP, false positive; FPR,
false positive rate; LC, liquid chromatography; LC-MS, liquid
chromatography followed by mass spectrometry; LOD, limit of
detection; MAR, missing at random; MCAR, missing
completely at random; ML, machine learning; MS, mass
spectrometry; pAUC, partial area under the curve; pAUC10,
partial area under the curve for an FPR of 0−10%; ROC, receiver

operator curve; TP, true positive; TMT, tandemmass tag; UML,
unified modeling language

■ REFERENCES
(1) Vidova, V.; Spacil, Z. A review on mass spectrometry-based
quantitative proteomics: Targeted and data independent acquisition.
Analytica chimica acta 2017, 964, 7−23.
(2) Bubis, J. A.; Levitsky, L. I.; Ivanov, M. V.; Tarasova, I. A.;
Gorshkov, M. V. Comparative evaluation of label-free quantification
methods for shotgun proteomics. Rapid Commun. Mass Spectrom. 2017,
31, 606−612.
(3) da Veiga Leprevost, F.; Haynes, S. E.; Avtonomov, D. M.; Chang,
H.-Y.; Shanmugam, A. K.; Mellacheruvu, D.; Kong, A. T.; Nesvizhskii,
A. I. Philosopher: a versatile toolkit for shotgun proteomics data
analysis. Nat. Methods 2020, 17, 869−870.
(4) Eng, J. K.; Hoopmann, M. R.; Jahan, T. A.; Egertson, J. D.; Noble,
W. S.; MacCoss, M. J. A deeper look into Comet�implementation and
features. J. Am. Soc. Mass Spectrom. 2015, 26, 1865−1874.
(5) Yu, F.; Li, N.; Yu, W. PIPI: PTM-invariant peptide identification
using coding method. J. Proteome Res. 2016, 15, 4423−4435.
(6) Kong, A. T.; Leprevost, F. V.; Avtonomov, D. M.; Mellacheruvu,
D.; Nesvizhskii, A. I. MSFragger: ultrafast and comprehensive peptide
identification in mass spectrometry−based proteomics. Nat. Methods
2017, 14, 513−520.
(7) Yu, F.; Haynes, S. E.; Teo, G. C.; Avtonomov, D. M.; Polasky, D.
A.; Nesvizhskii, A. I. Fast Quantitative Analysis of timsTOF PASEF
Data with MSFragger and IonQuant. Molecular Cellular Proteomics
2020, 19, 1575−1585.
(8) Cox, J.; Mann, M. MaxQuant enables high peptide identification
rates, individualized p.p.b.-range mass accuracies and proteome-wide
protein quantification. Nature biotechnology 2008, 26, 1367−1372.
(9) Röst, H. L.; Rosenberger, G.; Navarro, P.; Gillet, L.; Miladinovic,
S. M.; Schubert, O. T.; Wolski, W.; Collins, B. C.; Malmström, J.;
Malmström, L.; et al. OpenSWATH enables automated, targeted
analysis of data-independent acquisition MS data. Nature biotechnology
2014, 32, 219−223.
(10) Demichev, V.; Messner, C. B.; Vernardis, S. I.; Lilley, K. S.;
Ralser, M. DIA-NN: neural networks and interference correction
enable deep proteome coverage in high throughput.Nat. Methods 2020,
17, 41−44.
(11) Nesvizhskii, A. I.; Aebersold, R. Interpretation of shotgun
proteomic data, the protein inference problem. Molecular & cellular
proteomics 2005, 4, 1419−1440.
(12) de Leeuw, S. M.; Kirschner, A. W.; Lindner, K.; Rust, R.; Budny,
V.; Wolski, W. E.; Gavin, A.-C.; Nitsch, R. M.; Tackenberg, C. APOE2,
E3, and E4 differentially modulate cellular homeostasis, cholesterol
metabolism, and inflammatory response in isogenic iPSC-derived
astrocytes. Stem cell reports 2022, 17, 110−126.
(13) Laubscher, D.; Gryder, B. E.; Sunkel, B. D.; Andresson, T.;
Wachtel, M.; Das, S.; Roschitzki, B.; Wolski, W.; Wu, X. S.; Chou, H.-
C.; et al. BAF complexes drive proliferation and block myogenic
differentiation in fusion-positive rhabdomyosarcoma. Nat. Commun.
2021, 12, 1−16.
(14) Tan, G.; Wolski, W. E.; Kummer, S.; Hofstetter, M.;
Theocharides, A. P. A.; Manz, M. G.; Aebersold, R.; Meier-Abt, F.
Proteomic identification of proliferation and progression markers in
human polycythemia vera stem and progenitor cells. Blood Advances
2022, 6, 3480−3493.
(15) Meier-Abt, F.; Wolski, W. E.; Tan, G.; Kummer, S.; Amon, S.;
Manz, M. G.; Aebersold, R.; Theocharides, A. Reduced CXCL4/PF4
expression as a driver of increased human hematopoietic stem and
progenitor cell proliferation in polycythemia vera. Blood cancer journal
2021, 11, 1−6.
(16) Bates, D.; Mächler, M.; Bolker, B.; Walker, S. Fitting Linear
Mixed-EffectsModels Using lme4. Journal of Statistical Software, Articles
2015, 67, 1−48.
(17) Rubin, D. B. Inference and missing data. Biometrika 1976, 63,
581−592.

Journal of Proteome Research pubs.acs.org/jpr Article

https://doi.org/10.1021/acs.jproteome.2c00441
J. Proteome Res. 2023, 22, 1092−1104

1102

https://pubs.acs.org/doi/suppl/10.1021/acs.jproteome.2c00441/suppl_file/pr2c00441_si_001.pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Witold+E.+Wolski"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://orcid.org/0000-0002-6468-120X
mailto:wew@fgcz.ethz.ch
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Paolo+Nanni"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://orcid.org/0000-0001-8429-3557
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Jonas+Grossmann"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Maria+d%E2%80%99Errico"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Ralph+Schlapbach"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Christian+Panse"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://orcid.org/0000-0003-1975-3064
https://pubs.acs.org/doi/10.1021/acs.jproteome.2c00441?ref=pdf
https://doi.org/10.1016/j.aca.2017.01.059
https://doi.org/10.1016/j.aca.2017.01.059
https://doi.org/10.1002/rcm.7829
https://doi.org/10.1002/rcm.7829
https://doi.org/10.1038/s41592-020-0912-y
https://doi.org/10.1038/s41592-020-0912-y
https://doi.org/10.1007/s13361-015-1179-x
https://doi.org/10.1007/s13361-015-1179-x
https://doi.org/10.1021/acs.jproteome.6b00485?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.jproteome.6b00485?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1038/nmeth.4256
https://doi.org/10.1038/nmeth.4256
https://doi.org/10.1074/mcp.TIR120.002048
https://doi.org/10.1074/mcp.TIR120.002048
https://doi.org/10.1038/nbt.1511
https://doi.org/10.1038/nbt.1511
https://doi.org/10.1038/nbt.1511
https://doi.org/10.1038/nbt.2841
https://doi.org/10.1038/nbt.2841
https://doi.org/10.1038/s41592-019-0638-x
https://doi.org/10.1038/s41592-019-0638-x
https://doi.org/10.1074/mcp.R500012-MCP200
https://doi.org/10.1074/mcp.R500012-MCP200
https://doi.org/10.1016/j.stemcr.2021.11.007
https://doi.org/10.1016/j.stemcr.2021.11.007
https://doi.org/10.1016/j.stemcr.2021.11.007
https://doi.org/10.1016/j.stemcr.2021.11.007
https://doi.org/10.1038/s41467-021-27176-w
https://doi.org/10.1038/s41467-021-27176-w
https://doi.org/10.1182/bloodadvances.2021005344
https://doi.org/10.1182/bloodadvances.2021005344
https://doi.org/10.1038/s41408-021-00423-5
https://doi.org/10.1038/s41408-021-00423-5
https://doi.org/10.1038/s41408-021-00423-5
https://doi.org/10.18637/jss.v067.i01
https://doi.org/10.18637/jss.v067.i01
https://doi.org/10.1093/biomet/63.3.581
pubs.acs.org/jpr?ref=pdf
https://doi.org/10.1021/acs.jproteome.2c00441?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


(18) McGurk, K. A.; Dagliati, A.; Chiasserini, D.; Lee, D.; Plant, D.;
Baricevic-Jones, I.; Kelsall, J.; Eineman, R.; Reed, R.; Geary, B.; et al.
The use of missing values in proteomic data-independent acquisition
mass spectrometry to enable disease activity discrimination. Bio-
informatics 2020, 36, 2217−2223.
(19) Ritchie, M. E.; Phipson, B.; Wu, D.; Hu, Y.; Law, C. W.; Shi, W.;
Smyth, G. K. limma powers differential expression analyses for RNA-
sequencing and microarray studies. Nucleic acids research 2015, 43,
e47−e47.
(20) Choi, M.; Chang, C.-Y.; Clough, T.; Broudy, D.; Killeen, T.;
MacLean, B.; Vitek, O. MSstats: an R package for statistical analysis of
quantitative mass spectrometry-based proteomic experiments. Bio-
informatics 2014, 30, 2524−2526.
(21) Suomi, T.; Elo, L. L. Enhanced differential expression statistics
for data-independent acquisition proteomics. Sci. Rep. 2017, 7, 5869.
(22) Goeminne, L. J.; Gevaert, K.; Clement, L. Peptide-level robust
ridge regression improves estimation, sensitivity, and specificity in data-
dependent quantitative label-free shotgun proteomics. Molecular &
Cellular Proteomics 2016, 15, 657−668.
(23) Ahlmann-Eltze, C.; Anders, S. proDA: Probabilistic Dropout
Analysis for Identifying Differentially Abundant Proteins in Label-Free
Mass Spectrometry. bioRxiv 2020. https://doi.org/10.1101/661496.
(24) A Language and Environment for Statistical Computing, 2021.
https://www.R-project.org/.
(25) Goeminne, L. J.; Sticker, A.;Martens, L.; Gevaert, K.; Clement, L.
MSqRob takes the missing hurdle: uniting intensity-and count-based
proteomics. Anal. Chem. 2020, 92, 6278−6287.
(26) Law, C. W.; Zeglinski, K.; Dong, X.; Alhamdoosh, M.; Smyth, G.
K.; Ritchie, M. E. A guide to creating design matrices for gene
expression experiments. F1000Research 2020, 9, 1444.
(27) Kuhn, M. Building Predictive Models in R Using the caret
Package. Journal of Statistical Software, Articles 2008, 28, 1−26.
(28) Grossmann, J.; Roschitzki, B.; Panse, C.; Fortes, C.; Barkow-
Oesterreicher, S.; Rutishauser, D.; Schlapbach, R. Implementation and
evaluation of relative and absolute quantification in shotgun proteomics
with label-free methods. Journal of Proteomics 2010, 73, 1740−1746.
(29) Tukey, J. W. Exploratory Data Analysis; Addison-Wesley:
London, 1977.
(30) Zhang, X.; Smits, A. H.; van Tilburg, G. B.; Ovaa, H.; Huber, W.;
Vermeulen, M. Proteome-wide identification of ubiquitin interactions
using UbIA-MS. Nat. Protoc. 2018, 13, 530−550.
(31) Castellano-Escuder, P.; Andrés-Lacueva, C.; Sánchez-Pla, A.
POMA: User-friendly Workflow for Metabolomics and Proteomics
Data Analysis; 2021; R package version 1.2.0.
(32) Subramanian, A.; Tamayo, P.; Mootha, V. K.; Mukherjee, S.;
Ebert, B. L.; Gillette, M. A.; Paulovich, A.; Pomeroy, S. L.; Golub, T. R.;
Lander, E. S.; et al. Gene set enrichment analysis: a knowledge-based
approach for interpreting genome-wide expression profiles. Proc. Natl.
Acad. Sci. U. S. A. 2005, 102, 15545−15550.
(33) Shen, X.; Shen, S.; Li, J.; Hu, Q.; Nie, L.; Tu, C.; Wang, X.;
Poulsen, D. J.; Orsburn, B. C.; Wang, J.; et al. IonStar enables high-
precision, low-missing-data proteomics quantification in large bio-
logical cohorts. Proc. Natl. Acad. Sci. U. S. A. 2018, 115, E4767−E4776.
(34) Edwards, N. J.; Oberti, M.; Thangudu, R. R.; Cai, S.; McGarvey,
P. B.; Jacob, S.; Madhavan, S.; Ketchum, K. A. The CPTAC data portal:
a resource for cancer proteomics research. J. Proteome Res. 2015, 14,
2707−2713.
(35) Wessels, H. J.; Bloemberg, T. G.; Van Dael, M.; Wehrens, R.;
Buydens, L. M.; van denHeuvel, L. P.; Gloerich, J. A comprehensive full
factorial LC-MS/MS proteomics benchmark data set. Proteomics 2012,
12, 2276−2281.
(36) O’Connell, J. D.; Paulo, J. A.; O’Brien, J. J.; Gygi, S. P. Proteome-
wide evaluation of two common protein quantification methods. J.
Proteome Res. 2018, 17, 1934−1942.
(37) Wickham, H. Tidy Data. Journal of Statistical Software 2014, 59,
1−23.
(38) Chang, W. R6: Encapsulated Classes with Reference Semantics,
2020; R package version 2.5.0.

(39) Bruderer, R.; Bernhardt, O. M.; Gandhi, T.; Miladinovic, S. M.;
Cheng, L.-Y.; Messner, S.; Ehrenberger, T.; Zanotelli, V.; Butscheid, Y.;
Escher, C.; et al. Extending the limits of quantitative proteome profiling
with data-independent acquisition and application to acetaminophen-
treated three-dimensional liver microtissues. Molecular & Cellular
Proteomics 2015, 14, 1400−1410.
(40) MacLean, B.; Tomazela, D. M.; Shulman, N.; Chambers, M.;
Finney, G. L.; Frewen, B.; Kern, R.; Tabb, D. L.; Liebler, D. C.;
MacCoss, M. J. Skyline: an open source document editor for creating
and analyzing targeted proteomics experiments. Bioinformatics 2010,
26, 966−968.
(41) Wickham, H.; et al. Welcome to the tidyverse. Journal of Open

Source Software 2019, 4, 1686.
(42) RStudio: Integrated Development Environment for R. RStudio;
PBC.: Boston, MA, 2022.
(43) Faraway, J. J. Extending the Linear Model with R; Chapman and
Hall/CRC, 2016.
(44) Teo, G.; Liu, G.; Zhang, J.; Nesvizhskii, A. I.; Gingras, A.-C.;
Choi, H. SAINTexpress: improvements and additional features in
Significance Analysis of INTeractome software. Journal of proteomics
2014, 100, 37−43.
(45) Wolski, W. prolfquadata, 2021; R package version 0.1.0. https://
gitlab.bfabric.org/wolski/prolfquadata.
(46) Robin, X.; Turck, N.; Hainard, A.; Tiberti, N.; Lisacek, F.;
Sanchez, J.-C.; Müller, M. pROC: an open-source package for R and S+
to analyze and compare ROC curves. BMC Bioinformatics 2011, 12, 77.
(47) Välikangas, T.; Suomi, T.; Elo, L. L. A systematic evaluation of
normalization methods in quantitative label-free proteomics. Briefings
in bioinformatics 2016, 19, 1−11.
(48) Huber, W.; Von Heydebreck, A.; Sültmann, H.; Poustka, A.;
Vingron, M. Variance stabilization applied to microarray data
calibration and to the quantification of differential expression.
Bioinformatics 2002, 18, S96−S104.
(49) Bolstad, B. M.; Irizarry, R. A.; Åstrand, M.; Speed, T. P. A
comparison of normalization methods for high density oligonucleotide
array data based on variance and bias. Bioinformatics 2003, 19, 185−
193.
(50) Irizarry, R.; Love, M. PH525x series�Biomedical Data Science,
2018; Interactions and contrasts. http://genomicsclass.github.io/
book/pages/interactions_and_contrasts.html.
(51) Kuznetsova, A.; Brockhoff, P.; Christensen, R. lmerTest Package:
Tests in Linear Mixed Effects Models. Journal of Statistical Software,
Articles 2017, 82, 1−26.
(52) Smyth, G. K. Linear models and empirical bayes methods for
assessing differential expression in microarray experiments. Statistical
applications in genetics and molecular biology 2004, 3, 1−25.
(53) Venables, W. N.; Ripley, B. D. Modern Applied Statistics with S,
4th ed.; Springer: New York, 2002; ISBN 0-387-95457-0.
(54) Quast, J.-P.; Schuster, D.; Picotti, P. protti: an R package for
comprehensive data analysis of peptide-and protein-centric bottom-up
proteomics data. Bioinformatics Advances 2022, 2, vbab041.
(55) Türker, C.; Akal, F.; Joho, D.; Panse, C.; Barkow-Oesterreicher,
S.; Rehrauer, H.; Schlapbach, R. In B-Fabric: the Swiss Army Knife for life
sciences, Proceedings of the 13th International Conference on
Extending Database Technology�EDBT, 2010.
(56) Panse, C.; Trachsel, C.; Türker, C. Bridging data management
platforms and visualization tools to enable ad-hoc and smart analytics in
life sciences. Journal of Integrative Bioinformatics 2022, 19, 20220031.
(57) Aleksiev, T.; Barkow-Oesterreicher, S.; Kunszt, P.; Maffioletti, S.;
Murri, R.; Panse, C. Lecture Notes in Computer Science; Springer Berlin
Heidelberg, 2013; pp 447−461.
(58)Wilkinson, M. D. The FAIR Guiding Principles for scientific data
management and stewardship. Scientific Data 2016, 3, 160018.
(59) Fröhlich, K.; Brombacher, E.; Fahrner, M.; Vogele, D.; Kook, L.;
Pinter, N.; Bronsert, P.; Timme-Bronsert, S.; Schmidt, A.; Bärenfaller,
K.; et al. Benchmarking of analysis strategies for data-independent
acquisition proteomics using a large-scale dataset comprising inter-
patient heterogeneity. Nat. Commun. 2022, 13, 1−13.

Journal of Proteome Research pubs.acs.org/jpr Article

https://doi.org/10.1021/acs.jproteome.2c00441
J. Proteome Res. 2023, 22, 1092−1104

1103

https://doi.org/10.1093/bioinformatics/btz898
https://doi.org/10.1093/bioinformatics/btz898
https://doi.org/10.1093/nar/gkv007
https://doi.org/10.1093/nar/gkv007
https://doi.org/10.1093/bioinformatics/btu305
https://doi.org/10.1093/bioinformatics/btu305
https://doi.org/10.1038/s41598-017-05949-y
https://doi.org/10.1038/s41598-017-05949-y
https://doi.org/10.1074/mcp.M115.055897
https://doi.org/10.1074/mcp.M115.055897
https://doi.org/10.1074/mcp.M115.055897
https://doi.org/10.1101/661496
https://www.R-project.org/
https://doi.org/10.1021/acs.analchem.9b04375?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.analchem.9b04375?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.12688/f1000research.27893.1
https://doi.org/10.12688/f1000research.27893.1
https://doi.org/10.18637/jss.v028.i05
https://doi.org/10.18637/jss.v028.i05
https://doi.org/10.1016/j.jprot.2010.05.011
https://doi.org/10.1016/j.jprot.2010.05.011
https://doi.org/10.1016/j.jprot.2010.05.011
https://doi.org/10.1038/nprot.2017.147
https://doi.org/10.1038/nprot.2017.147
https://doi.org/10.1073/pnas.0506580102
https://doi.org/10.1073/pnas.0506580102
https://doi.org/10.1073/pnas.1800541115
https://doi.org/10.1073/pnas.1800541115
https://doi.org/10.1073/pnas.1800541115
https://doi.org/10.1021/pr501254j?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/pr501254j?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1002/pmic.201100284
https://doi.org/10.1002/pmic.201100284
https://doi.org/10.1021/acs.jproteome.8b00016?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.jproteome.8b00016?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.18637/jss.v059.i10
https://doi.org/10.1074/mcp.M114.044305
https://doi.org/10.1074/mcp.M114.044305
https://doi.org/10.1074/mcp.M114.044305
https://doi.org/10.1093/bioinformatics/btq054
https://doi.org/10.1093/bioinformatics/btq054
https://doi.org/10.21105/joss.01686
https://doi.org/10.1016/j.jprot.2013.10.023
https://doi.org/10.1016/j.jprot.2013.10.023
https://gitlab.bfabric.org/wolski/prolfquadata
https://gitlab.bfabric.org/wolski/prolfquadata
https://doi.org/10.1186/1471-2105-12-77
https://doi.org/10.1186/1471-2105-12-77
https://doi.org/10.1093/bib/bbw095
https://doi.org/10.1093/bib/bbw095
https://doi.org/10.1093/bioinformatics/18.suppl_1.S96
https://doi.org/10.1093/bioinformatics/18.suppl_1.S96
https://doi.org/10.1093/bioinformatics/19.2.185
https://doi.org/10.1093/bioinformatics/19.2.185
https://doi.org/10.1093/bioinformatics/19.2.185
http://genomicsclass.github.io/book/pages/interactions_and_contrasts.html
http://genomicsclass.github.io/book/pages/interactions_and_contrasts.html
https://doi.org/10.18637/jss.v082.i13
https://doi.org/10.18637/jss.v082.i13
https://doi.org/10.2202/1544-6115.1027
https://doi.org/10.2202/1544-6115.1027
https://doi.org/10.1093/bioadv/vbab041
https://doi.org/10.1093/bioadv/vbab041
https://doi.org/10.1093/bioadv/vbab041
https://doi.org/10.1515/jib-2022-0031
https://doi.org/10.1515/jib-2022-0031
https://doi.org/10.1515/jib-2022-0031
https://doi.org/10.1038/sdata.2016.18
https://doi.org/10.1038/sdata.2016.18
https://doi.org/10.1038/s41467-022-30094-0
https://doi.org/10.1038/s41467-022-30094-0
https://doi.org/10.1038/s41467-022-30094-0
pubs.acs.org/jpr?ref=pdf
https://doi.org/10.1021/acs.jproteome.2c00441?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


(60) Pursiheimo, A.; Vehmas, A. P.; Afzal, S.; Suomi, T.; Chand, T.;
Strauss, L.; Poutanen, M.; Rokka, A.; Corthals, G. L.; Elo, L. L.
Optimization of statistical methods impact on quantitative proteomics
data. J. Proteome Res. 2015, 14, 4118−4126.
(61) Cox, J.; Hein, M. Y.; Luber, C. A.; Paron, I.; Nagaraj, N.; Mann,
M. Accurate proteome-wide label-free quantification by delayed
normalization and maximal peptide ratio extraction, termed MaxLFQ.
Molecular & cellular proteomics 2014, 13, 2513−2526.
(62) Zhu, Y.; Orre, L. M.; Tran, Y. Z.; Mermelekas, G.; Johansson, H.
J.; Malyutina, A.; Anders, S.; Lehtiö, J. DEqMS: a method for accurate
variance estimation in differential protein expression analysis.Molecular
& Cellular Proteomics 2020, 19, 1047−1057.

Journal of Proteome Research pubs.acs.org/jpr Article

https://doi.org/10.1021/acs.jproteome.2c00441
J. Proteome Res. 2023, 22, 1092−1104

1104

https://doi.org/10.1021/acs.jproteome.5b00183?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.jproteome.5b00183?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1074/mcp.M113.031591
https://doi.org/10.1074/mcp.M113.031591
https://doi.org/10.1074/mcp.TIR119.001646
https://doi.org/10.1074/mcp.TIR119.001646
pubs.acs.org/jpr?ref=pdf
https://doi.org/10.1021/acs.jproteome.2c00441?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as

