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Ophthalmic imaging in diabetic retinopathy: A review
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Abstract

Retinal imaging has been a key tool in the diagnosis, evaluation, management

and documentation of diabetic retinopathy (DR) and diabetic macular oedema

(DMO) for many decades. Imaging technologies have rapidly evolved over the

last few decades, yielding images with higher resolution and contrast with less

time, effort and invasiveness. While many retinal imaging technologies provide

detailed insight into retinal structure such as colour reflectance photography

and optical coherence tomography (OCT), others such as fluorescein or OCT

angiography and oximetry provide dynamic and functional information. Many

other novel imaging technologies are in development and are poised to further

enhance our evaluation of patients with DR.
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1 | INTRODUCTION

Diabetes, a chronic metabolic disease, is a major public
health problem worldwide. According to the World
Health Organization (WHO) report, the prevalence of
diabetes has been risen dramatically over the past three
decades. An estimated 108 million people were affected
with diabetes in 1980 and this figure rose to 422 million
in 2014.1 Diabetes was also a leading cause of death in
many nations with 1.5 million deaths directly attributed
to diabetes in 2019.1 In addition to mortality, the morbid-
ity associated with diabetes is staggering. Diabetes leads
to significant injury to vessels and nerve cells throughout
the body including the eye, where it is most common
vision-threatening manifestations are in the retina,
known as diabetic retinopathy (DR). DR was reported to
be the fifth most frequent cause of global blindness (0.8
million cases) in 2020.2

Although it is now widely recognised that DR can be
associated with a diabetic retinal neuropathy,3 the retinal
microangiopathy or vasculopathy associated with diabe-
tes has been the primary focus of most diagnostic and
therapeutic investigations. The retinal vascular manifes-
tations of DR can lead to progressive vision loss through
capillary closure or non-perfusion (e.g., diabetic macular
ischemia; DMI), chronic exudation (e.g., diabetic macular
oedema; DMO), or the complications of neovascular and
fibrous proliferation (e.g., vitreous haemorrhage or trac-
tion retinal detachment). While treatments for macular
ischemia remain elusive, laser photocoagulation, intravi-
treal anti-vascular endothelial growth factor (anti-VEGF)
treatment and modern vitreo-retinal surgical techniques
have dramatically improved prospects for positive visual
outcomes for patients in with DMO and proliferative dia-
betic retinopathy (PDR).4–8 Despite these advances in
therapeutics, optimising systemic metabolic control as

Received: 1 June 2022 Revised: 1 September 2022 Accepted: 9 September 2022

DOI: 10.1111/ceo.14170

This is an open access article under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs License, which permits use and distribution in any

medium, provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are made.

© 2022 The Authors. Clinical & Experimental Ophthalmology published by John Wiley & Sons Australia, Ltd on behalf of Royal Australian and New Zealand College of

Ophthalmologists.

1082 Clin Experiment Ophthalmol. 2022;50:1082–1096.wileyonlinelibrary.com/journal/ceo

https://orcid.org/0000-0001-9542-1323
mailto:ssadda@doheny.org
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://wileyonlinelibrary.com/journal/ceo


well as regular monitoring for early detection of DR
remain key elements in achieving the best long-term
results for patients.

Ophthalmic imaging, and in particular retinal imag-
ing have served as key elements in the diagnostic and
therapeutic paradigm of DR and their role has only
increased with the innovations and advances in technol-
ogy over the past few decades. In this article, we review
the applications of current ophthalmic imaging modali-
ties in the management of DR, and look forward to future
advances that are likely to be of high impact in the com-
ing years.

Imaging technologies relevant for the assessment of
DR include 2D or planar images as well as 3D images
which offer tomographic assessment of the layers of the
retina impacted by the disease process. Planar imaging
technologies were historically film-based, but in the mod-
ern era, like their 3D counterparts are now fully digital.

Many commercial imaging devices are multimodal,
offering a number of 2D or 3D imaging technologies in a
single instrument. Multimodal imaging may provide a
more complete assessment of the disease process and its
impact on the retina. Some imaging technologies only
offer insight into structure or anatomy. Others may pro-
vide dynamic or functional information such as the
velocity of blood flow or the leakage of material from the
intravascular space which might indicate a compromised
blood-retinal barrier. These various technologies are
detailed below beginning with structural imaging tools.

2 | STRUCTURAL RETINAL
IMAGING TECHNOLOGIES

2.1 | Colour fundus photography and
ultra-widefield imaging

Colour fundus photography (CFP) has been the main
imaging modality in the evaluation and documentation
of DR for many decades.9 The initial fundus camera
(Zeiss FF, Carl Zeiss Meditec, Dublin, CA, USA) provided
a 30� field of view with 2.5 magnification while, newer
versions provide a wider view up to 55� (Figure 1), which
covers the entire macula and optic nerve in a single
frame. Multiple captures of the retina at different loca-
tions are usually taken and can be combined to create
montage and/or stereoscopic images. A combination of
7 standard 30� fundus images provides a montage with
~75� field of view covering the macula, optic nerve, vas-
cular arcades and the region temporal to the macula
(~34% of retina), and was used in Early Treatment Dia-
betic Retinopathy Study (ETDRS) grading system and
further refined into the commonly used Diabetic

Retinopathy Severity Scale (DRSS).10,11 Severity of DR
was classified into 13 levels ranging from absence of reti-
nopathy to severe proliferative retinopathy based on fea-
tures seen on the 7-standard ETDRS fields. The relevant
lesions for assessing DR severity and DMO include
microaneurysms (MAs), cotton wool spots, lipid exu-
dates, retinal thickening (by a stereoscopic view), intrar-
etinal microvascular anomalies (IRMAs), venous
beading, neovascularization (NV), preretinal haemor-
rhage and vitreous haemorrhage.11 The DRSS classifica-
tion has proved to be a valuable and important grading
system for both clinicians and researchers as it reflects
the risk for further DR progression (e.g., a doubling of
the rate of 1-year progression to PDR occurred with a
one-level increase on the scale), and step-changes on this
scale have been used as clinical trial endpoints for regula-
tory approval.11,12 The DRSS classification from the
ETDRS was later collapsed to five levels for general DR
assessment in common clinical settings, including no
apparent retinopathy, mild nonproliferative diabetic reti-
nopathy (NPDR), moderate NPDR (Figure 1), severe
NPDR and PDR, of which DMO can be absent or present
at each level as assessed by stereoscopic viewing.13 How-
ever, conventional CFP has limitations, including image
artefacts or reduced image quality due to media opacity
(e.g., cataract or vitreous haemorrhage) and a limited
field of view (>60% of the retina is not assessed when
considering the 7-standard fields).

FIGURE 1 Conventional 50� colour fundus photograph (CFP)

of a right eye with moderate nonproliferative diabetic retinopathy

(NPDR). Microaneurysms (MAs), intraretinal blot haemorrhages,

flame-shape haemorrhages and hard exudates are evidenced in the

macula and around optic disc. Image was obtained using the Kowa

VX-20 (Kowa Company, Ltd., Tokyo, Japan)
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Over the years, some of these limitations have been
addressed with the introduction of wider angle imaging
including widefield (WF; Figure 2) and ultra-widefield
(UWF; Figure 3) technologies. Examples of these wider-
field devices include the 200Tx (Optos Plc, Dunfermline,
Scotland, UK), Silverstone (Optos Plc), Clarus 700 (Carl
Zeiss Meditec), and Mirante (Nidek Co., Ltd., Gamogori,
Japan). The Optos device has been reported to provide up
to a 200� field of view covering macula and peripheral
retina (~82% of retina) in a single image (Figure 3). Field
of view from these widefield devices can be further
expanded by montage such as a montage of two widefield
(133�) images from the Clarus device (Figure 4).14 The
theoretical advantage of the larger field of view is the
detection and documentation of peripheral retinal
pathology outside the ETDRS 7 standard fields, and a
shorter acquisition time.15

Agreement in DR severity grading between ETDRS
7-standard field images and UWF CFP was evaluated in
several studies: the perfect agreement (exactly matched)
was 48.4%–84% and agreement within 1-level was 88%–
100%.15–19 Of note, ~40% of eyes had DR lesions outside the
ETDRS fields and 9%–15% of UWF CFP led to detection of
a more severe DR level than was seen on ETDRS
7-standard field image or overlaid ETDRS 7-standard field
on UWF CFP.16,17,19,20 NPDR Eyes with predominantly

peripheral lesions (PPLs; defined as any DR lesion type that
was present predominantly in any peripheral field outside
the ETDRS 7-standard fields) were also shown to have
3.2-fold increased risk of 2-step or more DR progression

FIGURE 3 Ultra-widefield (UWF) colour fundus photograph

(CFP) of a right eye with proliferative diabetic retinopathy (PDR)

that was previously treated with scatter panretinal

photocoagulation. The photocoagulation scars are well visualised to

the periphery of the fundus. Of note, lid and lash artefacts are

evident inferiorly and patient's mask can also be seen

superotemporally. Image was obtained using the Silverstone (Optos

Plc, Dunfermline, Scotland, UK)

FIGURE 2 Widefield (WF; 133� field of view) colour fundus

photograph (CFP) of a left eye with proliferative diabetic

retinopathy (PDR) and vitreous haemorrhage and tractional retinal

detachment. Vitreous haemorrhage caused a moderate opacity

which impacts the quality of this image. The image was obtained

using the Zeiss Clarus 500 (Carl Zeiss Meditec, Dublin, CA)

FIGURE 4 A montage image of an eye with proliferative

diabetic retinopathy was created from two widefield (133�) images

yielding an ultra-widefield (UWF) view. Of note, there is a shadow

at the superior boundary where the images overlap. Some

distortion of the periphery is observed. The image was obtained

using the Zeiss Clarus 500 (Carl Zeiss Meditec, Dublin, CA)
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(11% vs. 34%; p = 0.005) and a 4.7-fold increased risk for
progression to PDR (6% vs. 25%; p = 0.005) over 4 years
compared with eyes without PPLs.21 The degree or extent
of PPLs was also associated with the increased risk for two-
step or more DR progression (p = 0.004) and progression to
PDR (p = 0.009).21

In addition to the general limitations associated with
conventional CFP (e.g., media opacities seen in Figure 2),
the limitations of WF and UWF imaging include lid lash
artefacts (Figure 3), pseudocolor (Optos Plc; Figure 3),
distortion of features in the periphery caused by the
spherical shape of the globe (Figure 4), lack of absolute
agreement with ETDRS 7-standard field image, need for
grading experience and expensive equipment costs.

2.2 | Optical coherence tomography

With its ability to provide non-invasive high-resolution
cross-sectional imaging of the retina, optical coherence
tomography (OCT) has revolutionised the diagnosis and
management of many retinal diseases, including DR. DMO
in particular, is well-evaluated by OCT (Figure 5). While
stereoscopic viewing of CFP and slit-lamp biomicroscopic
examination are subjective assessments requiring individual
experience, OCT provides a quantitative, qualitative, repro-
ducible and more sensitive assessment of DMO.22 A num-
ber of landmark clinical trials have used retinal thickness
measured on OCT for the diagnosis of centre-involved
DMO (CI-DMO), which is the new standard for treatment-
decision making in eyes with DMO.23–25 Notably, in Dia-
betic Retinopathy Clinical Research Retina Network
(DRCR.net) trials, CI-DMO on OCT was defined by central
subfield thickness (CST) on OCT >250 μm on Zeiss Stratus
(Carl Zeiss Meditec) or the equivalent on spectral-domain
OCTs (SD-OCT) based on gender-specific cutoffs.5 Changes
of CST of 10% or more (improvement or worsening) were

also considered to be one of the criteria for treatment-
decision making in the protocol.23 It should be noted, how-
ever, that changes in CST or retinal thickness after treat-
ment with anti-VEGF were not well correlated with
changes in visual acuity (VA) and thus may not be useful to
predict the visual outcomes.26–28

A number of morphologic patterns of DMO on OCT
were also described including diffuse retinal thickening
(DRT), cystoid macular oedema (CME; Figure 5), poste-
rior hyaloidal traction (PHT), serous retinal detachment
(SRD), and traction retinal detachment (TRD), where
patterns with CME (p = 0.01) or PHT without TRD
(p = 0.02) were significantly associated with worse
vision.29 In addition to CME, other OCT features
reported as biomarkers for negative visual prognosis or
treatment response include disorganisation of retinal
inner layers (DRIL; Figure 6), disruption of external lim-
iting membrane (ELM) and loss of ellipsoid layer.29–32

DRIL, which is defined as an inability to distinguish
between the ganglion cell layer–inner plexiform layer
complex, inner nuclear layer, and outer plexiform layer
on OCT (Figure 6) is a reversible feature, which can be
observed in the presence of DMO or after DMO resolu-
tion. A primary study of DRIL in the central 1-mm foveal
area of 120 diabetic eyes with CI-DMO reported a correla-
tion between greater DRIL extent at baseline and worse
baseline VA (point estimate, 0.04; 95% CI, 0.02–0.05 per
100 μm; p < 0.001) and the association between increas-
ing DRIL through 4 months with VA worsening at
8 months (point estimate, 0.03; 95% CI, 0.02–0.05 per
100 μm; p < 0.001).30

Another study reported that the eyes with CI-DMO
resolution but persistent DRIL had the largest difference
in VA deficit compared with those without DRIL at base-
line over an 8-month period (least square mean VA [SE],
�89.6 [27.2] vs. 49.7 [19.6]; p = 0.006).32 DRIL was also

FIGURE 5 Spectral-domain optical coherence tomography

(SD-OCT) B-scan of a left eye with centre-involved diabetic macular

oedema (CI-DMO). Intraretinal cystoid spaces, intraretinal fluid

and hyperreflective foci are observed and the central subfield

thickness was measured to be 560 μm. Image was obtained with the

HRA + OCT (Heidelberg Engineering, Heidelberg, Germany)

FIGURE 6 OCT B-scan of the diabetic macular oedema

(DMO) eye following anti-vascular endothelial growth factor

(VEGF) treatment. Although the DMO is improved, the ganglion

cell layer–inner plexiform layer complex, inner nuclear layer, and

outer plexiform layer are more difficult to distinguish in central

fovea region (yellow rectangle). This finding is compatible with

disorganisation of retinal inner layers (DRIL). Image was obtained

with the Spectralis HRA + OCT (Heidelberg Engineering,

Heidelberg, Germany)
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identified in 84.4% of non-perfused maculae and none in
perfused maculae.33 Thus, DRIL appears to be a valuable
OCT biomarker in predicting the visual outcomes and
perfusion status.

Retinal hyperreflective foci (HRF), another OCT fea-
ture, were also reported as a potential biomarker in pre-
dicting visual outcome in various retinal diseases
including DMO.34 HRF appear as small discrete, well-
circumscribed dots, with reflectivity equal or greater than
the retinal pigment epithelium (RPE) band on SD-OCT.
Hard exudates, lipid-laden macrophages, photoreceptor
cellular debris, and migrated RPE cells are all potential
explanations for these HRF. In a cross-sectional study of
DMO, VA was significantly worse (p < 0.0001) in eyes
with HRF in the outer retinal layers compared with eyes
without them (logMAR, 0.463 ± 0.382 vs. 0.127 ± 0.206,
respectively). The presence of HRF in the outer retina
was also associated with disruption of external limiting
membrane (ELM) and disruption of the junction of the
inner and outer segment (IS/OS; now termed ellipsoid
zone) (p < 0.0001 for both comparisons).35 In longitudi-
nal studies, eyes with preoperative HRF in the outer reti-
nal layers had IS/OS loss (p = 0.004) and worse logMAR
VA (p < 0.001) than eyes without HRF after vitrectomy.36

However, the predictive value of HRF across studies has
been inconsistent, which may be related to the use of var-
ious treatments and non-uniform methods for assessing
HRF. Overall, a systematic review of 36 studies reported
that HRF numbers decreased with treatment, but it was
not clear whether HRF could actually predict the visual
outcome in DMO.37

2.3 | Fundus autofluorescence

Fundus autofluorescence (FAF) is another planar imag-
ing technology which is commonly incorporated into fun-
dus cameras or OCT machines. Short-wavelength FAF
signal is mostly derived from lipofuscin in RPE while
long-wavelength FAF (or near-infrared; NIR) signal pri-
marily originates from melanin in the RPE and choroid.9

Various patterns of DMO on FAF have been reported
including single spot, multiple spots, cystoid or mosaic
patterns (Figure 7).38,39 In a prior report, increased FAF
was observed in most DMO eyes (76.8%) and the
increased FAF region was associated with decreased mac-
ular sensitivity (11.5 ± 5.3 dB vs. 15.1 ± 3.9 dB in normal
areas; p < 0.005). Moreover, the cystoid pattern seen on
OCT and the leakage patterns seen on FA were corre-
lated with the presence of increased FAF (p < 0.0001).38

With NIR-FAF, relative fluorescence intensity in the cen-
tral subfield (CSF) was negatively correlated with the
CST (R = 0.492; p < 0.001) and VA (R = 0.377;

p < 0.001). A mosaic pattern in the NIR-FAF was associ-
ated with worse logMAR VA (0.355 ± 0.239 vs. 0.212
± 0.235; p = 0.001), a thicker CSF (530 ± 143 μm vs. 438
± 105 μm; p < 0.001), and a disrupted ELM (p < 0.001)
compared with eyes without this finding. In addition,
eyes with a cystoid pattern on NIR-FAF had worse log-
MAR VA (0.393 ± 0.233 vs. 0.221 ± 0.234; p < 0.001) and
a thicker CSF (557 ± 155 μm vs. 443 ± 100 μm;
p < 0.001) than those without this pattern.39

Despite these apparent clinically important attributes
of FAF in the setting of DR/DMO, there are several
important limitations. First, the signal strength of FAF is
not as strong as the fluorescent signal seen in FFA. Fluo-
rescent properties of other structures (e.g., crystalline
lens) and media opacities may influence and affect the
fluorescent intensity originating from RPE and choroid,
though the confocal attributes of the imaging devices
confocal scanning laser ophthalmoscope (cSLO) instru-
ments such as the Heidelberg Retina Angiograph (HRA),
HRA 2 and HRA Spectralis (Heidelberg Engineering,
Heidelberg, Germany), can partially mitigate this concern
(Figure 7).40

The confocal methods diminish extra light by focus-
ing and detecting reflected light through a small confocal
aperture (or pinhole) which is positioned at a focal plane

FIGURE 7 Short wavelength (blue) fundus autofluorescence

(FAF) image of a left eye with diabetic macular oedema (DMO) in a

cystoid pattern. Faint hyperfluorescence can be observed from the

cystoid spaces relative to the hypofluoresence from the septae

between the cystoid spaces. Image was obtained using a confocal

scanning laser ophthalmoscopy (cSLO) device, from the HRA

(Heidelberg Engineering, Heidelberg, Germany)

1086 NANEGRUNGSUNK ET AL.



conjugate to the retina in front of the image detector.41

The aperture blocks non-image-forming light and mini-
mises scatter and aberrations. The cSLO then enables
imaging of selected individual layers of the retina with
greater contrast and details. However, with variability in
image acquisition settings (e.g., illumination intensity
and detector sensitivity), patient factors (e.g., background
AF which may vary with age or level of dilation), and dif-
ficulties in interpretating FAF images without significant
training and experience, significant challenges remain for
the routine use of FAF imaging in this setting.

2.4 | Ultrasonography

By using inaudible sound waves (>20 kHz), piezoelectric
crystals in ultrasonography instruments collect reflected
sound waves from any echodense which can be displayed
a 2D B-scan image. Ultrasonography has proven to be a
useful tool for assessment of PDR with TRD, especially in
the context of a vitreous haemorrhage precluding visuali-
sation of the retina on ophthalmoscopy (Figure 8). In a
study evaluating for the presence of a TRD in eyes with
PDR and an obscuring vitreous haemorrhage, on
4-quadrant transverse and 1-quadrant longitudinal ultra-
sound scans reported a preoperative sensitivity of 72.4%
and a specificity of 96.6% for detection of TRD.42 In
another study, ultrasonography was rated to have 100%
sensitivity and 100% specificity for detection of vitreous
haemorrhage, pre-retinal haemorrhage and posterior vit-
reous detachment in diabetes with a sensitivity of 87.5%

and a specificity of 100% specificity for detecting TRD.43

Cases in which the TRD was missed were suspected to be
due to peripheral location, small size of the TRD, or a
focal TRD with dense subhyaloid bleeding.42,43

3 | DYNAMIC AND FUNCTIONAL
RETINAL IMAGING
TECHNOLOGIES

3.1 | Fundus fluorescein angiography
and ultra-widefield imaging

Fundus fluorescein angiography (FFA) has been used as
a companion diagnostic procedure along with CFP for
many decades. As FFA provides high contrast visualisa-
tion of retinal vessels, it has been the gold standard for
evaluation of the retinal vasculature and can be used to
image MAs, IRMA, NV and perhaps most importantly,
the vascular perfusion and leakage in DR.44

Normally, the retinal vascular endothelium acts as a
blood-retinal barrier preventing escape of dye from
within the vessels into the extravascular space. However,
this barrier is compromised in MA and NV and results in
dye leakage seen on FFA (Figures 9 and 10). The

FIGURE 8 Ultrasonography B-scan image of a right eye with

proliferative diabetic retinopathy (PDR) and tractional retinal

detachment (TRD). A fibrovascular membrane (appearing as

hyperechoic strands) covered the optic disk, and tracked along the

retina superiorly (yellow asterisk) and inferiorly (not captured in

the image). Image was obtained using the Absolu device (Quantel

Medical, Cournon-d'Auvergne, France)

FIGURE 9 Late transit fundus fluorescein angiography (FFA)

image of a left eye with moderate nonproliferative diabetic

retinopathy (NPDR) and diabetic macular oedema (DMO).

Numerous microaneurysms (MAs) are observed in the early phase

with some surrounding greyish haze already evident consistent

with early leakage like contributing to the DMO in this case. The

image was obtained using the HRA (Heidelberg Engineering,

Heidelberg, Germany)
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presence or severity of leakage may aid in the differentia-
tion between IRMAs and NV, or tiny retinal haemor-
rhage and MAs which may be hard to distinguish on CFP
or slit-lamp examination.44 Moreover, FFA can help to
differentiate the pattern of DMO as either diffuse
(e.g., originating from telangiectatic capillaries) or focal
leakage (e.g., originating from MAs), and also to localise
MAs to guide focal laser treatment for DMO, when
needed.4

As a result of chronic endothelial cell damage and
vascular injury, small vessel occlusion can occur in DR,
and these areas of capillary nonperfusion (CNP) can be
well-visualised on FFA (Figure 10A).45,46 CNP in the
midperipheral region was reported to be the most com-
mon location for this abnormality in NPDR eyes and a
positive correlation was observed between the initial site
of CNP and its progression in eyes with NPDR.47 DMI is
identified by the presence of an enlarged and irregular
foveal avascular zone (FAZ) and CNP within the parama-
cular area on FFA.48–50 Prior study showed that DMO
eyes (treated with intravitreal anti-VEGF injections) with
DMI significantly more frequently progressed to PDR at
24 months compared with those without DMI at baseline
(HR, 2.42; 95% CI, 1.30–4.49; p = 0.0052).51 DMI progres-
sion itself, ranging from 5% to 10% of baseline FAZ area
per year, was also reported as an independent predictive
factor for VA loss (odds ratios, 4.60; 95% CI, 1.54–13.7,
p = 0.03).52

Similar to conventional CFP, conventional FFA
images typically cover a 30–55� field of view in a single
frame (Figure 9). Unlike static CFP images, where multi-
ple images and a montage may be compiled without loss
of information, because of the dynamic and changing

nature of FFA, montage FFA images are invariably com-
posed of images obtained at different time points. WF FFA
(Figure 10) and UWF FFA technologies overcome this sig-
nificant problem, providing a wider field of view of up to
200� in a single frame (e.g., Optos 200Tx [Optos Plc]). Reti-
nal CNP, NV and other lesions (e.g., photocoagulation scar)
in the periphery were better revealed on UWF than conven-
tional FFA.53,54 In one study, UWF FFA demonstrated 3.2
times more total retinal surface area, 3.9 times more CNP
(p < 0.001), 1.9 times more NV (p = 0.036), and 3.8 times
more panretinal photocoagulation scars (p < 0.001) than
within the ETDRS 7-standard fields.54 Moreover, in 10% of
eyes, UWF FFA demonstrated retinal pathology (including
CNP and NV) not evident within the ETDRS 7-standard
fields.54 CNP area seen on UWF FFA and non-perfusion
index are also correlated with the presence of PPLs, DR
severity, and potentially DR progression.55 Peripheral CNP
was also reported to have a significant correlation with
DMO (p < 0.001).56 However, it remains unclear whether
the extent of peripheral CNP is correlated with DMI
(R = 0.49; p = 0.0001).57

Despite the wealth of information provided by FFA, it
is not without limitations. FFA is an invasive imaging
technique which requires intravenous injection of fluo-
rescein dye. FFA imaging may be contraindicated for
patients with renal disease, pregnancy or dye allergies.
Several risks and complications associated with fluores-
cein dye injections have been reported including, nausea,
vomiting, itching, urticaria and rarely, anaphylaxis.58 In
addition, unlike OCT which may be acquired by opera-
tors with relatively limited training, FFA may require an
experienced photographer or technician, and because of
the dynamic nature of study, timing is critical and high-

FIGURE 10 Widefield (WF) fundus fluorescein angiography (FFA) of a left eye with proliferative diabetic retinopathy. Numerous

microaneurysms (MAs), neovascularization elsewhere (NVE), neovascularization of the disc (NVD), capillary nonperfusion (CNP) and an

irregular foveal avascular zone (FAZ) are observed in early phase of FFA (A). In the late phase (B), the leakage from MAs, NVE and NVD is

profound. The images were obtained using the Spectralis HRA + OCT (Heidelberg Engineering, Heidelberg, Germany)
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quality images need to be obtained from the outset.
Another important limitation of standard FFA is its lim-
ited depth resolution (even with stereoscopic acquisition)
which makes it difficult to distinguish superficial and
deeper vascular plexi.59

3.2 | Optical coherence tomography
angiography and widefield imaging

Optical coherence tomography angiography (OCTA) is a
relatively new and non-invasive technology. OCTA
allows depth-resolved visualisation of the retinal micro-
vasculature without fluorescein dye injection. The detec-
tion of blood flow by OCTA is based on motion contrast
for moving objects, which in this case is primarily the
movement of red blood cells in the intravascular space.59

Earlier studies reported a visualisation of MA, NV and
CNP on OCTA similar to FFA images.60–62 MAs were
identified as focally dilated saccular or fusiform capil-
laries at the superficial and/or deep plexus with variable
internal reflectivity, and the CNP area was observed as a
region with no or sparse capillaries (capillary dropout) on
OCTA (Figures 11 and 12).60,63,64 The study in rotational
3D OCTA also showed that most MAs associated with
two vessels and occupied at least two retinal layers which
inner nuclear layer was the most frequently occupied,
similarly to histological findings.64 The greatest agree-
ment between FFA and OCTA was found in CNP area
while the least was found in intraretinal fluid and
microaneurysms.62 The intraretinal fluid with hypore-
flectivity on SD-OCT was not seen on OCTA at all, and
fewer MAs were observed on OCTA compared with

FFA which was hypothesized to be due to the diffusion
of small fluorescein molecules into partially sclerosed
MAs making them visible on FFA, but the absence of

FIGURE 11 6 � 6 mm en face optical coherence tomography angiography (OCTA) images of a right eye with mild nonproliferative

diabetic retinopathy (NPDR). Microaneurysms (MAs), an enlarged and irregular foveal avascular zone, and some small regions of capillary

dropout area are observed in the superficial (A) and deep (B) capillary plexuses. Of note, projection artefacts from the superficial vessels are

seen on the deep plexus image (B) as the projection removal was not employed. The images were obtained using the PLEX Elite 9000 (Carl

Zeiss Meditec, Dublin, CA)

FIGURE 12 12 � 12 mm en face optical coherence

tomography angiography (OCTA) of a right eye with proliferative

diabetic retinopathy (PDR). Microaneurysms (MAs), intraretinal

microvascular anomalies (IRMAs) and numerous areas of capillary

dropout are observed in superficial plexus of right eye. Of note,

shadow artefacts from vitreous haemorrhage obscure some areas of

the OCTA en face image inferiorly. A horizontal motion artefact

line is evident near the lower right corner of the image. The images

were obtained using the PLEX Elite 9000 (Carl Zeiss Meditec,

Dublin, CA)
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red blood cell flow into these lesions rendering them
undetectable by OCTA.62 OCTA detected enlargement
and distortion of FAZ and better defined areas of capil-
lary loss which were otherwise obscured by fluorescein
leakage on FFA.61

Moreover, small NV could be clearly differentiated
from IRMA by OCTA imaging, as small tufts of NV
would extend above the inner limiting membrane on
cross-sectional structural OCT scans, whereas IRMA
would remain intraretinal.61,63 Vascular density (VD) and
other perfusion-related indices can be generated from
OCTA images and have been used in a number of studies
of DR and DMO.65–68 For example, a recent study dem-
onstrated that the VD of each of the individual layers
(superficial, intermediate and deep vascular plexuses)
decreased with increasing DR severity, though the level
of DR severity had a substantially different effect on
OCTA parameters within each layer.67 Vascular changes
in eyes with no to early DR were present primarily in the
deeper vascular layers, whereas the opposite was
observed in eyes with advanced DR.67 In eyes with DMO,
larger FAZ, FAZ contour irregularity, and greater vessel
calibre and vessel tortuosity were seen on OCTA, along
with lower VD, compared with normal eyes (p < 0.001
for all parameters).65 DMO eyes which poorly respond to
anti-VEGF treatment also showed greater damage to the
deep capillary plexus and a larger FAZ (p < 0.001), com-
pared with good responders.69

Initial OCTA instrumentation and acquisition soft-
ware focused on high-resolution imaging of the central
macula (e.g., 3 � 3 mm or 6 � 6 mm patterns centred on
the fovea), but subsequent iterations have offered increas-
ingly large patterns and faster scanning speeds. Using a
montage approach, ‘widefield’ OCTA is now feasible. A
montage of only two 15 � 9 mm swept-source OCTA
(SS-OCTA) scans (yielding a 15 � 15 mm image which
approximates a 50� field of view) was shown to be supe-
rior for detecting IRMAs (p < 0.001) and NV (p = 0.007)
compared with UWF CFP, and comparable with UWF
FFA in detecting MA, IRMA, NV and CNP area
(p > 0.05).70 A combination of WF SS-OCTA and UWF
CFP can detect these DR lesions with similar efficiency
as UWF FFA (p > 0.005), and as such this combination
may offer a non-invasive alternative to FFA in DR grad-
ing.70 This may be particularly relevant in light of DRCR.
net Protocol AA results. WF OCTA has also been used to
evaluate retinal perfusion in PDR after treatment with
panretinal photocoagulation or intravitreal anti-VEGF
injection, and no significant changes were found after
treatment with either approach.71,72 A recent study also
highlighted the benefit of cross-sectional WF OCTA B-
scans and showed that evidence of NV that traversed the

posterior hyaloid face into the vitreous in eyes with PDR
was associated with a higher rate of vitreous haemor-
rhage (odds ratio, 5.42; 95% CI, 1.26–35.16; p = 0.02)
compared with flat NV that was confined to the posterior
hyaloid space (odds ratio, 0.25; 95% CI, 0.04–1.01;
p = 0.05).73

Although OCTA provides retinal structural detail and
information regarding perfusion, it currently does not
demonstrate leakage, blood flow velocity or transit time
which can be obtained from FFA imaging. Image arte-
facts (Figures 11 and 12), limited field of view (far less
than the 200� achievable by UWF FFA), longer image
acquisition time, lack of interoperability between OCTA
devices, difficulty in interpretation, and cost and lack of
broad availability of OCTA devices, may still limit the
current application of OCTA in general clinical
practice.59,74

4 | ADVANCES AND NOVEL
TECHNOLOGIES IN RETINAL
IMAGING

4.1 | Fluorescence lifetime imaging
ophthalmoscopy

Fluorescence lifetime imaging ophthalmoscopy (FLIO) is
a novel non-invasive imaging technology which may pro-
vide additional contrast to discriminate fluorophores in
the eye compared to conventional FAF. Following excita-
tion by the laser, FLIO measures the average amount of
time that fluorophore remains in the excited state, known
as the FLIO lifetime (FLT) or decay time, and difference
in lifetime may aid discrimination of the status of various
diseases.75,76 A prototype FLIO device for clinical
research use is available from Heidelberg Engineering
primarily utilised a 30� field of view.76 Early studies have
shown that FLTs are prolonged in the eyes of diabetic
patients without DR, eyes with NPDR, and eyes with
PDR compared to healthy controls (Figure 13).77–79 One
study showed that the prolongation especially occurred
in the superior-temporal area, and seemed distinct from
the patterns described for age-related macular degenera-
tion. FLTs in these areas were 300–400 ps, which were
approximately 100 ps longer than corresponding areas in
healthy controls.79 The formation and accumulation of
advanced glycation end products in neurons, glial cells
and vascular cells in diabetes were hypothesized to be a
cause of FLT prolongation in these cases.77,78 These stud-
ies suggest the potential for early detection of metabolic
changes in DR seen using FLIO prior to signs of overt
clinical disease.76
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4.2 | Retinal oximetry and hyperspectral
imaging

As a critical function of the retinal and choroidal vascula-
ture is delivery of oxygen to the retina, non-invasive assess-
ment of retinal oxygenation has been an area of
considerable interest. The basic principle underlying current
oximetry techniques is based on the distinct optical proper-
ties of oxygenated and deoxygenated haemoglobin, each of
which absorbs different amounts of light at different wave-
lengths. By exciting the retina with two or more different
wavelengths and measuring the reflected light from blood
vessels and outside vessels, the optical density and its ratio
can be computed.80,81 An example of a currently available

commercial device is the Oxymap T1 (Oxymap ehf, Reykja-
vik, Iceland) which generates a fundus photograph with a
measurement of the oxygen saturation within each artery
and vein displayed using a colour scale.82 Using oximetry
testing, the retinal vessel oxygen saturation in DR eyes was
shown to be significantly higher than in healthy
controls.83–85 Possible explanations for this finding was
arterio-venous shunting due to bypass of non-perfused cap-
illaries. Thus, because of the loss of the capillary circulation,
some regions of retinal tissue may be hypoxic, despite a
high oxygen saturation in the larger blood vessels.83 Retinal
oximetry, however, is not without limitations as the
fundus camera only provides 2D images and fundus pig-
mentation and vessel size may affect the accuracy of oxygen
saturation measurements requiring an additional corrective
algorithm.80 Newer imaging techniques that are still under
earlier stages of development such as photoacoustic oph-
thalmoscopy, visible light OCT, and hyperspectral imaging
(HSI) may address some of these limiations.80

For example, HSI is a spectral imaging technique which
collects data from a contiguous spectrum of wavelengths of
light reflected by the retina in every pixel of an image
plane.86 This technique provides a higher spectral resolution
compared with multispectral imaging that captures only spe-
cific wavelengths such as red, green and blue in conven-
tional CFP.86 As the various structures and molecules in the
retina have different reflective properties, HSI provides
more-detailed information regarding these structures and is
less influenced by vessel thickness.80,86 One study reported
the mean oxygen tensions in the artery and vein measured
by HSI in diabetic patients were lower than normal subjects
(p = 0.001).29 For PDR eyes in particular, the arterial oxygen
level was significantly lower (85 ± 4%) while the venous oxy-
gen level was significantly higher (71 ± 4%) than the other
groups (p = 0.04), which led to significant arteriovenous dif-
ference between PDR and healthy controls (14% vs. 26%;
p = 0.003).87 Another study of HSI in mild to moderate
NPDR showed a contrary results where the mean retinal
arterial and venular oxygen saturations were higher in
NPDR eyes compared with healthy controls (94.7 ± 2.4%
vs. 92.9 ± 1.6%, p = 0.02; 62.5 ± 5.7% vs. 56.3 ± 4.7%,
p = 0.003; artery and vein, respectively), and the arteriove-
nous difference was significant between the NPDR group
and controls (30.6 ± 6% vs. 36.7 ± 5.3%, p = 0.008).88 Fur-
ther larger and longitudinal studies are required to better
clarify these relationships. Limitations of HSI include long
acquisition and analysis times.80

4.3 | Adaptive optics

Adaptive optics (AO) is an imaging technique to improve
the transverse resolution of optical imaging systems by

FIGURE 13 Fundus autofluorescence (FAF) intensity (top

row) and fluorescence lifetime imaging ophthalmoscopy (FLIO)

lifetime images of the right macula of a healthy subject (left

column) and a non-proliferative diabetic retinopathy (NPDR)

patient (right column), showing both the FLIO short-wavelength

spectral channel (SSC, 498–560 nm, middle row) and the FLIO

long-wavelength spectral channel (LSC, 560–720, bottom row).

FLIO imaging showed prolongations of fluorescence lifetimes in

the NPDR eye compared with the healthy control. Image courtesy

of Dr. Lydia Sauer, Moran Eye Center, University of Utah School of

Medicine, Salt Lake City, Utah
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reducing the effect of ocular aberrations and resultant wave-
front distortion. AO has been developed and implemented
in a variety of imaging systems including flood-illumination
ophthalmoscopy (FIO), scanning laser ophthalmoscopy
(SLO) and OCT. When combining AO with these imaging
techniques, the higher transverse resolution offers better
visualisation of a small features including individual cells.89

To put this into context, adaptive optics scanning laser oph-
thalmoscopy (AO-SLO; Figure 14) provides up to 2.5 μm
transverse resolution compared to a resolution of only
20 μm for a conventional fundus camera.89,90 When apply-
ing AO to OCT (adaptive optics OCT or AO-OCT), it is pos-
sible to achieve isotropic resolution with 2 μm resolution in
all dimensions.91

A study of AO-SLO compared with conventional OCT
in NPDR showed improved visualisation of various reti-
nal features including retinal vessels in the inner retinal
layers, extensive capillary remodelling despite mild or
moderate NPDR, clinically undetected intraretinal vessel
remodelling and varying blood flow patterns, and regions
of bright cones and dark regions in the photoreceptor
layer with dark regions corresponding to areas of over-
lying vascular remodelling.92 Compared with healthy
controls, perifoveal capillary diameters were larger
(p < 0.01) and small arteriolar walls were thicker
(p < 0.05).92

4.4 | Smartphone-based fundus camera

With the increasing need to provide accessible DR screen-
ing to as broad a population as possible, smartphone-based
fundus imaging has gained increasing interest given its low
cost, portability, convenience and lack of need for intensive

training.93 Smartphone-based fundus photography has been
used over the last decade for screening and monitoring of
various eye diseases including DR, and has become a part
of the teleophthalmology model.94–96 A smartphone-based
fundus camera can even be self-assembled by the consumer
using a smartphone with the device-installed camera appli-
cation (app), a condensing lens (20D), reducer base, polyvi-
nyl chloride (PVC) pipes, and adhesive.97 A video of the
fundus can be captured, the image frames can later be edi-
ted or enhanced as needed using commercial software.97 A
meta-analysis from nine studies (1430 participants) of DR
identifications using smartphone cameras with various
attachments and companion artificial intelligence (AI) tools
for obtaining and grading of the retinal images showed that
the pooled sensitivity and specificity for detecting any DR,
compared with the reference standard (e.g., indirect oph-
thalmoscopy, slit-lamp biomicroscopy and CFP), were 87%
(95% CI, 74%–94%) and 94% (95% CI, 81%–98%), respec-
tively.98 Mild NPDR had the lowest diagnostic accuracy
[39% sensitivity (95% CI, 10%–79%) and 95% specificity (95%
CI, 91%–98%)] and PDR was the highest [92% sensitivity
(95% CI, 79%–97%) and 99% specificity (95% CI, 96%–99%)].
DMO had 79% sensitivity (95% CI, 63%–89%) and 93% speci-
ficity (95% CI, 82%–97%). Referral-warranted DR had 91%
sensitivity (95% CI, 86%–94%) and 89% specificity (95% CI,
56%–98%). The overall diagnostic odds ratio ranged from
11.3 to 1225.98

4.5 | AI and innovative software

AI approaches to automatically assess retinal images
(at present, primarily CFPs) for referral warranted reti-
nopathy are poised to play a significant role in the DR
screening model going forward. AI algorithms have
already shown the potential to replace human graders
(at least partially) while providing a similar level of accu-
racy but better cost-effectiveness.99–101 Two fully-
autonomous AI-based DR screening tools or algorithms
have been FDA-cleared and are commercially available
(EyeArt [Eyenuk Inc., CA, USA] and IDx-DR [Digital
Diagnostics Inc., IA, USA]).99 Many more such tools are
Conformitè Europëenne (CE) marked in the European
Union. A recent study showed that the implementation
of AI (EyeArt, Eyenuk) into a DR screening paradigm
with CFP obtained in a primary care clinic serving a low-
income patient, improved adherence to follow-up eye
care recommendations while reducing referrals for
patients with low-risk features.102

AI has applications well-beyond screening and may
provide enhanced image processing. For example, consis-
tent high image quality is a challenge for OCTA imaging,
but one study found that AI could be used to denoise the

FIGURE 14 Adaptive optics scanning laser ophthalmoscopy

(AO-SLO) images of a diabetic retinopathy (DR) eye (A) and a

healthy eye (B). In the DR eye (A), the capillaries are dilated and

beaded with stagnation of blood cells and microaneurysm

formation, in contrast to the healthy eye (B) in which the

capillaries are of normal calibre and stagnation of blood cell is not

observed. Image courtesy of Dr. Shin Kadomoto, Kyoto University

Graduate School of Medicine, Kyoto, Japan
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OCTA image without the need for image averaging
allowing shorter acquisition times (acquisition times for
the original, averaged, and AI-denoised images: 31.87
± 12.02, 165.34 ± 41.91 and 34.37 ± 12.02 s, respectively).
Both subjective and quantitative evaluations showed that
AI-denoised OCTA images had less background noise
and depicted vessels more clearly.103

5 | CONCLUSION

In summary, retinal imaging is a key component in the
diagnosis and management of patients with DR. While
conventional CFPs are the historical good standard tool
for assessment of DR, and have been used for decades in
clinical trials, the widefield imaging approaches and OCT
are the current centrepieces for clinical retinal imaging
in DR. A multimodal imaging approach is key, however,
as various imaging modalities including dye-based fluo-
rescein and OCT angiography may provide complemen-
tary clinically-important information. The role of
imaging can be expected to expand in the future with
novel approaches such as HSI and FLIO in development.
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