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Abstract

Arrays of quantum dots (QDs) are a promising candidate system to realize scalable, coupled 

qubit systems and serve as a fundamental building block for quantum computers. In such 

semiconductor quantum systems, devices now have tens of individual electrostatic and dynamical 

voltages that must be carefully set to localize the system into the single-electron regime and 

to realize good qubit operational performance. The mapping of requisite QD locations and 

charges to gate voltages presents a challenging classical control problem. With an increasing 

number of QD qubits, the relevant parameter space grows sufficiently to make heuristic control 

unfeasible. In recent years, there has been considerable effort to automate device control that 

combines script-based algorithms with machine learning (ML) techniques. In this Colloquium, 

a comprehensive overview of the recent progress in the automation of QD device control is 

presented, with a particular emphasis on silicon- and GaAs-based QDs formed in two-dimensional 

electron gases. Combining physics-based modeling with modern numerical optimization and ML 

has proven effective in yielding efficient, scalable control. Further integration of theoretical, 

computational, and experimental efforts with computer science and ML holds vast potential in 

advancing semiconductor and other platforms for quantum computing.

I. QUANTUM DOT DEVICES: HISTORY AND OVERVIEW

The electron is the simplest natural quantum bit. It has a spin of 1/2 and comes with an 

electric charge, enabling trapping and moving of the particle, much like an ion. Furthermore, 

Kramers’s theorem provides an assurance that this simple structure is maintained even in the 

complex environment of a condensed matter system, specifically the spin-1/2 property. This 

means that one can leverage the vast array of condensed matter and solid-state research and 

the corresponding industry that has developed around the control of electrons, particularly 

in the case of semiconductors. Quantum dots (QDs) are one such approach for isolating 
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and controlling single electrons using semiconductor physics (Hanson et al., 2007; Loss and 

DiVincenzo, 1998; van der Wiel et al., 2002; Zwanenburg et al., 2013).

Interest in QDs goes well beyond quantum computing, from direct current (dc) standard 

to low-power logic to thermometry at low temperatures (Likharev, 1999). Working at the 

single-electron level with both orbital and spin coherence represents the edge of the possible 

in semiconductors, and thus quantum computing with semiconductor QDs has proven to be 

a fruitful domain to develop new techniques and uses of isolated electronic systems while 

maintaining their promise as a pathway to quantum computing (Madzik et al., 2022; Noiri 

et al., 2022a; Philips et al., 2022; Takeda et al., 2022; Watson et al., 2018; Weinstein et al., 
2022; Xue et al., 2021; Zwerver et al., 2022).

The difficulty of working with such systems (where fabrication tolerances are tight, 

impurities are troublesome, and material considerations are vast) has meant that only a 

few groups around the world have succeeded in advancing the limit of QD performance, as 

recently demonstrated through the use of high-fidelity (> 0.99) two-qubit gates (Mills et al., 
2022; Noiri et al., 2022b; Xue et al., 2022). Many of the fabrication and materials challenges 

have been surmounted with engineering and by a practice of sharing results and even 

materials and samples throughout the academic community. One of the critical remaining 

challenges is reducing the difficulty of arranging the depletion and accumulation of electrons 

in a nanoscale semiconductor system such that the right number of isolated islands (QDs) 

with the right number of electrons (charge state) in the right connection network (topology) 

is realized every time the system is cooled down and initiated.

This task is unexpectedly difficult. A typical gate-based semiconductor QD uses between 

four and six local depletion and/or accumulation gates to form a single island; see Fig. 1. If 

one seeks to build an array of such devices in close proximity (such that individual electrons 

can coherently tunnel between islands, as is necessary for most quantum computing 

implementations) the number of gates scales as some polynomial in at least the square 

root of the number of QDs, and typically scales linearly (Veldhorst et al., 2017).

To reach a stable few-electron configuration, early experiments set the input voltages 

heuristically, relying on experimental intuition and informed guesses. However, such an 

approach does not scale well with growing array sizes and is susceptible to random errors. 

Moreover, since the parameter space exploration strongly relies on intuition and experience, 

this tuning may result in only an acceptable rather than an optimal configuration. Finally, 

the size of the relevant space of parameters that need to be adjusted with an increasing 

number of QD qubits makes heuristic control even more challenging. As a result, there has 

been significant interest in exploring the potential of machine learning (ML) to solve the 

autotuning problem.

We now consider the specific challenges of bringing a device into the desired operating 

regime. An essential ingredient on any tuning procedure is determining the state of the 

device (topology, number of charges, parameters such as tunneling rates, etc.). However, 

measuring these devices is nontrivial. In general, the field has progressed by exploratory 

measurement of electrical currents through nearby circuits(Elzerman et al., 2004b; Field 
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et al., 1993). These techniques rely upon the variable conductance of the underlying 

semiconductor, which in turn depends upon the local electric field produced by nearby 

electrical gates or by electrons that are trapped in the QDs themselves. The probe systems 

must be nearby, as screening of the electric field from nearby metallic regions reduces 

long-range coupling and corresponding changes in conductance become hard to measure.

These current-flow approaches commonly use an auxiliary QD or quantum point contact to 

act as a sensor of the local electric field and are sufficiently sensitive to measure the change 

in the local potential landscape to the addition or subtraction of a single nearby charge 

(Blumoff et al., 2022; Lai et al., 2011; Mills et al., 2022; Petit et al., 2020; Simmons et al., 
2007; Yang et al., 2020). Their ability to work independently of coupling of the QDs in the 

main device provides substantial engineering simplicity in creating and tuning QD devices.

In addition to charge-based measurements, there are other measurement techniques. The first 

was more common in the earlier era of the field: directly measuring the current flow through 

the QD of interest (Hendrickx et al., 2020; Maurand et al., 2016). This relies upon finding 

degeneracies between all the relevant charge configurations in the QDs such that electrons 

can freely flow from a source to a drain. However, these are not as useful for tuning to 

the single-electron regime, as the current flow through the devices typically gets small as 

one approaches that regime, and tuning to these degeneracy points becomes increasingly 

challenging as the number of devices in series increases. Nonetheless, some ML-based 

autotuning techniques operate directly on current-flow data (van Esbroeck et al., 2020).

Furthermore, using charge sensors as previously described is necessary but not sufficient 

for a complete tune-up, as fine-tuning of devices, and the eventual characterization of their 

quantum gates, requires single-shot readout of individual charge configurations at the end 

of a sequence of pulses. Thus, more complex sensing routines, including time-sequenced 

high-frequency gate control and rf or microwave reflectometry, must also be integrated and 

calibrated. Developing these capabilities and leveraging them earlier in the tuning process 

is generally beneficial, as more rapid data acquisition leads to more rapid tuning: typically, 

automation is limited by data from the experiment, not by classical computing costs.

Finally, there are some new directions in direct integration of circuit quantum 

electrodynamic techniques for measurement. A typical example eschews the use of a 

separate charge sensor, instead connecting one of the gates directly to a superconducting 

resonator. The local response of the QD system to an applied microwave or radio frequency 

field then causes the field in the cavity to have a phase shift; in essence, the QD system 

acts as a variable capacitor in a resonant circuit (Burkard et al., 2020; Crippa et al., 2019; 

Liu et al., 2021; Mi et al., 2017a; Zheng et al., 2019). Thus, even though no current flows 

through the QDs, one can directly measure the local properties about the response of energy 

levels to the applied fields. This has shown promise outside the ML space for fine-tuning, as 

it enables one to estimate other properties, such as valley degeneracy in silicon devices (Mi 

et al., 2017b). However, this gate-based readout can lead to difficulties in seeing the global 

charge state, and thus may cause overall features necessary to get to a particular topology to 

be missed. On the other hand, the approach is likely to be effective for fine-tuning once the 

topology and number of electrons is configured. We note that there are other techniques for 
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extracting this information as well, such as fast pulses over anticrossings, the use of large 

bias currents, or even elevation of the temperature of the device.

In this Colloquium, we endeavor to both set up the challenges of tuning QD systems 

and describe progress toward their automation. We begin with an overview of QD qubits, 

followed by a discussion of the Hubbard model representation of the QD system and a high-

level overview of the QD tuning subprocesses that take a system from room temperature 

to quantum operation. Several key metaproblems related to scalability and tuning in the 

presence of imperfections are also discussed. The concept and methods of tuning QD 

devices are presented in Sec. II. The overview and discussion of present-day advances in 

tuning automation are presented in Sec. III. Section IV concludes the Colloquium with 

a summary and outlook, including some questions related to scaling up and “on-chip” 

implementations of the autotuning systems. Closing remarks are presented in Sec. V.

To date the techniques described here are largely a replacement of laboratory heuristics 

with a combination of workflow-based automation and key ML subsystems. However, the 

rapid advances in ML suggest that future work will more directly address the global on-line 

optimization problem that tuning presents and also find new means of replacing larger parts 

of today’s workflow with faster and more accurate methods. We await these future directions 

with optimism.

II. QUANTUM DOT DEVICES TODAY

QD systems can be used to form qubits, where the spin, valley, internal electronic state, or 

the charge state of the electrons in one or several QDs is used to store quantum information. 

This information is then manipulated by control of global and local magnetic and electric 

fields, typically in a narrow range of the charge parameter space. Common examples of 

QD-based qubits include using the electron spin in a single dot (up and down representing a 

qubit, leveraging Kramers’s theorem to ensure that such states exist), using a pair of electron 

spins in adjacent QDs in which the parity of the two spins stores the quantum information, 

or using the exchange symmetries of three electron spins spread over three QDs in a 

so-called exchange-only qubit. In spin qubits, the different individual spin configurations of 

the same charge configuration define the logical states, with up and down defined relative 

to an external magnetic field (Burkard et al., 2021; DiVincenzo et al., 2000; Loss and 

DiVincenzo, 1998; Vandersypen et al., 2017). For composite qubits, the logical states of the 

qubit are defined by symmetry operations on spin configurations resulting from having two, 

three, or even four electrons distributed among two, three, or four QDs (Cao et al., 2016; 

DiVincenzo et al., 2000; Petta et al., 2005; Russ and Burkard, 2017; Russ et al., 2018; Sala 

and Danon, 2017; Shi et al., 2012; Wu et al., 2014). In principle, charge qubits, where the 

logical states of the system are defined by different charge occupations of adjacent tunnel 

coupled QDs (Gorman et al., 2005; Kim et al., 2015; Petersson et al., 2010), are also a path 

toward qubits. In all cases, the critical task of getting a QD system into a regime in which 

qubits can be realized has mostly common features, with only minor changes at the final 

stage of tuning to distinguish between the different qubit types.

Zwolak and Taylor Page 4

Rev Mod Phys. Author manuscript; available in PMC 2023 April 11.

N
IS

T
 A

uthor M
anuscript

N
IS

T
 A

uthor M
anuscript

N
IS

T
 A

uthor M
anuscript



In many respects, this Colloquium is focused on developing the tools to get one to a regime 

in which the previously mentioned qubit types can be reliably realized. From a systems 

engineering perspective, a useful intermediate representation of the system is the Hubbard 

model, in which individual QDs labeled with index i are allowed to have zero, one, or 

two electrons on them at a time (Burkard et al., 1999; Das Sarma et al., 2011; Loss and 

DiVincenzo, 1998; Yang et al., 2011). It is convenient to define a site occupation number 

ni = ∑σ ci, σ
† ci, σ, with the fermionic creation and annihilation operators ci, σ

†  and ci, σ, respectively, 

and σ = ± 1/2 being the spin, to represent the number of electrons on site i. Therefore, we 

have

H = − ∑
ij

tij(ci, σ
† cj, σ + H.c. )

+ ∑
ij

1
2 ni − ϵi Uij nj − ϵj + HB

(1)

where the first sum is over QDs that are tunnel coupled with tunneling energy tij to 

each other. The second term of Eq. (1) incorporates ith site occupation ni, charge offsets 

due to gate voltages ∝ ϵi(j), and the inverse capacitance matrix Uij that determines the 

lowest energy charge configuration. We note that the energy relationship of capacitance 

(1/2)QC−1Q = (1/2)V CV  is exactly that captured by Uij ≈ e2C−1, where e is the single-electron 

charge. As this matrix is symmetric, the sum runs over all i and j, although it can be 

redefined as a sum over i ≥ j. Later we use this relationship to define virtual gates. The last 

term in Eq. (1) HB is the magnetic field Hamiltonian for the spins only and typically includes 

both a uniform component and a local (gradient) component. As mentioned, beyond the 

charge state QDs have internal electronic, spin, and valley levels, that become particularly 

important for qubit operation. Thus, in general, a multiband approach to the Hubbard model 

should be used for real experiments. However, since these complications do not affect most 

of the tune-up process except at the final (fine-tuning) stage, we do not include them here, 

as they rarely impact the charge-tuning process. Automated procedures (described later) 

can help directly extract the functional dependence of the tunneling tij  and capacitance 

Uij  terms on the device parameters, such as gate voltages, as well as further voltage 

dependencies in ϵi(j).

To get to Hubbard abstraction, we now consider a typical gate-defined QD device in Si/SiGe 

that is shown in Fig. 2. The different metal gate electrodes are intended to serve different 

functions in forming and controlling the QD qubits by depleting or accumulating electrons 

in the semiconductor underneath the gates. The so-called finger gates, named for their 

resemblance to the fingers on a hand, control the tunnel coupling with the reservoirs Γi

(barrier gates Bi, where i = 1, 5, …, 9, in Fig. 2) and the interdot tunnel couplings tij (barrier 

gates Bi, where i = 2, 3, 4, in Fig. 2) and are used to set the electron number in each QD 

by changing the local electrostatic potential (plunger gates P i, where i = 1, …, 6, in Fig. 2). 

However, in practice each gate influences the other parameters as well (due to the capacitive 

crosstalk), as we later discuss. In a typical setting, one of the QD regions is separated 

out from the others (top area of Fig. 2) and is used as a local probe of the electrostatic 

environment, thus measuring changes in the number of nearby charges. This measurement 
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system allows for assessment of the rest of the device and provides a helpful abstraction 

from currents and conductances.

The tuning process is an essential, albeit repetitive, step for initialization of QD-based 

qubits. The process of tuning an unknown QD device can be divided into a sequence of 

distinct phases, bootstrapping, coarse tuning, charge state tuning, and fine tuning, as shown 

in Fig. 3. Depending on the setup, an additional establishing controllability phase may be 

carried out after the charge-state tuning phase to enable targeted gate control. We note that, 

given the dependence of the transformation to control space on the actual charge states, the 

controllability step may need to be executed more than once throughout the tuning process. 

There have been numerous efforts around automating each of those phases, as we discuss in 

Sec. III. Here we present a high-level overview of what each of those phases encompasses 

and the desired output for each.

Bootstrapping.

Bootstrapping (or initialization) is a pretuning process that involves cooling the device 

down, making local sensing systems operational, and bringing the main device regime into 

an appropriate parameter range for taking data (i.e., measurement setup). This might include 

bringing charge sensors into operation and preparing a 1D channel where QDs are going 

to be formed in the two-dimensional electron gas (2DEG). Bootstrapping can also build a 

“sandbox” of acceptable parameter variations by checking the finger gates for response and 

pinch-off voltages and determining the safety ranges for coarse tuning.

Coarse tuning.

Coarse tuning is a process of finding a range of gate voltages where the device is in 

a particular global configuration corresponding to a set of charge islands (QDs) with an 

understanding of their connectivity, i.e., which island is tunnel coupled to which. In simple 

devices, this corresponds to an estimate such as that of a no-QD, single-QD, or double-QD 

regime. As such, it can be thought of as defining the device topology in the state space. At 

the end of this phase, the QD device should be in a stable global configuration of known 

topology. This topology is the output of the coarse-tuning process.

Establishing controllability.

Ideally, changing voltages on a single gate affects only the parameter it is designed to 

control (such as the electrochemical potential of a specific QD or the tunnel barrier between 

two adjacent QDs). However, the capacitive crosstalk between the various gate electrodes 

(i.e., a situation in which a signal on one gate causes a smaller version of the same signal 

on an adjacent gate because of the capacitance between them) makes it difficult (if not 

impossible) to vary only a single parameter without affecting the others. One way to 

compensate for the capacitive crosstalk is to implement so-called virtual gates, that is linear 

combinations of multiple QD gate voltages chosen to address only a single electrochemical 

potential or tunnel barrier. Virtual gates are the output of the establishing controllability 

phase.
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Charge state tuning.

While at the end of the coarse-tuning phase the device is in a definitive global state (i.e., 

single or double QD), the number of charges on the QDs is at this point unknown. Since 

each QD qubit type requires a specific charge arrangement, the goal of charge-state tuning 

is to bring the QD device to a specific charge configuration, i.e., the specified number of 

charges (typically one to three) on the specified islands.

Fine tuning.

Once the system is in the desired topology and electron number, the system is ready for 

preparing it for use as a quantum computing or quantum simulation device. This stage of 

tuning (fine tuning, as we call it here) requires tremendous precision and expertise in order 

to go from something that has roughly the right Hamiltonian and charge configuration to 

a fully controlled multiqubit system. For example, interdot tunnel couplings and dot-lead 

tunnel couplings have to be precisely tuned and calibrated the electron response to applied 

voltages at the quantum mechanical level needs to be mapped out, the valley degeneracies 

and magnetic gradients must be understood, translations of microwave signals to applied 

pulses on the electrons have to be determined, etc. This fine-tuning work is well beyond the 

scope of this Colloquium, although many of these elements bear a strong resemblance to 

similar challenges currently being addressed in superconducting and ion-trapbased quantum 

computing designs, such as those used by Klimov et al. (2020) and Kelly et al. (2018), 

and we may be able to leverage advances in those fields with little additional QD-specific 

modifications. Thus, in what follows we focus on the physics elements of these calibrations 

only, leaving the quantum computing elements (including qubit initialization, manipulation, 

and readout) to future work.

Beyond these elements, there are several key metaproblems that should be addressed in 

future work. The most prominent is related to the ability to scale QD devices. Specifically, 

to what extent can we take a tuning system for one of the previously mentioned tasks and 

while holding a portion of the QD device tuned, tune up a different portion of the device? 

For example, in a long array of QDs, one might first tune up a nearby charge sensor. One 

might then tune a double QD. What if one seeks to add another QD to the chain? This 

inductive tuning problem has been shown to work experimentally (Volk et al., 2019), but 

theoretically there are substantial open questions about the ability to rapidly and reliably 

tune a large 1D array. As an example of why this is challenging, it is often the case in 

higher-dimensional arrays for there to be charge configurations that are lower in energy than 

the current configuration but that the device does not reach due to metastability; that is, 

there is no easy way for an electron at, say, the edge of an array of QDs to make its way 

to the relevant QD near the center of the device to let the system relax to its true charge 

ground state. Sometimes this problem is called latching, as the presence of an electron in a 

metastable configuration can prevent other electrons from tunneling to get the entire system 

into its ground state (Volk et al., 2019). This metastability in turn can lead to hysteresis 

when tuning QD devices, as the history of tuning leads to being stuck in different metastable 

configurations.
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A second key metaproblem is how such tuning systems behave in the presence of real-world 

imperfections. From the efficiency standpoint, it would be beneficial to determine whether 

the QD devices in a wafer are suitable for tuning prior to the wiring and cooldown. This is 

particularly important for high-throughput production, where individual wafers may contain 

hundreds or even thousands of devices.

Tuning up a multithousand-QD device can be accomplished only if the systems can 

be solved semi-independently (using recursive or inductive solutions). It must be done 

repeatably, in the presence of expected noise, and must respond appropriately to unexpected 

events and quickly enough to maintain its final state before going “out of tune.” A large-

scale system achieving these tasks is the main target for future research in this direction.

As a concluding note, there are a variety of ways to trap individual electrons in a 

semiconductor system. In this Colloquium, we focus on devices where the electric field 

plays a key role in accumulating or depleting regions of a semiconductor, all the way down 

to the single-electron level. This encompasses a large variety of different technologies and 

materials. In many cases, these systems have qualitative similarities. However, there are both 

large and subtle differences that can make “porting” a tuning method from one material 

(such as GaAs) to another (such as silicon-based QD) more complex or even likely to fail. 

For example, in fine-tuning silicon devices have valley degeneracy and a large effective 

electron mass, leading to substantially different behavior in the 0.1 meV energy scales 

of orbital and related physics. As another example, devices with electrons close to oxide 

interfaces are known to have a large probability of so-called spurious QDs, in which an 

impurity or defect causes the formation of a charge trap that can impact the controllability 

and measurability of the QDs. Finally, differences in noise, dielectric properties, and gate 

geometries mean that each application of a tuning method must generally be targeted toward 

both a specific material and a specific approach to QD formation. In what follows, we focus 

on silicon- and GaAs-based QDs formed in 2DEGs but note that many of these techniques 

can be generalized, with the previous proviso.

III. TOWARD FULL AUTOMATION OF DEVICE CONTROL

There have been several attempts at automation of the various steps of the tuning process 

over the past decade. The initial script-based approaches rely on intuitive and relatively easy 

to implement conventional algorithms. They typically involve a combination of techniques 

from regression analysis, pattern matching, and quantum control theory. However, the 

defects and variations in the local composition of the heterostructure, as well as fabrication 

variances that disorder the background potential energy, make semiautomated control 

challenging. The random disorder that must be compensated for by different gate voltages 

when defining QDs further impedes the script-based tuning process. None of the proposed 

approaches to date fully eliminate the need for human intervention, as the decision on how 

to adjust gate voltages, based on the automatically obtained quantitative QD parameters and 

qualitative output, remains heuristic. These approaches are typically calibrated to a particular 

device architecture (or even a specific device), are susceptible to noise, and do not transfer 

well to other devices (Baart et al., 2016).
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More recently researchers began to take advantage of the tools provided by the field 

of artificial intelligence and, more specifically, supervised and unsupervised ML. ML 

is a branch of computer science that focuses on the use of data and various specially 

designed algorithms to imitate the way that humans learn. Throughout training, a ML 

algorithm learns or, in some applications, discovers patterns in data without being explicitly 

programmed about the characteristic features of those patterns. Thus, if one is provided 

with proper training data, ML-enhanced methods have the flexibility of being applicable to 

various devices without any adjustments or retraining. Since they learn from the data, ML 

algorithms are more adjustable to new devices than script-based methods. However, ML 

models typically require large labeled datasets for training and often lack information on the 

reliability of the ML prediction (Darulová et al., 2021; Zwolak et al., 2018).

While the problem of estimating and tuning systems is generically challenging, QD-based 

devices do benefit from having a variety of distinct problems and means of estimation 

that are sufficiently mature to enable applications of specific ML techniques to various 

subproblems without requiring a holistic solution. However, there may be some benefits 

to considering a holistic approach, particularly in low information settings such as those 

considered by Moon et al. (2020).

In Sec. III.A–III.E, we describe advances in QD auto-tuning while focusing on the five 

main phases of the tuning process discussed in Sec. II. In general, all techniques used for 

automation follow one of the two main schools of thought: computer-supported, script-based 

gate control or ML-driven methods.

A. Bootstrapping and sandboxing quantum dot device

The mobility of electrons (or holes) as well as many-body interactions between an isolated 

spin trapped in a QD and the sea of nearby spins in the 2DEG are often strongly dependent 

on a variety of parameters. Of particular relevance for observing quantum coherent behavior 

is the overall temperature of the device, as charge-phonon coupling prevents coherent 

behavior at moderate temperatures, and the necessary effects, such as resolution of excited 

electronic states in an individual QD, become impossible for temperatures well above the 

energy regime of interest. In general, the weaker the interaction, the colder the 2DEG has 

to be in order to observe it. For example, the smallest energy splitting in silicon QDs, the 

valley splitting, is typically 10 – 300 μeV for Si/SixGe1−x (Borselli et al., 2011; Simmons et 
al., 2010) and about 300 – 800 μeV for silicon metal-oxide semiconductors (SiMOSs) (Yang 

et al., 2013), which is small compared to room temperature (1 K is 87 μeV). Cooling down 

the device is the first step of the bootstrapping phase. The usual technique for cooling 2DEG 

samples to the temperature required for an experiment is to use a dilution refrigerator. Once 

the sample is sufficiently cooled, pretuning and functionality testing can begin.

At a basic physical level, the underlying semiconductor chip will have a variety of 

reasonable ranges of voltages that can be applied, which is often determined ahead of 

time in a probe state or, in the case of an industrial lab, can be engineered. This allowed 

range is designed to prevent undesired effects, including electrostatic breakdown, leakage of 

current across the barriers, and other similar effects. Thus, a basic level of device protection 

must be assured by providing limits that the control systems will respect. However, there is 
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a much narrower range of desired operation than that restricted by pure physical damage. 

Determining this range is one of the goals of bootstrapping. Depending on the device type, 

there are two additional goals: (i) assuring that a 1D transport channel is formed in the 

2DEG (not applicable to nanowire QDs) and (ii) properly calibrating the charge sensor (not 

applicable to devices that do not use charge sensors, although this will typically have to be 

replaced with other constraints for either electrodynamic or current-based readout).

As an example, we consider silicon QDs in devices with an overlapping gate architecture, 

which require both goals (i) and (ii). In these devices, the active region for forming QDs 

is provided by a 2DEG formed at the interface between layered semiconductor structures 

(heterostructures), where the free electrons are confined to a planar region so thin that 

they behave as if they are truly two dimensional. An example of a false-color SEM of a 

sample device with the overlapping gates architecture is shown in Fig. 2. The functionality 

testing of such devices begins with an establishment of the so-called global turn-on, that 

is, determining the voltage level at which a 2DEG is uniformly accumulated underneath 

the gates (McJunkin, 2021). This is achieved by synchronously increasing the voltage 

applied to all gates (initially set to 0 V) while simultaneously measuring the current through 

appropriate pairs of metal Ohmic contacts. The level at which sufficient conductance is 

observed indicates the turn-on voltage.

The next step for this device is to assure that two 1D channels are formed within the 2DEG: 

one where the qubit QDs will be formed and the other to host the charge sensing QDs. 

This is achieved by properly adjusting the screening (Si, where i = 1, …, 4, in Fig. 2) 

and reservoir (Ri, where i = 1, …, 5) gates. The 2DEG first has to be divided into two 

separate planes (current paths) by depleting electrons under the central screening gate [S2 

in Fig. 2; see also the pinch-off curves in Fig. 3(a)(i)]. To ensure sufficient accumulation 

and uniformity of the 2DEG, it might be desirable to readjust the turn-on for each side 

separately. Since the current through QDs has to be controlled at the single-electron level, 

it is important to verify that reservoir gates are not overaccumulated (or underaccumulated). 

This is done by testing the pinch-off of each reservoir, that is, finding the voltage level that 

cuts off the current through the device.

The remaining screening gates then need to be calibrated to form two narrow conduction 

channels on each side of the device. By pinching off an appropriate set of screening gates 

[such as S1 and S2 for the qubit channel in Fig. 2; see also Fig. 3(a)(ii)] and then setting 

the voltages on them significantly below the pinch-off, it is guaranteed that the 2DEG under 

those gates is depleted. Thus, if a current flow is observed when voltage is simultaneously 

increased at all relevant finger gates (i.e., gates Bi for i = 1, …, 5 and Pj for j = 1, …, 4 for 

the qubit channel), it can be safely assumed (for the overlapping gate design) that the 2DEG 

is accumulated only in the narrow passage between the screening gates.

Once the 1D channel is formed, quality assessment and characterization of the finger gates 

can begin. This process serves two purposes: (i) if a given gate does not pinch off the 

current, it might be an indication that the gate is defective or broken and thus the devices 

should not be further calibrated, and (ii) the pinch-off values for each individual gate can 

be used as a guide when setting up the voltages needed to form QDs. Two pinch-off curves 
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showing Coulomb blockade oscillations in properly working finger gates are depicted in Fig. 

3(a)(iii). As mentioned, voltages applied to the finger gates generally have to compensate 

for the disordered potential landscape resulting from various fabrication defects. Since the 

disorder is largely random and varies between devices, the optimal voltage for each gate 

not only has to be determined for each new device but also might be necessary between 

cooldowns of the same device. During the functionality testing step, all gates are checked 

and the optimal voltages are determined.

Typically, all of the bootstrapping steps are performed through a sequential analysis of 

1D measurements of transport through the device as a function of gate voltages. As such, 

this process is well suited for automation. One way to achieve this goal in the context of 

gate-defined QD devices is to combine physics-informed fitting and thresholds to inform 

the selection or relative voltage ranges as well as consecutive adjustments (Baart et al., 
2016; McJunkin, 2021). An approach to characterizing gates involving fitting and binary 

classification has also been proposed (Darulová et al., 2020). In this approach, a set of 

parameters defining a hyperbolic-tangent-based fit to the 1D measurements was extracted 

and used to define, among other things, the pinch-off, transition, and saturation regions 

for each gate. A subset of these parameters was then used as a proxy for measurement 

quality (classified as good or bad) as well as to define the voltage range for subsequent 

coarse tuning. However, this approach is applicable mainly where not much variability in 

the pinch-off curves between the gates is expected. This is commonly seen in GaAs devices, 

while it is observed much less often in silicon devices. An automated analysis of the pinch-

off curves for a device with an overlapping gate architecture becomes significantly more 

challenging as Coulomb blockade oscillations become present in the transport measurement. 

Specifically, depending on the finger gates’ location (such as the proximity to the reservoir) 

and fabrication discrepancies, the pinch-off curves for gates on a single device can exhibit 

significantly different behavior, as depicted in Fig. 3(a)(iii), with the left panel showing only 

some Coulomb blockade oscillation while the oscillations in the right panel are much more 

rapid (likely due to a large level arm between the gate and the dot). A simple threshold 

based on a tanh-like fit [as implemented by Darulová et al. (2020)] might be sufficient to 

extract the pinch-off, transition, and saturation regions from the left curve; however, it would 

be insufficient for the right curve. For the latter, a more advanced detection of Coulomb 

blockade oscillations would be beneficial. Thus, while these measurements can still be used 

to determine the pinch-off, a more nuanced analysis of the oscillations might be desirable to 

determine the transition width of the pinch-off curve.

The final step of bootstrapping is calibration of the charge sensor, that is, finding a set 

of voltages applied to the sensing QD gates that maximizes sensitivity of the conductance 

through the QD to changes in the local electrostatic potential. This is typically done through 

an analysis of a 2D plot in the space of the two barriers defining the sensor starting 

with both barrier gates set slightly below their respective pinch-off values and sweeping 

until saturation (as determined by the pinch-off width) (Baart et al., 2016; Botzem et 
al., 2018; McJunkin, 2021). The resulting plot[the so-called wall-wall plot, see Fig. 3(a)

(iv)] should reveal Coulomb blockade oscillations indicating the voltage range where the 

tunneling through the QD is finite, as indicated by the characteristic diagonal lines. There 

are numerous edge detection techniques that can be deployed to identify the position and 
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extract the locations of those lines. Alternatively, a series of 1D sweeps of one of the barrier 

gates (from below the pinch-off to saturation) while keeping the other barrier fixed slightly 

above its pinch-off level should also reveal the oscillation pattern. Either method should 

produce voltages for setting the barriers for the charge sensor plunger sweep. The final 

1D measurement from the plunger pinch-off until saturation should reveal strong Coulomb 

blockade oscillations, thus indicating that this tuning is sufficient for operation as a charge 

sensor. The best charge sensitivity is achieved by choosing a voltage combination where the 

slope of the Coulomb peak is steepest.

B. Coarse tuning: Setting device topology

Once the two 1D channels are formed and the charge sensor is ready, the next step in 

the tuning process is setting the QD device up in a stable global configuration of known 

topology in the state space with a known number of charge islands. The coarse-tuning phase 

is a process of finding a range of gate voltages for all the finger gates on the qubit side of 

the QD device that set the device in a particular global configuration. For simple devices, 

this corresponds to bringing the device into a single- or double-QD state, preferably in the 

few-electron regime.

1. Topology of single-QD devices—The process of tuning to a single-QD state is 

similar to that of tuning a charge sensor: finding pinch-off levels for all gates defining the 

QD, followed by calibration of barriers, and then sweeping the plunger gate. The Coulomb 

peak oscillations present in the resulting plot correspond to discrete charge transitions 

through the QD, indicating that a single QD has been formed. Depending on the QD device 

type and architecture, tuning to a double-QD state may involve adjusting the plunger gate 

until the single QD separates into two charge islands or tuning the adjacent set of gates to 

a single QD followed by fine-tuning of the crosstalk between the two neighboring QDs. 

At each step, the state of the device is determined based on visual inspection of the data. 

The various possible states manifest themselves as different shapes formed by electron 

transition lines, sets of parallel lines and honeycombs for the single- and double-QD states, 

respectively. Moreover, the orientations of those lines with respect to the measurement 

direction in the gate voltage space allows determination of the actual location of the charge 

island as a left, central, or right single QD.

Both script-based (Lapointe-Major et al., 2020) and ML-enhanced (Czischek et al., 2022) 

automated tuning protocols that combine signal processing and adaptive measurement 

sequences derived from heuristics have been investigated for SiMOS single-QD devices. 

The sequences of measurements implemented in these algorithms are designed to mimic 

a typical manual tuning process, that is, adjusting voltages on gates defining the QD until 

transition lines become visible. The proposed algorithms involve an analysis of a series of 

images, each capturing a small subregion in the voltage space, for a presence of lines. If no 

transitions are detected, both gate voltages are being simultaneously decreased by a fixed 

amount, creating a diagonal series of measurements until either a transition line is detected 

or a consecutive adjustment of voltages would surpass a safety restriction. Once a transition 

line is detected, the charge-tuning stage is initiated, as discussed in Sec. III.D.
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2. Topology of double-QD devices—A first computer-automated approach to tuning 

double-QD devices was proposed by Baart et al. (2016), where a GaAs quadruple-

QD device was used to demonstrate an algorithm combining various image processing 

techniques to bring the device to a double-QD state in a single-electron regime. The 

expected voltage ranges necessary to observe the Coulomb oscillations were determined 

by first fitting a tetragon to the area corresponding to large current in 2D barrier-barrier 

scans and then applying a Gabor filter to identify the center of the specific location where 

Coulomb peaks were formed. The resulting gate voltages serve as a starting point to form 

two independent single QDs. To form a double QD, a heuristic-based formula accounting 

for the capacitive coupling of the gates to the QDs was used to determine the correct scan 

range. Finally, a pattern matching with a reference template containing expected geometry 

of the transition lines crossing was used to confirm that a double-QD regime was reached. 

However, while in principle only prior knowledge of the gate design and the pinch-off value 

of the single gate shared by all QD is necessary to initiate this algorithm, in practice the 

consecutive steps rely on substantial knowledge about the device (such as a voltage required 

for the plunger gate to create a singe QD, a suitable scan range for 2D scans, or the expected 

relative orientation of the transition lines in the crossing template). This makes the proposed 

tuning method not easily adaptable to new and unknown QD devices.

ML as a path toward scalable automation of tuning QD devices was suggested for the first 

time in the context of coarse tuning by Kalantre et al. (2019). In the proposed autotuning 

framework, the laborious tasks of a visual inspection and analysis of 2D measurements by 

a trained expert is replaced by a ML system [specifically a convolutional neural network 

(CNN)] trained to quantify the captured state of the device. The prediction vector returned 

by the CNN classifier (the “state vector”) represents the probability of each possible state 

being present within a given measurement. For the case of a double-QD system this would 

be

p V ℛ = pND, pSDL, pSDC, pSDR, pDD , (2)

where V ℛ denotes the measured scan, ND indicates that no QDs formed, SDL, SDC, and 

SDR denote the left, central, and right single-QD states, respectively, and DD denotes the 

double-QD state.

Once properly trained, the ML classifier is integrated with a classical optimization algorithm 

to control the QD device and navigate the voltage space by minimizing some distance 

function δ ptarget, p Vℛ  between the predicted p Vℛ  and target ptarget state vectors, as shown 

in Fig. 4. This autotuning framework was originally validated off-line using premeasured 

experimental scans capturing a large range of gate voltages (Kalantre et al., 2019) and then 

deployed on-line (i.e., in situ) to tune a double QD in real time (Zwolak et al., 2020b). 

However, while the tests showed a lot of promise, with a success rate of 85.7 % over 14 

different on-line tuning runs of the same device, the experimental implementation required 

device-specific data processing to ensure compatibility with the CNN model trained on 

simplistic noiseless synthetic data. Still, when data were unusually noisy due to instability 

of the charge sensor, the data processing was insufficient, resulting in the CNN returning an 

incorrect state vector and, ultimately, tuning failure.
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To prevent failures due to low data quality, Ziegler et al. (2022b) recently proposed replacing 

the data processing step from the original autotuning framework with a ML-driven data 

quality control (DQC) module. In the revised framework shown in Fig. 4, the DQC acts as 

a “gatekeeper” system to ensure that only reliable data are processed by the state classifier 

[the device state estimation (DSE) module]. The DQC module consists of a CNN classifier 

trained on increasingly noisy simulated data to flag data that might be of insufficient 

quality for reliable state estimation. Data assessed to be of lower quality trigger one of 

two alternative actions: additional data analysis followed by targeted device recalibration 

(for data classified as of moderate quality) or tuning termination (for low quality data). 

Preliminary work in this space has suggested that experimental noise and imperfections 

do not prevent the two-module ML system from operating as intended. While the updated 

system is yet to be tested experimentally, replacing the device-dependent processing with 

quality assessments seems to be a step in the right direction. Still, there are questions that 

remain open in ensuring both repeatability and reliability for ML-driven automation.

An alternative approach to tuning device topology for double QDs in GaAs that also relies 

on ML was proposed by Darulová et al. (2020). They set in place a sequential script-based 

protocol to adjust individual gates (or sets of gates) depending on the outcome of the ML 

module applied to a large 2D scan. The limits of the 2D scan are determined based on the 

voltage ranges (i.e., the pinch-off levels and the “widths” of pinch-off curves) established 

during bootstrapping, as described in Sec. III.A. Once measured, the large 2D scan is 

segmented into small adjacent regions and each is analyzed independently by three binary 

classifiers trained to determine the QD regime (single or double QD) as well as its quality 

(good or bad); see Fig. 5. Depending on the outcome and the tuning goal, a scripted series 

of gate adjustments is then executed. The algorithm stops when at least one segment of the 

charge diagram is classified as the desired QD regime. An overall 80 % success rate for 

tuning to a double-QD state is reported for an in situ test using a set of five double-QD 

devices (from a single fabrication run) over two thermal runs.

3. Setting topology with rays—As mentioned, different configurations of the 

transition lines visible in a scan represent different states of the QD devices. Thus, while 

the qualitative information about the state of the device is fully encoded in the shape and 

orientation of those lines, the majority of the data points in any 2D scan contain background 

noise, which is irrelevant when setting device topology. In fact, it has been shown that the 

CNN model trained to estimate the QD device’s state (the DSE module in Fig. 4) learns 

to “ignore” all of the points measured between transition lines (Ziegler et al., 2022b). One 

way to reduce the number of unnecessary data points collected during measurement is 

to employ the ray-based classification (RBC) framework developed for classifying simple 

high-dimensional geometrical structures (Zwolak et al., 2020a).

Rather than using a full 2D scan capturing a small region of the voltage space, the RBC 

framework relies on a collection of evenly distributed 1D sweeps (called rays) measured 

from a single point xo = (P1, …, PN) in multiple directions in the N-dimensional voltage 

space to assess the relative position of transition lines surrounding xo. Figure 6(a) shows a 

series of 1D charge sensor sweeps for six evenly distributed rays originating from a sample 

point in the double-QD state depicted in Fig. 6(b). The resulting vector of distances to the 
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nearest transition lines encodes qualitative information about the voltage space around xo, 

effectively “fingerprinting” the neighborhood of xo in the voltage space. The state of the 

device near point xo is determined using the point fingerprint and a simple deep neural 

network (DNN) trained using simulated fingerprints data; see Fig. 6(c).

The RBC framework has been tested using simulated data for the case of two and three 

QDs (Zwolak et al., 2020a). It has also been implemented experimentally (both off-line 

and in situ) (Zwolak et al., 2021) and has shown performance on par with the more-data-

demanding CNN-based classification (Zwolak et al., 2020b) while requiring up to 70 % 

fewer measurement points. The off-line tuning success rate of 78.7 % is also comparable 

to that reported for tuning using 2D scans [74.6 %; see Table I given by Zwolak et al. 
(2020b))], even though tuning employing RBC was initiated significantly further from the 

targeted area than tuning based on a 2D scan, with initial points sampled uniformly over 

a region encompassing approximately 18 compared to 9 electron transitions, respectively. 

The RBC framework naturally extends to classifying convex polytopes in higher dimensions 

(Weber et al., 2022) which makes it an appealing measurement-cost-effective solution for 

differentiating between states of multi-QD devices.

The RBC not only reduces the amount of data that need to be collected but also can be 

implemented in an online or active learning setting, where data are acquired sequentially. 

In fact, an extension of the RBC framework to estimate the faces of the convex polytopes 

defined by state transitions was recently been proposed by Krause et al. (2022). They used 

a set of critical features measured in random directions from a fixed point xo in the voltage 

space combined with an algorithm for learning convex polytopes from data with a margin 

(Gottlieb et al., 2021) to approximate a candidate polytope whose faces intersect these 

points. Using an active learning strategy, the polytope estimate is iteratively refined based on 

a consecutive set of ray-based measurements targeting the vertices of the predicted polytope 

until either all faces are correctly located or the computation time runs out. The results for 

the double-QD system show that the algorithm can reliably find the facets of the polytope, 

including small facets with sizes on the order of the measurement precision; see Fig. 7(b).

While the extension of the RBC framework to approximate the enclosing polytope is 

interesting, there are a number of questions about its practical implication that remain open. 

For example, it is not clear what the advantage is of finding all of the facets over simply 

estimating the general class a given polytope belongs to (as originally proposed) for the 

purpose of tuning to a specific charge state. Moreover, assignments of the specific transitions 

to a given face, such as (2, 0) or (2, 1) in Fig. 7(b), rely on the assumption that the exact 

current state of the devices is already known, which in practice is usually not the case when 

one tunes QD devices. Rather, the exact charge state of the QD device is typically calibrated 

once the QD topology is set, as discussed in Sec. III.D.

C. Establishing controllability

Once the device topology is defined, the natural next step would be to finely calibrate 

the device to a specific charge configuration. As mentioned, voltages applied to the finger 

gates shape the overall potential affecting electrons in the 2DEG. Ideally, changing voltages 

on a single gate would affect only a single parameter that the given gate is designed to 
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control (such as the electrochemical potential of a specific QD or the tunnel barrier between 

two adjacent QDs). However, owing to the capacitive crosstalk between the various gate 

electrodes changing the gate voltages defining one QD affects, at least to some degree, the 

potential of all nearby QDs. Thus, with the growing size of QD arrays, the task of setting the 

charge configuration becomes increasingly challenging.

The plunger and barrier gates collectively affect the overall potential profile μ, dot-specific 

single-particle energy detuning (i.e., the energy difference between the two QDs) of 

individual QDs δij, the tunnel couplings between QDs tij, and tunnel rates between the 

outermost QDs and reservoirs Γi. One way to compensate for the capacitive crosstalk 

between gates is to enable orthogonal control of the QDs potential by implementing 

so-called virtual gates. Specifically, linear combinations of gate voltage changes can be 

mapped onto on-site energy differences (Oosterkamp et al., 1998). Virtual gates (the desired 

output of the establishing controllability phase) are linear combinations of multiple-QD gate 

voltages chosen in such a way that only a single electrochemical potential or tunnel barrier is 

addressed (Hensgens, 2018; Hensgens et al., 2017; Perron et al., 2015).

The effect of shifting any given physical gate on the electrochemical potentials of all 

other gates is typically expressed via a matrix of cross-capacitance couplings C. The cross-

capacitance matrix can be established by finding the slopes of transition lines in 2D images 

measured by fixing one of the gates as a reference and then sweeping all of the remaining 

gates (one at a time) against the reference gate. Alternatively, one can use the relative 

magnitude of a shift of steps in 1D traces of the sensing QD conductance due to changing 

nearby QD occupation. At present automation of these routines (finding the numerical 

derivative of a feature response to a variety of gates) does not require advanced ML 

techniques, as it corresponds to relatively straightforward line fitting and/or peak estimation 

measurements. However, Ziegler et al. (2023) recently demonstrated that these data can be 

extracted directly using image recognition combined with traditional fitting.

A visualization of the cross-capacitance matrix for a three-QD device with a one-QD 

sensor is shown in Fig. 8(a). The entries of each row in this matrix show how the 

physical gate voltages affect each virtual gate, with a visible falloff in gating strength with 

distance. Virtual gates Gvirt obtained by inverting the matrix C orthogonalize the voltage gate 

parameter space G and enable control of each gate independently without any concern about 

unwanted influence on the remaining QD energies (Hensgens, 2018):

G = C−1Gvirt, (3)

where G = D0, P1, …, PN, B1, …, BM
T is a vector of physical gates defining qubit and sensor 

QDs and Gvirt is a vector of corresponding virtual gates. Note that some in the literature 

use the opposite convention, but we prefer the simple understanding that the charge space 

configuration is given by the capacitance matrix times the voltage, or Q = CV. Figure 8(b) 

shows a sample double-QD charge stability diagram measured in the virtual gate space. For 

comparison, the same state measured in the physical gates space without correcting the cross 

capacitance is shown in Fig. 8(c).

Zwolak and Taylor Page 16

Rev Mod Phys. Author manuscript; available in PMC 2023 April 11.

N
IS

T
 A

uthor M
anuscript

N
IS

T
 A

uthor M
anuscript

N
IS

T
 A

uthor M
anuscript



By enabling targeted control of specific QDs, virtual gates can be used to fill a QD array 

with electrons into a desired charge configuration. However, in the original proposal the 

virtual gates did not account for the crosstalk on the tunnel barriers, which is necessary for 

fine-tuning QDs to work as qubits. In other words, applying voltage on gate Bij
′  would affect 

not only tij but also nearby tunnel couplings. To correct this limitation, two proposals for 

a redefinition of virtual gates that compensate for the crosstalk on tunnel couplings have 

recently been put forward (Hsiao et al., 2020; Qiao et al., 2020). Both proposed corrections 

rely on the assumption that tij can be approximated as an exponential function of a linear 

combination of the physical gates

tij = t0exp Δij + γij, (4)

where t0 and γij are the fit parameters and Δij is a linear combination of the originally 

proposed virtual gates Pk
′  and Bkl

′ , with

Δij = ∑
k

αk
ijPk

′ + ∑
kl

βkl
ijBkl

′ , (5)

where αk
ij and βkl

ij are derived from experimental data (Hsiao et al., 2020), or

Δij = ∑
k

λijBij
′ , (6)

where λij are established based on a combination of simulations and experimental data 

analysis (Qiao et al., 2020). As mentioned, the parameters used in the fitting likely depend 

substantially upon the topology and number of electrons in a given QD and QD array, and 

thus are reliable only as part of the fine-tuning process. Hsiao et al. (2020) redefined virtual 

gates using ratios of the αk
ij and βkl

ij coefficients from Eq. (5). Similarly, Qiao et al. (2020) 

found the required virtual barrier-gate voltages necessary to achieve the targeted exchange 

coupling values by inverting Eq. (4). The resulting virtual barrier gates enable orthogonal 

control of the tunnel couplings over a wide range of tunnel coupling values, as shown for 

quadruple QDs by both Hsiao et al. (2020) and Qiao et al. (2020).

An alternative approach to correcting for the nonlinear and nonlocal dependence of 

exchange couplings on the barrier-gate voltages was also proposed and demonstrated by 

Qiao et al. (2020). The model developed to define the virtual gates relies on the Heitler-

London (HL) expression for exchange coupling between two spins (de Sousa et al., 2001). 

However, solving nonlinear equations defining the HL-based model numerically can result 

in errors errors. Moreover, this model requires a priori knowledge of the QD confinement 

potential, which makes it less desirable for practical applications.

The utility of virtual gates has been demonstrated in a number of multi-QD experiments, 

from showing controlled filling of an array of eight QDs using the “n+1 method” (Volk et 
al., 2019) and tunable coupling between single electrons in a SiMOS (Eenink et al., 2019) to 

demonstrating shuttling of a single charge through a nine-QDs charge stability space (Mills 

et al., 2019b) and transferring single-spin eigenstates and entangled states via coherent 

SWAP gates between neighboring pairs of spins in a four-qubit array (Kandel et al., 2019). 
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Adding the orthogonal control over tunnel couplings enabled a Heinseberg spin chain to be 

generated and two-, three-, and four-spin exchange oscillation to be demonstrated (Qiao et 
al., 2020).

More recently, Ziegler et al. (2023) proposed an algorithm that leveraged a ML-based pixel 

classifier (Lin et al., 2016) and simple linear regression to determine virtual plunger gates 

from a small 2D measurement. The pixel classifier implemented in the algorithm was trained 

on simulated data to flag every pixel in an image as a no, left, central, or right transition 

(NT, LT, CT, or RT, respectively) or a polarization line (PL). The resulting clusters of pixels 

are then fit to a linear model independently for each cluster, as shown in Fig. 9. If multiple 

transitions are present within a single class, the slopes are combined by an average weighted 

using the standard deviations of the fits. The LT and RT classes yield the off-diagonal terms 

of the capacitive coupling matrix. The virtualization algorithm has been implemented in the 

loading module of the physics-informed tuning algorithm for charge tuning (Ziegler et al., 
2022a). Its utility has been validated using both simulated and large experimentally acquired 

2D scans. This method has the added benefit that the fits also give confidence intervals, 

which in turn allows for automated detection of undesired behaviors such as the formation of 

spurious QDs. However, at present it does not allow virtualization of the barrier gates.

D. Charge tuning

The coarse-tuning algorithms discussed in Sec. III.B terminate once a targeted state (such as 

single- or double-QD state) is reached. However, the particular charge configuration of the 

system remains unknown at that point. At the same time, various QD qubit realizations 

[hybrid qubits (Shi et al., 2012), resonant exchange qubits (Medford et al., 2013), or 

quadrupolar exchange-only qubits (Russ et al., 2018)] require a specific number of electrons.

Depending on the QD qubit type, the required number of electrons is typically one to 

three per site. The goal of the charge-tuning phase is to set the devices into a specific 

charge configuration. The charge sensor measurement does not provide the exact number 

of charges sensed, but rather the overall direction of change. The process of determining 

the charge configuration of a QD device (at least for the single- and double-QD cases) 

typically involves counting of the transition lines while the QDs are emptied of all electrons, 

one at a time. To date all proposals for automating the charge tuning have the same 

underlying strategy, which comprises two phases: (i) emptying the QDs of all electrons 

and (ii) reloading the desired number of electrons on each QD.

The two algorithms proposed for single-QD devices discussed in Sec. III.B implement 

this exact strategy. Starting at the transition detected either via image processing (Lapointe-

Major et al., 2020) or using ML-driven methods (Czischek et al., 2022), gate voltages are 

adjusted to move toward neighboring lines until no more transitions can be found. At that 

point (the so-called reference point), the QD is considered emptied and a reloading phase 

begins. The latter involves adjusting gate voltages in the opposite direction until the first 

transition line is detected, at which point the device is declared to be in a single-electron 

regime, as depicted in Fig. 10(a). The ML-driven algorithm has a high success rate of 

about 98 % for emptying the single-QD device. However, the reported 53 % success rate 

for reloading a single electron back on the QD is rather low, which was attributed to 
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interruptions in transition lines caused by the experimental measuring procedure. To mitigate 

the risk of the shifting algorithm hitting a gap in the transition lines, Czischek et al. (2022) 

proposed using arrays of K by K adjacent patches, as shown in Fig. 10(a), and showed that 

the success rate, which seemed to strongly depend on the array size, peaks for K = 4 at 75 

%.

For double-QD devices, the process of counting lines is more complicated, as it is necessary 

to keep track of not only the total number of electrons but also which QD a given electron 

belongs to. The first automation proposal for tuning double-QD devices to a single-electron 

regime was put forward by Baart et al. (2016). Starting at the most bottom-left crossing 

detected via the pattern matching algorithm described in Sec. III.B, the single-electron 

regime is found by verifying that no other prominent charge transition lines are observed 

when gate voltages are made more negative, as shown in Fig. 10(b). At that point, the 

algorithm sets both plunger voltages slightly above where the most bottom-left crossing was 

matched to enter the single-electron regime.

An alternative, ML-driven approach to charge-state tuning, demonstrated using a GaAs 

triple-QD device operated in the double-DQ mode, was proposed by Durrer et al. (2020). 

Their starting point for the charge-tuning algorithm was a well-defined double-QD state with 

an unknown charge state (ni, mi), where ni and mi denote the unknown initial numbers of 

charges on each QD, which is precisely the end point of the coarse-tuning phase discussed 

in Sec. III.B. Then, a two-stage algorithm for tuning the double-QD device to a preselected 

charge configuration (n, m) following the unloading–reloading strategy is initiated. Both 

stages involve a series of measurements in the space of the plunger gates, with each 

followed by a CNN analysis of the measured scan and appropriate voltage adjustments 

rooted in heuristics. The measurement analysis is carried out by two specialized CNNs, each 

pretrained using about 105 images sampled from large, experimentally measured stability 

diagrams that are manually labeled with the position and orientation of the charge transition 

lines, with additional charge stability diagrams obtained by applying multiple augmentations 

to the experimental scans.

For the first (unloading) phase, a small (20 × 20 pixel), low-resolution scan (ranging from 

6 to 9 mV per pixel, depending upon the scan, but fixed in pixel resolution) is analyzed 

by a binary CNN classifier for the presence of transition lines. The size of the scans is 

chosen to ensure that even within the voltage range with the largest line spacing between 

consecutive transitions two transition lines can be captured. The algorithm follows a fixed 

path, decreasing both plunger gate voltages whenever at least one line is detected. Once a 

“no lines” class is identified, the depleting step terminates and a (0, 0) reference point charge 

state is assumed. At this point the second (reloading) phase, aimed at loading electrons back 

to achieve the desired charge state, is automatically initiated.

The second algorithm also follows a predefined, although admittedly more nuanced, path. In 

particular, as long as both QDs need more electrons, both plunger gate voltages are increased 

by a fixed amount. Once at least one of the QDs reaches the desired number of electrons, 

the direction of consecutive steps depends on which of the QDs needs to be loaded (resulting 

in an increase of the voltage only on the relevant plunger gate) and whether any undesirable 
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transition lines are encountered for a QD that was previously tuned (resulting in a decrease 

of the voltage on the appropriate plunger gate). Two paths for the reloading phase are shown 

in Fig. 10(c), where the device is tuned to a (2, 1) charge state. A separate CNN trained to 

recognize the presence and orientation of the detected transition lines from small (28 × 28 

pixel) high-resolution scans (1 mV per pixel) is used in this phase; this higher resolution is 

used to get a slope, as we no longer need to see multiple charge transitions. This time the 

size of scans is chosen to assure that at most one transition line can be captured.

This charge-tuning algorithm has been validated experimentally using two double-QD 

systems within the same triple-QD device in GaAs. With the targeted state chosen randomly 

from a set of four possible configurations, an overall tuning success rate of 56.9 % has been 

reported for on-line tuning, with individual success rates for the unloading and reloading 

phases being 90 % and 63 %, respectively. The majority of errors for the second phase 

stemmed from the low signal-to-noise ratio resulting in the CNN missing transition lines 

present in the data and ending up with the addition of too many electrons. The unloading-

reloading strategy has also been implemented by Ziegler et al. (2022a). However, rather than 

using 2D scans, the charge-tuning algorithm [called physics-informed tuning (PIT)] takes 

advantage of the ray-based measurements (Zwolak et al., 2020a) combined with virtual gates 

(Hensgens, 2018; Hensgens et al., 2017) to navigate the voltage space. The success rate for 

charge setting with PIT when testing with simulated data is 95.5(5.4) % and 89.7(17.4) % 

(median 97.5 %) for offline experimental tests. This high performance is demonstrated on 

data from samples fabricated in both an academic clean room as well as on an industrial 300 

mm process line, further underlining the device agnosticism of PIT. This work presents an 

important step toward autonomous QD calibration by enabling the automated transition to 

fine-tuning discussed in Sec. III.E.

E. Fine-tuning

Once the QD system is in the desired configuration (in terms of both topology and charge), 

there remains a significant additional step before the system can be used as a collection of 

quantum bits. These efforts entail fine-tuning of the parameters to enable the system to be 

treated in an abstract manner. There are two main aspects to fine-tuning. One is ensuring 

that the system is behaving close to the qubit regime. The other is ensuring that qubit 

performance and controllability can be achieved. As discussed, we do not cover anything 

in the latter category, as it remains nascent in the quantum dot community, but note that 

other works in superconducting qubits are largely applicable to many of these tasks (Kelly 

et al., 2018; Klimov et al., 2020). For this work fine-tuning begins the process of mapping 

experimental analog parameters to those of qubits, and thus represents a transition in which 

information is revealed or gained by experiments.

One critical challenge for ensuring qubit behavior is making certain that charge transitions 

occur only when desired. For example, during the manipulation of electron spins as quantum 

bits, tunneling of an electron into a nearby Fermi sea would destroy coherence and would 

be considered a “leakage” error, in which case the qubit itself has been lost (Elzerman et 
al., 2004b). More generally, controlled electron tunneling to a nearby Fermi sea forms a 

critical piece of the quantum control approach for resetting, and in some cases measuring, 
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the qubits built from the electrons. In single-spin readout, a common approach put forward 

by Elzerman et al. (2004b) relies upon a good understanding of the spin-dependent tunneling 

of electrons into the Fermi sea. Alternatively, in singlet-triplet qubits, ejection of electrons 

followed by a refill is used to prepare initial electron singlet states. Thus, reservoir coupling 

is important to calibrate and tune, but its importance also depends upon the approach to 

qubit realization. This becomes nontrivial when the additional requirement of being able to 

also reset or refill the QD from such reservoirs is imposed, as occurs in a variety of qubit 

preparation and readout schemes.

Several groups have investigated the means of automated estimation of tunneling to leads, 

including via the estimation of gate-dependent cotunneling rates and by observation of 

charge loss and reset dynamics (Botzem et al., 2018). These approaches take advantage of 

charge-based measurements, such as that provided by a nearby QD or quantum point contact 

in use as a charge sensor. However, rather than working (effectively) in a low frequency or 

dc domain, they use time dynamics. Analogous to estimating the time constant of an RC 
filter or the ringdown of a mechanical resonator, observation and fitting of such curves add 

additional depth to the challenge. This depth could be addressed in an automated manner via 

ML techniques for processing time-domain signals but so far remains untreated.

Another challenge arises when the topology and charge number is correct but the tunneling 

rates to leads cannot get to the regime of interest, which may arise from pinch-off of a 

barrier. In that setting, returning to the coarse-tuning mode with a new starting point may 

enable one to find a different regime of parameter space that does not have such problems. 

However, no generic restart method has yet been proposed or implemented in experiments.

Finally, additional errors can occur in certain materials, such as silicon and SiGe QDs. In 

those devices, in addition to the spin and orbital physics of the QDs, there is also a valley 

degeneracy that plays the role of a pseudospin. This degeneracy is typically lifted due to 

various interface effects or disorder in a QD device. In practice, many groups work to 

ensure that QDs have valley splitting well in excess of the temperature and of the Larmor 

precession period of the spin degrees of freedom, such that it effectively can be neglected. 

However, for automated tuning, valley splitting must be estimated, perhaps using tunneling 

spectroscopy (Dodson et al., 2022; Elzerman et al., 2004a; Shi et al., 2012; Zajac et al., 
2016). While this in itself is easy to automate, the techniques necessary to move into a 

regime of the desired valley splitting while maintaining topology, electron number, and 

controllability has yet to be automated and may face unexpected challenges, not the least of 

which is that the device may not have access to the desired valley splitting at all.

The previously mentioned techniques are designed to ensure that the QD system has an 

appropriate means of resetting spins and does not “leak out” of the desired physical 

subspace, typically that of spin-1/2 electrons or combinations of spin-1/2 electrons. 

However, operation on the spins or qubits (for composite spin systems) still requires 

substantial calibration. One key parameter is the tunneling energy between two adjacent 

QDs, which determines the exchange interaction and forms the core of two-qubit gates and, 

for multielectron qubits, single-qubit gates as well. This parameter can be estimated via 

more traditional gate voltage sweeps and by more complex time-domain investigations. It 
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does lead to a challenge for automated tuning, as the rate is often exponentially sensitive 

to applied voltages. Moreover, owing to the finite screening of nearby gate voltages, the 

tunneling energy has substantial interdependencies with other gates.

In one of the first works addressing automated control and adjustment of tunneling rates, 

a script-based method was developed that leveraged the virtual gate concept (van Diepen 

et al., 2018). In that effort, two different means of extracting the tunnel coupling were 

considered, both with low-frequency measurements (width of the charge transition) and 

with high-frequency measurements (photon-assisted tunneling). The benefit of the latter 

technique is the ability to measure beyond the thermal limit of linewidth, a necessity for 

estimating small parameters even in a dilution refrigerator setting.

The use of virtual gates described in Sec. III.B can help with isolating control of the 

tunneling rate (Hsiao et al., 2020; Qiao et al., 2020). The schematic in Fig. 11(b) depicts 

the effect of changes in the virtual gates (linear combinations of voltages applied to physical 

gates) on the potential landscape of the quadruple QD shown in Fig. 11(a). Changing voltage 

on virtual gate B23
′′  affects the targeted interdot tunnel coupling, as indicated by the red 

dashed line.

A different approach for handling parameter estimation is to use template matching. In this 

approach, particular shapes and characteristics of data traces are assumed, and optimization 

occurs via fitting real data to a set of templates and extracting effective model parameters 

through this mechanism (Mills et al., 2019a). A related set of techniques has also been 

leveraged to estimate, and tune, parameters in tunneling that lead to so-called bias triangles, 

using autoencoders to reduce the effective information coming from the experimental system 

to a significantly smaller feature space (van Esbroeck et al., 2020). A key open question 

in fine-tuning remains in determining how much actual experimental information should be 

extracted at each step. Experimental images are expensive (in time) to take, and thus reduced 

data acquisition is desired where possible. The success of autoencoders suggests that there 

is a latent data space that would require substantially fewer experimental data points to 

populate.

As the tunneling rate becomes set, additional spin parameters must then be extracted, and in 

some cases tuned. These include both the Zeeman splitting (Larmor precession frequency) 

and, where appropriate, estimates of the magnetic field gradient seen in each QD. In some 

sense, the goal of the physics-domain fine-tuning is often to populate parameters in an 

effective model of the QD system. We note that the capacitive model used for virtual gates 

already provides a good starting point for this model.

Other, more phenomenological models such as the charge transition width (a proxy for 

tunnel coupling) and lead tunnel rates can be fit using data. If these estimates and their 

derivatives can be tracked, it becomes relatively straightforward to search parameter space 

efficiently. However, tracking derivatives using finite differences becomes expensive in 

terms of data acquisition. Teske et al. (2019) removed this complexity by use of a Kalman 

filter to enable effective characterization of the gradients, thereby enabling tuning in an 

efficient (in time and memory) control system.
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Thus far measurement methods have generally yielded relatively direct information 

regarding issues such as changes in charge as a gate voltage is moved. However, 

future work must address the transition from a physics model description, such as the 

Hubbard model, and quantum gate performance. This effort need not rely directly upon 

experimental systems, as modeling of the system from a physics perspective is relatively 

straightforward given the observed connection between actual gate voltages and model 

parameters. For example, ML subsystems trained on simulation data were able to work 

with little degradation of performance, including typical sources of experimental noise 

(Ziegler et al., 2022b). However, hysteresis (for instance due to charge locking) remains a 

potentially challenging example of real experimental imperfections that require one to move 

to an online learning format. A general solution of finding good quantum gates given this 

connection remains to be investigated.

IV. OUTLOOK: SOLVING THE METAPROBLEMS AND PATHS FORWARD

Thus far we have considered the scenario in which the number of QDs and the number of 

gates to be manipulated, as well as the number of readout systems, are kept relatively small. 

The path to scaling up spin qubit systems through these automated approaches remains 

open but is also opaque. Thus, we now consider several metaproblems that will require 

substantial effort before scale-up can be achieved. For simplicity, we focus on the four most 

pressing today: benchmarks and standards for assessing tuning success and performance, 

improving qubit yield and homogeneity, adding additional QDs to a tuned system in an 

efficient manner (scale-up), and moving key aspects of the ML systems closer to the QDs 

themselves (reducing fan-out).

A. Benchmarks and standards

A simple but crucial component of success for the field will be to solidify key metrics of 

performance and key datasets that can be used to assess those metrics. This standardization 

work will take time and community engagement based upon experience from other ML 

disciplines. However, once standardization is in place, more algorithmic exploration and 

improvement can be achieved. In this Colloquium a few simple metrics have been suggested. 

One is state identification accuracy (the probability of a classifier identifying the right 

topology); another is tuning success (the probability of an optimizer getting to the right 

region of parameter space). There are many more such metrics, and associated datasets, that 

will be necessary to leverage ML algorithms most effectively.

To date a reasonable fraction of training and assessment has been done using simulated 

device data [see National Institute of Standards and Technology (2021)], which has the 

benefit of being prelabeled and being inexpensive to generate. However, these simulation 

tools are not equipped to cover all aspects of tune-up and do not capture many realistic 

experimental imperfections. A more ideal approach would be to combine synthetic and 

experimental datasets for each key task outlined in the tune-up process with associated 

performance metrics and human performance assessments to enable the field to make 

substantive progress.
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B. Improving qubit homogeneity

To achieve scaling of QD systems we anticipate that improvements will be necessary in both 

automated tuning and the yield and homogeneity of QD systems themselves. As an initial 

target, we consider the effective combined yield (tuning and fabrication) to realize a surface 

code patch of 5 × 5, corresponding to 49 qubits. This suggests that 98 % yield is a likely 

starting point for scaling, and is consistent with today’s superconducting array processors, 

which at 50–100 qubits typically have one to two that are not fully operational. Achieving 

this starting point remains a substantial challenge in the field, although recent work at Delft 

University of Technology reached 16 QDs with appreciable yield (Borsoi et al., 2022).

A path toward automated lithographic quality assessments of QD devices has also recently 

been put forward. The proposed control systems rely on automated probing at room 

temperature (Zwerver et al., 2022) or use CNNs applied to scanning electron microscope 

(SEM) micrographs collected in-line to assess the device usability based on detection of 

certain fabrication defects (such as particle contamination and proper exposure) (Mei et al., 
2021). However, while these are important steps toward streamlining QD device fabrication 

quality control, there are a number of imperfections that still need to be accounted for. 

These include variations in a single-QD device over time, between cooldowns, and between 

changes in the control systems and other aspects of the integrated experimental system. This 

naturally fits into an online learning model, in which the running experiment is continually 

changing. At the same time, the practical capabilities that subsystems that are pretrained 

provide may need adaptation or replacement once these concerns are integrated.

As standardization and qubit fabrication improve, we anticipate that reliably tuning up a 

large number of devices to the desired topology and electron number may become fully 

automated. However, this does not yield qubits by itself. Specifically, additional work is 

necessary to bring the gap between qubit tuning techniques used in quantum computing 

(randomized benchmarking, gate set tomography, etc.) and the physical implementation of 

key quantum operations that rely upon the results of fine-tuning. These include initialization 

of the qubit state, readout of the qubit state, understanding and characterizing leakage from 

logical states to other states of the system, and understanding and calibrating logical gate 

operations. This is an area ripe for future exploration.

C. Scaling: Inductive and in situ

On the scale-up problem, we have already seen that moving from physical gates to virtual 

gates is a significant benefit for controllability and fine-tuning. Consider now a 1D array of 

gates on a nominal nanowire that could be used to form N QDs in series, with a nearby set of 

charge sensors. What approach can we use to “add” an additional QD to the array if we have 

already tuned up the first k QDs and developed their virtual gate representation? Put simply, 

we can attempt to add the next QD holding the k-QD system solved and “resolving” the kth 

QD in conjunction with the next QD in the line, thus mapping the system to a double-QD 

tuning problem, but now starting with virtual gates for the kth QD such that crosstalk to the 

k − 1 QDs is close to zero. A preliminary example of this inductive approach, albeit without 

automation, was given by Volk et al. (2019).
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A different approach would instead be to tune each pair of QDs (1 and 2, 2 and 3, etc.) while 

leveraging virtual gates from all the prior solutions. One can then hope that the full solution 

is close to the tuned system. Many QD experiments with large arrays have used variations of 

this in situ approach to refine the range of acceptable parameters for searching for QDs. One 

advantage of this approach is the ability to keep both the left and right QDs in contact with 

the Fermi sea, making charge trapping and other hysteretic effects negligible.

In both cases, the assumed 1D nature of the physical layout provides substantial 

simplifications. More complicated is the loading of a 2D array of QDs, although both 

approaches may also find success in that setting. We do not anticipate that a fully 

computerized system is yet available that can explore this space efficiently. Specifically, 

handling both the challenges of charge latching (metastable states) previously described for 

1D systems and the difficulties of assessing sensing knowledge from a number of sensors 

that grows only as the boundary (and gets further from the actual QDs) remains an open 

problem. Furthermore, the actual state space is growing exponentially, but the space of 

interest is much narrower. Teaching ML systems to find and stay within this narrow regime 

is an open problem. Thus, the path forward today remains adapting practice in the lab to ML 

systems for solving key subproblems first, then looking at generalizations.

In most of this Colloquium, we have focused on relatively stable devices that are generally 

“well behaved,” that is, that work within the expectations of the trained systems described 

here. However, real-world systems and devices have a variety of imperfections that will 

need to be considered as systems move toward scaling up and integration. Two specific 

examples of concern are handling spurious QDs (regions of parameter space in which the 

topology changes due to a defect or impurity that acts as an additional charge trap) and 

handling latching (metastable states) and related hysteresis effects. Latching occurs when the 

lowest energy charge configuration cannot be reached as the electrons necessary to reach 

that configuration cannot get to the right region of the device.

Thus, in addition to finding a path to scaling up, we suggest that additional efforts also 

consider the use of techniques common in the online learning setting to handle unexpected 

behaviors. For example, reinforcement learning techniques can be used for optimization 

in the hysteretic setting associated with charge latching, as the optimizer has a sense of 

the history of the measurement (much like navigating a maze), rather than just the current 

state of the system. Similarly, online learning approaches can provide sandboxing or related 

techniques to identify and then stay away from regions with undesired behavior (be it too 

noisy, too weak for measurement, or due to spurious QDs). Preliminary work on this is 

ongoing (Ziegler et al., 2023, 2022b).

D. Toward “on-chip” implementations

Finally, with the noisy intermediate-scale quantum technology era on the horizon (Preskill, 

2018), it is timely to consider the practical aspect of implementing autonomous control. 

Present-day devices in which quantum bits are stored and processed require classical 

electronics to measure and control the qubits, as well as conventional computer software 

to control and program these electronics. Since each qubit must be controlled and measured 

separately, it is necessary for the classical control system to scale along with the number of 
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qubits, which at present represents a substantial engineering challenge (Geck et al., 2020; 

Vandersypen et al., 2017), particularly as systems scale into the thousands or millions of 

qubits regime.

While a complete, “in fridge” solution may be of interest, we note that a variety of 

key subtasks may be the only ones necessary to achieve high-throughput tune-up and 

calibration of systems in practice at this scale. Techniques such as ray-based learning can 

currently reduce dataflow requirements and thus improve performance (Chatterjee et al., 
2022; Zwolak et al., 2020a). Other simple recognition tasks in measurement systems may 

be a natural next point for improvement, in which real-time filtering and processing can be 

handled close to the QDs, potentially enabling more rapid calibration, particularly in the 

fine-tuning stage.

Placing the qubit control and analysis electronics in the immediate vicinity of the qubits 

in the cryostat either on the same chip or through chip-to-chip interconnection technology 

poses serious constraints in terms of sizing and energy requirements. Thus, computational 

requirements and power consumption should also be considered when one designs the 

autotuning system, enabling miniaturization of the control elements on low-power hardware, 

which is a significant step toward on-chip autotuning. This issue has recently been discussed 

in the context of identification of charge-state transition lines in 2D stability diagrams, 

which is an important component in many autotuning proposals (Czischek et al., 2022; 

Zwolak et al., 2021).

Czischek et al. (2022) recently showed that an extremely small feed-forward neural network 

(FFNN) with just a single hidden layer can be trained to detect charge-state transitions in 

single-QD stability diagrams. Using a dataset of 800 synthetic stability diagrams (Genest, 

2020), they trained a binary classifier with only ten hidden neurons to differentiate between 

the small patches with and without transition lines and reported a testing accuracy of 96 

% on patches sampled from experimental data. The FFNN classifier lies at the core of a 

“shifting algorithm” Czischek et al. (2022) proposed for tuning single-QD devices to the 

single-electron regime; see Sec. III.B and III.D.

An alternative approach to miniaturizing ML models was proposed by Zwolak et al. (2021). 

Here, by replacing the traditional 2D scans and a CNN-based classifier with a series of 1D 

rays and encoding the state of the device via fingerprints (see Sec. III.B), the total number 

of parameters defining the ML model used for state assessment was reduced by 2 orders of 

magnitude compared to a CNN model (1.2 × 104 versus 2.2 × 106 parameters); see Zwolak 

et al. (2020b)). While this number is still fairly high, it has been noted that the size and 

complexity of the DNN can be further reduced by at least an order of magnitude (Zwolak 

et al., 2020a). The RBC does not require any significant data processing, which further 

improves the computational efficiency of this approach and makes it an appealing candidate 

for the on-chip implementation on miniaturized hardware with low power consumption 

(Sebastian et al., 2020).
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V. CONCLUSIONS

With these provisos in mind, we note that there is an expansive set of tools that are 

being explored and leveraged to make QD systems substantially easier to operate and more 

reliable in their execution. The efforts described here are primarily targeted at the initial 

elements of tune-up, rather than those of fine-tuning for qubit operation. Substantial efforts 

in superconducting and ion-based quantum computing systems have already led to the 

development of robust methods for such fine-tuning (Arute et al., 2020; Gerster et al., 2022; 

Majumder et al., 2020; Maksymov et al., 2021). In addition, a key databased approach, 

the use of directed acyclic graphs, can be a natural extension of the existing script-based 

methods used for the tuning described in this Colloquium (Kelly et al., 2018). However, 

this has not yet been integrated into workflows in today’s QD experiments, in part due to 

the software development and engineering requirements to fully take advantage of these 

advances.

Some portion of the failures observed in autotuning are attributable to the initial 

starting point for tuning, and thus a relevant but underexplored parameter is the success 

probability given a “repeat-until-success” tuning approach, which has not yet been studied 

in experimental systems. However, even with these improvements, we anticipate that 

substantially better accuracy will be required to tune large QD systems in a fully automated 

fashion.

Whether materials science and fabrication can reduce the need for this automation remains 

a question of both science and engineering. Practically speaking, the critical question will 

be one of the cost, in time and effort, to leverage ML for key tasks when compared to 

less complex methods. We suspect that automated systems of this nature will be of critical 

importance for enabling evermore-complex experiments for the foreseeable future.
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FIG. 1. 
Left image: electron micrograph of a gate-defined triple-QD array in GaAs. The bottom 

three dashed circles indicate the qubit QD array, while the single dashed circle with an arrow 

indicates the sensing QD channel. Right panel: the goal of tuning QD devices, which is 

setting a desired Hamiltonian through the efficient control of voltages applied to all gates 

to enable fine control of QD qubits. The final form maps to variants of the Hubbard model, 

where the parameters of detuning, charge interaction, and tunneling are all controlled by 

gate voltages. Adapted from Hensgens et al. (2017).

Zwolak and Taylor Page 34

Rev Mod Phys. Author manuscript; available in PMC 2023 April 11.

N
IS

T
 A

uthor M
anuscript

N
IS

T
 A

uthor M
anuscript

N
IS

T
 A

uthor M
anuscript



FIG. 2. 
False-color SEM of a Si/SiGe quadruple-QD device. This gate architecture is used as an 

example when we discuss the autotuning process. All gates and voltage sources are labeled 

with standard names: screening (S), reservoir (R), plunger (P), barrier (B), and Ohmic 

contact (O). The upper channel of this device with two QDs and a central Ohmic contact 

enables each to be used as a charge sensor for the lower channel QDs. Adapted from 

McJunkin (2021).
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FIG. 3. 
Autotuning flow. (a) Sample plots used in the bootstrapping phase described in Sec. III.A; 

see Fig. 2 for a SEM of a device showing the gate nomenclature. (i) Pinch-off measurement 

of the QD current Oi, where i = 2, 4 (left panel) and the numerical derivative of the 

measurement (right panel) for the central screening gate S2 used to divide the 2DEG into 

two half planes. Current through both the qubit and sensor side of the QD system is 

measured as the gate is swept to negative voltages. (ii) Example of a triangle plot of the 

qubit QD channel. The large rectangular regions to the right and at the top represent current 

flow underneath two screening gates. (iii) A series of pinch-off curves for finger gates 

showing Coulomb blockade oscillations. (iv) The so-called wall-wall plot in the space of the 

two barriers defining the sensor. From McJunkin (2021). (b) Visualization of a state tuning 

run in the space of two plunger gates, with the arrows and the color intensity indicating the 

progress of the autotuner. From Zwolak et al. (2020b). (c) Sketch of a possible path (red 

line) connecting the (0, 0) and the (3, 2) charge state. From Durrer et al. (2020). (d) Top 

panel: charge stability diagram in the space of virtual gates with a red dotted line indicating 

the interdot detuning axis. Bottom panel: excess charge extracted from a fit to the sensing 

QD signal as a function of detuning along the dotted line for three different t23. From Hsiao 

et al. (2020).
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FIG. 4. 
Visualization of the coarse-tuning loop. The data processing step introduced by Zwolak et al. 
(2020b) is replaced by the data quality control module (DQC; step 2). The DQC is followed 

by state assessment and optimization for a high-quality scan; additional data analysis and 

targeted device recalibration for a moderate-quality scan; or the autotuning loop termination 

for a low-quality class. Adapted from Zwolak et al. (2020b) and Ziegler et al. (2022b).
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FIG. 5. 
(a) Gate arrangement of the device in GaAs used to test the tuning proposal. (b) Sample 

charge stability diagram characterized as a good double-QD regime. The ranges to measure 

the 2D scan are determined based on the individual gate characterization. The resulting 

scan is segmented into 0.05V × 0.05V regions, which are then classified by three binary 

classifiers to asses the type and quality of the QD regime. Adapted from Darulová et al. 
(2020).
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FIG. 6. 
(a) Processed charge sensor (CS) signal for six evenly distributed rays originating from a 

fixed point xo in a double-QD state. In each scan, the position of a transition line nearest 

to point xo (that is, the “critical feature” along a given ray) is marked with a dot. (b) 

Distribution of rays overlaying a 2D measured scan. (c) Visualization of the ray-based 

finger-printing framework. A vector of critical features is processed to produce a “point 

fingerprint”ℱxo. This is then analyzed using a DNN classifier, resulting in a predicted state 

vector p xo  quantifying the current state of the device at the point xo. Adapted from Zwolak 

et al. (2021).
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FIG. 7. 
(a) A micrograph (top image) and a schematic (bottom image) of a foundry-fabricated 

silicon QD device used to test the algorithm for polytope estimation. The two red dots 

indicate gates used to form the qubit QDs, and the black dot represents the sensor QD. From 

Ansaloni et al. (2020). (b) Two-dimensional map of the sensor signal as a function of the 

control voltages V1 and V2 illustrating the convex polytope of the device shown in (a), with 

yellow pixels indicating the (1, 1) state. The algorithm proposed estimates state transitions 

to other states (red lines) based on a number of point pairs (x+, x−) (blue and orange dots) 

obtained via ray-based measurements. From Krause et al. (2022).
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FIG. 8. 
(a) Visualization of the cross-capacitance matrix for a device shown in Fig. 1. The entries of 

each row show how the virtual plunger value (and hence the electrochemical potential) of a 

QD is influenced by other gate voltages. The rows for virtual barrier gates are omitted for 

simplicity. Gates defining the sensing QD (P1
s, B1

s, and B2
s) are also included. Adapted from 

Hensgens (2018). (b) Charge stability diagram of a double QD in the single-electron regime 

recorded as a function of the virtual plungers P2
′ and P3

′. (c) Charge stability diagram of the 

same double QD in the physical gates space: the gradient of the charge sensor response (in 

arbitrary units) as a function of the plunger gate voltages P2 and P3. From Volk et al. (2019).
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FIG. 9. 
(a) Sample raw measurement data (b) Outcome of the ML-based pixel classifier for a 

sample 2D scan capturing a double-QD region. The data were acquired using a Si/SixGe1−x 

quadruple-QD device identical to the one shown in Fig. 2. The pixels in the original 2D scan 

are classified as no, left, central, or right transition (NT, LT, CT, or RT, respectively) or a 

polarization line (PL). From Ziegler et al. (2023).
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FIG. 10. 
(a) Visualization of the patch shifting algorithm on two stability diagrams. The red grid 

indicates the starting points (see also Sec.III.B), the shifting path toward the empty reference 

point is shown in gray, and green denotes the shifting path toward the single-electron 

regime, with the green cross indicating the final position. After detecting the transition line 

from the empty reference point, a jump to the lower right is performed to ensure that one 

ends up in the single-electron regime. From Czischek et al. (2022). (b) Sample double-QD 

charge stability diagram showing three good matches to the reference crossings of a charge 

transition lines template (inset), which are marked with purple circles. The occupancy of 

each QD is denoted by (n, m) and indicates the number of electrons in the left and right 

QDs, respectively. The single-electron regime is found by verifying that no other charge 

transition lines are observed for more negative gate voltages with respect to the most 

bottom-left detected cross (green regions). From Baart et al. (2016). (c) Visualization of two 

successful runs of the ML-driven autotuner for tuning from a (0, 0) to a (2, 1) state. The 

boxes in black denote the patches used to determine the position of a next scan. From Durrer 

et al. (2020).
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FIG. 11. 
(a) Electron micrograph of a quadruple-QD array in GaAs. (b) Schematics illustrating the 

influence of changes in virtual gates on the potential landscape of a quadruple QD. The 

gray area denotes the original landscape, the blue dashed line indicates the landscape when 

virtual gates are defined as proposed by Hensgens (2018), and the red dashed line indicates 

the landscape when virtual gates also compensate for the crosstalk on tunnel couplings. As 

can be seen, although B23
′  keeps the QD potentials fixed while controlling the interdot tunnel 

coupling t23, it also influences t12 and t34. In contrast, B23
′′  does not affect the other two 

interdot tunnel couplings. From Hsiao et al. (2020).
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