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Abstract
Type 2 diabetes mellitus (T2DM) agent sodium-glucose co-transporter 2 (SGLT2) 
inhibitors show special benefits in reducing body weight and heart failure risks. 
To accelerate clinical development for novel SGLT2 inhibitors, a quantitative re-
lationship among pharmacokinetics, pharmacodynamics, and disease end points 
(PK/PD/end points) in healthy subjects and patients with T2DM was developed. 
PK/PD/end point data in published clinical studies for three globally marketed 
SGLT2 inhibitors (dapagliflozin, canagliflozin, and empagliflozin) were collected 
according to pre-set criteria. Overall, 80 papers with 880 PK, 27 PD, 848 fasting 
plasma glucose (FPG), and 1219 hemoglobin A1c (HbA1c) data were collected. 
A two-compartmental model with Hill's equation was utilized to capture PK/
PD profiles. A novel translational biomarker, the change of urine glucose excre-
tion (UGE) from baseline normalized by FPG (ΔUGEc) was identified to bridge 
healthy subjects and patients with T2DM with different disease statuses. ΔUGEc 
was found to have a similar maximum increase with different half-maximal effec-
tive concentration values of 56.6, 2310, and 841 mg/mL·h for dapagliflozin, cana-
gliflozin, and empagliflozin respectively. ΔUGEc will change FPG based on linear 
function. HbA1c profiles were captured by indirect response model. Additional 
placebo effect was also considered for both end points. The PK/ΔUGEc/FPG/
HbA1c relationship was validated internally using diagnostic plots and visual 
assessment and further validated externally using the fourth globally approved 
same-in-class drug (ertugliflozin). This validated quantitative PK/PD/end point 
relationship offers novel insight into long-term efficacy prediction for SGLT2 
inhibitors. The novelty identified ΔUGEc could make the comparison of differ-
ent SGLT2 inhibitors' efficacy characteristics easier, and achieve early prediction 
from healthy subjects to patients.
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INTRODUCTION

Diabetes mellitus is a global chronic metabolize disease 
with the population reaching 415 million in 2015, and the 
number is expected to reach 642 million by 2035.1 Patients 
with type 2 diabetes mellitus (T2DM) have a significantly 
higher risk of cardiovascular disease, hospitalization, limb 
amputation, nontraumatic blindness, or liver failure.2 
Currently, many kinds of oral long-term hypoglycemic 
agents, such as metformin, sulfonylurea insulin secreta-
gogues, thiazolidinediones, are utilized to reduce morbid-
ity and elevate life quality for patients. However, these 
medications are associated with side effects, including hy-
poglycemia, gastrointestinal symptoms, and weight gain,3 
and have not shown an impact on reducing cardiovascu-
lar risks so far.4

Sodium-glucose co-transporter 2 (SGLT2) inhibitors 
represent a novel class of oral T2DM treatment targeting 
at glucose transport system in the renal proximal tubule. 
They decrease blood glucose levels by competing with 
glucose for SGLT2 transporter, thus increasing kidney 
glucose threshold and urine glucose excretion.5 The novel 
mechanism of SGLT2 inhibitors suggested that they could 
be given in combination with most of the antidiabetic 
agents currently on the market as they shared no common 

pathways. Furthermore, because SGLT2 inhibition did not 
interact with pancreatic cells, they would not stimulate in-
sulin release, and due to caloric loss associated with ex-
creted glucose, thus reduce body weight.6 Recent research 
outcomes indicated that SGLT2 inhibitors can signifi-
cantly decrease the morbidity caused by cardiovascular 
disease and hospitalization due to heart failure.4

Three SGLT2 inhibitors (dapagliflozin, canagliflozin, 
and empagliflozin) have been approved globally and 
more novel drugs are under development. To assist dose 
selection for SGLT2 inhibitors, urinary glucose excretion 
(UGE) was used as a pharmacodynamic (PD) biomarker 
in healthy subjects.7 The pharmacokinetic (PK)/UGE 
relationship was found to be different between healthy 
subjects and patients with T2DM, which hindered the 
translation of novel drug from healthy subjects to patients 
with T2DM and the comparison of efficacy same-in-class 
marketed drugs.8 Although some PK/biomarker, PK/end 
point, or PD/end point models for SGLT2 inhibitors have 
been developed, there is still a lack of studies on predicting 
long-term treatment fasting plasma glucose (FPG) or he-
moglobin A1c (HbA1c) profiles based on healthy subject 
PK data because no mechanistically translational PD bio-
marker was integrated to bridge PKs and end points.9–12 
Therefore, these models were hard to be translated for 

Study Highlights
WHAT IS THE CURRENT KNOWLEDGE ON THE TOPIC?
Urinary glucose excretion (UGE) was used as a pharmacodynamic (PD) bio-
marker for sodium-glucose co-transporter 2 inhibitors. But the pharmacokinetic 
(PK)/UGE relationship was found to be different between healthy subjects and 
patients with type 2 diabetes mellitus (T2DM), which hindered the translation 
from healthy subjects to patients and the comparison of efficacy for same-in-class 
drugs.
WHAT QUESTION DID THIS STUDY ADDRESS?
We proposed a translatable PD biomarker to bridge PK/PD profiles between 
healthy subjects and patients with T2DM as well as to establish a quantitative 
relationship of biomarker/FPG/HbA1c in patients.
WHAT DOES THIS STUDY ADD TO OUR KNOWLEDGE?
A biomarker, the change of UGE from baseline corrected by corresponding fast-
ing plasma glucose baseline (ΔUGEc), was identified to be comparable between 
healthy subjects and patients with T2DM. In addition, a PK/ΔUGEc/FPG/HbA1c 
model was developed using three SGLT2 inhibitors's data and validated by fourth 
SGLT2 inhibitor's data.
HOW MIGHT THIS CHANGE DRUG DISCOVERY, DEVELOPMENT, 
AND/OR THERAPEUTICS?
The PK/PD/end point model proposed by this study could predict end point pro-
files in patients for novel SGLT2 inhibitors based on PK/PD profiles in healthy 
subjects, which can be used to quickly determine the effective dose regimen in 
early phase.
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other drugs because potency and drug distribution in 
the target tissue of each same-in-class drug are different. 
Different PK/PD profiles and unclear PD/end points rela-
tionships increase the difficulties for the suggestion of ef-
fective dose in patients which will require a bigger sample 
size and longer testing duration to identify effective dosage 
for novel SGLT2 inhibitors in patients. Therefore, it is crit-
ical to identify a translatable PD biomarker to bridge PK/
PD profiles between healthy subjects and patients with 
T2DM as well as to establish a quantitative relationship 
of biomarker/FPG/HbA1c in patients. Model-based meta-
analysis is a knowledge-integrated approach by sum-
marizing numerical data in multiple kinds of literature 
followed by modeling these data to receive quantitative 
relationship of PK/PD/disease end points.13 It could take 
advantage of meta-analysis (powerful because of fruitful 
studies) and modeling (ability to quantify the PK/PD/end 
point relationship) approaches. Theoretically, it perfectly 
fits the objectives of this current translational study from 
healthy subjects to patients.

Therefore, we first explored a system-specific PD bio-
marker to establish a quantitative relationship between PK 
exposure and T2DM end points for SGLT2 inhibitors; then 
we validated this translational strategy using the fourth 
marketed same-in-class SGLT2 inhibitor (ertugliflozin).

MATERIALS AND METHODS

Overall study strategy

The overall study strategy is shown in Figure S1. Briefly, 
we first did a population PK analysis for each studied 
drug. Then we proposed a mechanistic and translatable 
PD biomarker, ΔUGE corrected by corresponding FPG 
baseline (ΔUGEc). This new biomarker exhibited a simi-
lar PK/ΔUGEc relationship for the same-in-class drug 
PDs and a consistent PK/ΔUGEc relationship between 
healthy subjects and patients with T2DM. Furthermore, 
we used ΔUGEc to develop the PK/ΔUGEc/FPG/HbA1c 
relationship sequentially followed by internal and exter-
nal validation.

Search strategies and data collection

Initial English literature research on the PubMed data-
base was conducted for all SGLT2 inhibitors up to July 
2016 by searching terms of drug name and “Diabetes 
Mellitus,” and filtering with “Clinical Trial.” Articles 
about the disease other than type 2 diabetes were ex-
cluded. Studies of patients with moderate or severe 
kidney impairment or hepatic insufficiency were also 

excluded in end point data. Studies with one of the fol-
lowing condition were selected: (1) containing clinical 
PK data (sampling time, plasma drug concentrations, 
and dose regimens of both healthy subjects and pa-
tients); (2) containing clinical PD (dose, change from 
baseline UGE values with corresponding FPG of both 
healthy and T2DM subjects) data from studies with-
out other antihyperglycemic medications; (3) contain-
ing clinical FPG and HbA1c data (including FPG and 
HbA1c with corresponding baseline values, dose, and 
therapy category) from trials without insulin treatment. 
Selected study papers are shown in the supplementary 
citation list. The plasma concentrations of each drug, 
the UGE data in 24 h with corresponding FPG, and clini-
cal outcomes containing time course of FPG and HbA1c 
in both placebo and drug groups meeting pre-set criteria 
were collected. All the data were extracted from tables 
directly or graphics with Digitizer (Graph Digitizer ver-
sion 19). Other information, including authors, journal 
name, publication time, and clinical information, like 
patient number, time since diagnosis, body height and 
weight, and fed or fasted state, were also collected.

Model development

The PK/PD/end point relationships were constructed 
using nonlinear mixed-effects (NONMEM) modeling ap-
proach on NONMEM (version 7.2) interfaced with PSN 
(version 4.2.0).14,15 Fitting was conducted with first-order 
conditional estimation with interaction method. R soft-
ware (version 3.0.2) in R studio (version 0.97.551) was 
used for modeling-ready dataset creation and generation 
of plots. The schematic model structure was shown in 
Figure 1. To accommodate the different population sizes 
in meta-studies, we used the square root of sample size in 
each study as the weighting of data. Different study de-
signs and populations were considered as covariates, such 
as fed or fasted state, and tested in model development. 
According to treatment history and therapy regimens, pa-
tients were divided into different treatment types: naïve 
therapy (patients naïve to oral hypoglycemic agents), non-
naïve therapy (patients had taken hypoglycemic agents 
but had undergone a more than 2-week washout period), 
add-on therapy (patients were in combination treatment 
in the study), and mixed (contained both naïve and non-
naïve therapy and unknown treatment type).

PK model

Data from all collected PK studies were pooled to form an 
integrated dataset for each drug. A two-compartmental 
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model with first order elimination and transit absorp-
tion function was established to predict drug exposure 
for three SGLT2 inhibitors. As the fed state prolonged the 
time to maximum concentration of dapagliflozin,16 the fed 
or fasted state was screened to identify the effect on the 
absorption rate constant. The details for PK model devel-
opment are supplied in Appendix S1.

PK/PD model

Drug exposure in patients with T2DM expressed as area 
under the concentration-time curve (AUC) was simu-
lated using the established population PK model for 
each agent. AUC at steady status was selected to drive 
PD changes. Change of UGE from baseline corrected 
by corresponding baseline FPG was characterized as 
translational drug efficacy biomarker (ΔUGEc) based on 
pharmacological mechanism (Equation  1). An empiri-
cal maximum effect (Emax) model was utilized to dem-
onstrate drug exposure-biomarker dynamics as shown 
as Equation 2.

Where ΔUGEc is the delta 24-h UGE (change from base-
line) corrected by baseline FPG, reflecting a 24 h glucose 
clearance. Emax is the maximal drug response. EC50 is 
the exposure producing half-maximal drug response. 
AUC0–24 h is the area under the concentration-time 
curve for SGLT2 inhibitors at steady status within a 24-h 
interval.

PD/end points model

Because these three SGLT2 inhibitors have the same tar-
get and the following biological signaling pathway from 
target to the end point is the same, their FPG and HbA1c 
data were pooled together to explore the PD/end point 
quantitative relationship universal for all drugs in this 
class.

The placebo and drug effects on FPG are described in 
Equations 3 and 4, respectively.

where Pfmax is the maximal placebo effect on FPG under 
placebo treatment. DISfp is a linear coefficient on time de-
scribing disease progression on FPG. Kfp is the first-order 
rate constant of FPG under placebo treatment. SLOPEfd is 
the drug effect for FPG associated with ΔUGEc. An expo-
nential function was introduced to describe the change of 
PFG by placebo effect, and a liner function was introduced 
to describe the slow change of FPG along with disease 
progression.

Both placebo and drug effects' models on the HbA1c-
time course were established. The placebo model of 
HbA1c was similar to FPG and is shown in Equation 5.

where Phmax is the maximal decreasing extent of HbA1c 
under placebo treatment, Khp is the first-order rate con-
stant of HbA1c under placebo treatment. DIShp is a linear 

(1)ΔUGEc =
(

UGE −UGEbaseline
)

∕FPGbaseline

(2)ΔUGEc =
Emax. AUC0−24h
EC50 +AUC0−24h

(3)FPGplacebo=FPGbaseline+Pfmax.
(

1−e−Kfp.t
)

+DISfp. t

(4)FPG=FPGplacebo+SLOPEfd.ΔUGEc

(5)
HbA1cplacebo=HbA1cbaseline−Phmax.

(

1−e−Khp.t
)

+DIShp. t

F I G U R E  1   The proposed model 
structures for PK, PK/PD, and PD/
end points. AUC, area under the 
concentration-time curve; CL, 
clearance; EC50, half-maximal effective 
concentration; Emax, maximum effect; 
FPG, fasting plasma glucose; Kin, increase 
rate constant; Kout, elimination rate 
constant; PD, pharmacodynamic;  
PK, pharmacokinetic.
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coefficient on time describing disease progression on 
HbA1c.

The drug effects on the HbA1c model are shown in 
Equations 6–8.

Where Kin is the FPG-dependent increase rate constant 
of HbA1c, and Kin2 is the FPG-independent increase 
rate constant of HbA1c, and Kout is the elimination rate 
constant of HbA1c. Because both FPG and postprandial 
plasma glucose (PPG) were highly contributed to HbA1c, 
a zero-order rate constant (Kin2) was introduced to stand 
for other factors that increase HbA1c except for FPG. 
Additive inter-study variability was proposed for Pfmax and 
Phmax. In addition, inter-study variability of other param-
eters in both of FPG and HbA1c models were expressed 
as exponential form as assumed to be log-normally dis-
tribution. The residual variability was described using 
proportional or combined proportional and additive error 
models weighted by the square root of sample size in the 
PK/PD/end point analysis. Covariates including subject 
type (healthy vs. T2DM), age, gender, body weight, fed or 
fasted state were tested in population PK and PD model 
selection. Covariates, including washout period, treat-
ment type, study design, were tested in the PD/end point 
model for all three drugs. We only considered the covari-
ates that had been measured in all the studies included in 
our dataset for all three drugs.

Model evaluation

The final models were assessed by objective function value 
(OFV), the precision of parameter estimates (relative 
standard error of the estimates), diagnostic plots (popu-
lation predictions vs. observations, individual predictions 
vs. observations, and conditional weighted residuals vs. 
population predictions or time), and visual predictive 
checks (VPCs).

External validation

The final PK/PD/end points model was validated using 
the external data from ertugliflozin (PF-04971729), a 

fourth SGLT2 inhibitor that was approved by the US 
Food and Drug Administration (FDA) at the end of 
2017. Data of ertugliflozin from healthy subjects and pa-
tients with T2DM with normal renal function were used 
to develop the PK/PD model for ertugliflozin followed 
by prediction of HbA1c profiles in patients with T2DM. 
HbA1c-time profiles from three phase III studies were 
utilized to confirm the prediction results. Predicted re-
ductions in HbA1c were compared with the observa-
tions to validate the prediction performance of the PK/
PD/end points model with novelly proposed biomarker 
ΔUGEc.

RESULTS

Data summary

Three SGLT2 inhibitors (dapagliflozin, canagliflozin, and 
empagliflozin) were collected in this analysis due to the 
preset criteria in 2016. The primary search results con-
tained 145 articles of potential interest, among which 34 
for dapagliflozin, 23 for canagliflozin, and 23 for empa-
gliflozin satisfied pre-set criteria as shown in Figure  S2. 
A total of 880 summary-level drug concentrations, 27 
summary-level ΔUGEc, 848 (195 in placebo and 653 in 
drug) summary-level FPG data points, and 1219 (290 
in placebo and 929 in drug) summary-level HbA1c data 
points were extracted from these studies. The dose ranges 
in PK data covered dose ranges in PD and end points data 
except for 1  mg dose in dapagliflozin. UGE, FPG, and 
HbA1c data in each arm had its corresponding baseline 
value. This analysis included the studies in different de-
signs and in both healthy subjects and patients. The in-
cluded studies and mean demographic information are 
shown in Tables S1 and S2. We also included 26 HbA1c 
data points from ertugliflozin for external validation.

PK/PD model

The two-compartmental models with transit compart-
ments well-described the time course of concentrations 
of three drugs. The PK model parameter estimates are 
shown in Table 1. Fed or fasted state was added as a covar-
iate of absorption rate constant for dapagliflozin because 
food showed significant effects on absorption. The AUC 
in 24 h corresponding to the UGE data were estimated 
from the PK model and the steady-state AUC in 24 h after 
long-term treatment was 51.39 ng/mL·h for dapagliflozin, 
83.6 ng/mL·h for canagliflozin, and 235.3 ng/mL·h for 
empagliflozin.

(6)Kin = Kout. HbA1cbaseline − Kin2

(7)
d
(

HbA1cdrug
)

dt
=

FPG

FPGbaseline
⋅Kin

+Kin2−Kout ⋅HbA1c,HbA1cdrug(0)=0

(8)HbA1c = HbA1cplacebo +HbA1cdrug
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The observed relationships between drug exposure 
and ΔUGEc for three drugs are shown in Figure 2. The 
PK/PD model parameter estimates are shown in Table 2. 
In the final PK/PD model, exposure-ΔUGEc relation-
ships of the three SGLT2 inhibitors shared the same 
Emax of 0.606 g/(mg/dL), because the data from the three 
drugs showed similar trends in inhibition of ΔUGEc. 
The EC50 estimates were 56.6, 2310, and 841 ng/mL·h 
for dapagliflozin, canagliflozin, and empagliflozin, 
respectively.

PD/end point model

The placebo effect models indicated patients with differ-
ent treatment types tended to have different end point 
(HbA1c and FPG) time courses in the placebo group. 
The placebo model parameters were estimated for the 
four types of the patient group, respectively. An expo-
nential function adequately described the change in pla-
cebo FPG response over time with Kfp of 0.340 week−1 or 
a half-life of 2 weeks. The rate of disease progression in 

T A B L E  1   PK model parameter estimates.

Parameters (unit) Definition Estimates RSE (%) IIV (%)

PK model of dapagliflozin

CL (L/h) Clearance from central compartment 19.5 4.00 2.50

Vc (L) Volume of distribution in central compartment 82.0 6.90 9.44

CLD Distribution clearance between central and 
peripheral compartment

10.3 7.10 –

VT (L) Volume of distribution in peripheral 
compartment

122 9.60 5.83

Kt (h
−1) Absorption rate constant between transit 

compartments
6.50 12.4 23.0

Fed Covariate of fed or fasted state 0.254 29.8 –

σ2
pro Variance of proportional residual error in PK 

model
0.457 – –

σ2
add Variance of additive residual error in PK model 0.462 – –

PK model of canagliflozin

CL (L/h) Clearance from central compartment 12.0 6.20 5.90

Vc (L) Volume of distribution in central compartment 85.5 4.60 2.43

CLD Distribution clearance between central and 
peripheral compartment

9.77 10.8 12.8

VT (L) Volume of distribution in peripheral 
compartment

108 6.40 3.14

Kt (h
−1) Absorption rate constant between transit 

compartments
6.38 4.60 3.17

σ2
pro Variance of proportional residual error in PK 

model
0.126 – –

PK model of empagliflozin

CL (L/h) Clearance from central compartment 4.25 6.10 5.69

Vc (L) Volume of distribution in central compartment 30.6 9.50 5.63

CLD Distribution clearance between central and 
peripheral compartment

1.37 13.5 –

VT (L) Volume of distribution in peripheral 
compartment

28.3 26.5 22.0

Kt (h
−1) Absorption rate constant between transit 

compartments
4.13 6.90 5.67

σ2
pro Variance of proportional residual error in PK 

model
0.521 – –

Abbreviations: IIV, interindividual variability; PK, pharmacokinetic.
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F I G U R E  2   The relationships between drug exposure and ΔUGEc of dapagliflozin (a), canagliflozin (b), and empagliflozin (c). The line 
is linked by the model predictions, whereas the dots are the observations. AUC0–24 h, area under the concentration-time curve for SGLT2 
inhibitors at steady status within a 24-h interval; FPG, fasting plasma glucose; PD, pharmacodynamic; PK, pharmacokinetic; UGE, urine 
glucose excretion.

T A B L E  2   PK/PD and PD/end point model parameter estimates.

Parameters (unit) Definition Estimates RSE (%) IIV (%)

PK/PD model

Emax (g/(mg/dL)) Maximal drug efficacy 0.606 4.40 –

Dapa-EC50 (ng/mL·h) AUC resulting half maximal effect for dapagliflozin 56.6 27.1 –

Cana-EC50 (ng/mL·h) AUC resulting half maximal effect for canagliflozin 2310 23.3 –

Empa-EC50 (ng/mL·h) AUC resulting half maximal effect for empagliflozin 841 30.4 –

σ2
pro Variance of proportional residual error in PK/PD model 0.222 – –

σ2
add Variance of additive residual error in PK/PD model 0.0646 – –

PD/end point model

FPGbaseline (mg/dL) The estimated population FPG baseline level 160 1.00 5.40

Pfmax1 (mg/dL) Maximal placebo effects on FPG in naïve group 1.45 26.0 5.74

Pfmax2 (mg/dL) Maximal placebo effects on FPG in non-naïve group 1.90 111 –

Pfmax3 (mg/dL) Maximal placebo effects on FPG in add-on group −1.37 74.0 6.83

Pfmax4 (mg/dL) Maximal placebo effects on FPG in mixed group 4.30 55.0 0.87

Kfp (week−1) FPG rate constant of placebo effect 0.340 55.0 42.7

DISfp (mg/dl/100 weeks) Disease progression rate of FPG 3.13 41.0 –

SLOPEfd (mg/dL2) FPG decrease rate by drug effects −43.3 4.10 29.2

σ2
add, FPG Variance of residual error of FPG 0.0330 – –

HbA1cbaseline (%) The estimated population HbA1c baseline level 7.92 1.00 3.90

Phmax1 (%) Maximal placebo effects on HbA1c in naïve group −0.200 17.0 0.08

Phmax2 (%) Maximal placebo effects on HbA1c in non-naïve group 0.0510 109 –

Phmax3 (%) Maximal placebo effects on HbA1c in add-on group −0.230 16.0 0.13

Phmax4 (%) Maximal placebo effects on HbA1c in mixed group −0.06 81.0 0.20

Khp (week−1) HbA1c rate constant of placebo effect 0.240 21.0 29.4

DIShp (%/100 weeks) Disease progression rate of HbA1c 0.310 33.0 136.7

Kout (week−1) Decrease rate of HbA1c 0.200 3.00 16.4

Kin2 (%/week) Increase rate of HbA1c independent of FPG 0.500 5.00 –

σ2
add, HbA1c Variance of residual error of HbA1c in PD/FPG/HbA1c model 0.006 – –

Abbreviations: FPG, fasting plasma glucose; IIV, interindividual variability; PD, pharmacodynamic; PK, pharmacokinetic.
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FPG was estimated with DISfp of 3.13 mg/dL increase in 
100 weeks. In the final placebo model of FPG, the maxi-
mum difference under placebo in naïve group (Pfmax1), 
non-naïve groups (Pfmax2), add-on group (Pfmax3), and 
a mixed group (Pfmax4) were 1.45 mg/dL, 1.90 mg/dL, 
−1.37 mg/dL, and 4.30 mg/dL, respectively. Most pa-
tients had FPG increase under placebo treatment, ex-
cept for the add-on group, where patients got their FPG 
under control with the help of other agents in combina-
tion. The drug efficacy on FPG is estimated by SLOPEfd of 
−43.3 mg/dL,2 which made the prediction of long-term 
FPG changes by ΔUGEc for all three drugs possible. In 
the HbA1c placebo model, the estimated Phmax value in 
HbA1c for naïve groups (Phmax1), add-on groups (Phmax3), 
and mixed groups (Phmax4) were −0.20%, −0.23%, and 
−0.06% decrease from baseline while that of non-naïve 
groups (Phmax2) was 0.051% increase from baseline. In 
the drug efficacy model, the degeneration rate constant 
of HbA1c with Kout of 0.20 week−1 and FPG-independent 
increase rate constant of HbA1c with Kin2 of 0.50%/week 
were estimated. Treatment type is not significant on 
other parameters here. The other information of param-
eter estimates for PD/end point models could be found 
in Table 2.

Model evaluation

All the final models showed good agreement and ad-
equate accuracy. The diagnostic plots of PK and PK/PD 
models are shown in Figures S6 and S7, respectively. The 
diagnostic plots and VPC plots of end point models are 
shown in Figure S8 and Figure 3. No systematical biases 
were inspected in these plots in both FPG and HbA1c 
models and in both placebo and drug groups. Overall, the 
model described the central tendency of the PD/end point 
profiles in the population level as most of the observed 
median falls within the simulated 95% predictive interval 
for the median.

External validation

Ertugliflozin HbA1c change over time from three pub-
lished clinical trials was collected for external validation. 
The end points in two types of patient groups (naïve and 
non-naïve with monotherapy and add-on therapy with 
metformin or sitagliptin) were predicted by the PD/end 
point model and compared with the observations. The 
validation results are shown in Figure 4. Most of the ob-
servations fell inside the 90% prediction interval, which 
indicated the disease end points could be accurately 
estimated.

DISCUSSION

Generally, we could establish a PK/PD relationship for the 
new drugs in healthy subjects and PK/PD/end point rela-
tionships for marketed same-in-class drugs in patients. The 
marketed drug PD/end point relationships could be bor-
rowed in new drug development because they are system-
specific rather than drug-specific.17 Therefore if a PK/PD 
relationship was suggested to be similar between healthy 
subjects and patients with T2DM, we can predict end point 
profiles in patients for novel drug based on PK/PD profiles 
in healthy subjects and PD/end point relationships from 
marketed drugs. Gibbs et al.18 did a great case study using 
weighted average inhibition of DPP-4 enzyme (biomarker) 
to translate PK/PD profiles of DPP-4 inhibitors to PD/end 
point profiles. We established a PK/PD/endpoints model 
to quantitatively predict FPG and HbA1c changes in pa-
tients based on PK/PD profiles in the early phase. Here, we 
collected PK/PD/end points data followed by a population 
PK analysis for each studied drug. Considering the criti-
cal role of PD biomarker in early phase drug development, 
we proposed a mechanistic PD biomarker, ΔUGEc, which 
bridged PK exposure and disease end points (FPG and 
HbA1c). Considering different disease progression led by 
different types of patients and trial designs, ΔUGEc-FPG-
HbA1c relationships were constructed for four categories 
(naïve, non-naïve, add-on, and mixed). The model was also 
validated using ertugliflozin data from published clini-
cal studies. External validation result demonstrated good 
predictability for disease endpoint by this model, and con-
firmed the PD/HbA1c relationship proposed in this paper. 
This PK/PD/end point model lays a solid foundation for 
facilitating drug development for SGLT2 inhibitors.

In this analysis, we built PK, PK/PD, and PD/end point 
models sequentially because the data used in three parts 
were from different studies and different subjects. The 
population PK profiles of dapagliflozin, canagliflozin, 
and empagliflozin in patients and healthy people were 
similar and described by a two-compartment model with 
first-order absorption, respectively. Transit compartments 
showed better goodness-of-fit than the un-physiological 
lag time model in describing absorption delay. Two transit 
compartments were applied for dapagliflozin and empagli-
flozin and four transit compartments for canagliflozin, 
indicating three drugs varied in drug formulation and 
physicochemical properties.19 The values of clearance es-
timates for three drugs were close to previous studies.20–22 
No significant food effects were previously found for any 
of the three drugs exposure,23–25 but we found that food 
could significantly influence the Kt parameter (p < 0.005) 
in dapagliflozin, which is consistent with a longer time 
to maximum concentration of dapagliflozin under fed 
condition.26
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F I G U R E  3   VPC plots in add-on 
group (a), and naïve, non-naïve, mixed 
groups (b) of placebo effects of FPG model 
across time; in add-on group (c), and 
naïve, non-naïve, mixed groups (d) of drug 
effects of FPG model across time. VPC 
plots in naïve and add-on groups (c), non-
naïve, mixed groups (d) of the placebo 
effects of HbA1c time course model; and 
drug effects model of HbA1c changes 
in naïve and add-on groups (g) and in 
non-naïve, mixed groups (h). The circles 
are the observations and the red solid 
line is the median and the red dashed 
lines are the 5% and 95% percentile of the 
observations. The black solid line is the 
median and the black dashed lines are 
the 5% and 95% percentile of simulations. 
FPG, fasting plasma glucose; VPC, visual 
predictive check.
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Mechanism-based PK/PD model with system-
dependent parameters is critical and useful, especially 
in the early phase of new drug development, and could 
be translated to other same-in-class drugs. If a PD bio-
marker could be detectable in healthy subjects and be 
predictive of end points in patients, early PD profiles of 
the novel drug in healthy subjects could be utilized to 
predict efficient dosage in patients after long-duration 
treatment with aid of a system-dependent model. We ini-
tially used ΔUGE as a PD biomarker because of its mech-
anism of action and we found that the maximum effect 
and affinity on UGE was significantly different between 
different SGLT2 inhibitors and between patients and 
healthy subjects. It was consistent with one paper which 
even concluded that the ΔUGE has no relationship with 
FPG or HbA1c, which impeded the achievement of our 
preset aims.27 Therefore, we proposed a better mecha-
nistic PD biomarker to construct this system-dependent 
model. According to the mechanism of action for UGE 
production and SGLT2 inhibitors, previous research ob-
tained ΔUGE from a function of glucose filtration rate 
(GFR), plasma glucose (PG), drug concentration (C), 

drug efficacy (Imax, half-maximal inhibitory concentra-
tion [IC50]), and re-absorption fraction (freabs).

Therefore, GFR and FPG corrected ΔUGE could better de-
scribe drug effect than ΔUGE in theoretically. Because AUC 
of plasma glucose over 24 h (AUEC0–24h) represents plasma 
glucose exposure over the whole duration, AUEC0–24h or 
mean plasma glucose (MPG) could best bridge PK and 
disease end points. However, it is hard to receive multiple 
plasma glucose levels on 1 day in late-phase clinical trials. We 
compared the relationship between PK/ΔUGEc corrected 
by FPG and PK/ΔUGEc corrected by MPG using the model-
ing method based on our limited data, ΔUGEc corrected by 
FPG showed a better relationship (Figure S4) suggested by 
smaller OFV value (−57.265 vs. −61.607). Additionally, to 
avoid the bias caused by impaired kidney and hepatic func-
tion, the studies in patients with kidney or liver impairment 
were excluded (only 3 studies provided such data). Because 
FPG data are easier to acquire than AUEC0–24h or MPG, the 

(9)dUGE

dt
=GFR. PG− freabs. GFR. PG.

(

1−
Imax. C

IC50+C

)

F I G U R E  4   Prediction and observation for the change over time of HbA1c in the placebo group (a, n = 153, b, n = 209, and c, n = 153) 
and in T2DM subjects with monotherapy of ertugliflozin 15 mg (d, n = 151), T2DM subjects administration ertugliflozin 15 mg and add-on 
to metformin (e, n = 151), and T2DM subjects administration ertugliflozin 15 mg and add-on to metformin and sitagliptin (f, n = 151) from 
three studies. The circles are the observations and the shadows are 90% prediction interval.
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PK/PD/end point model using ΔUGEc corrected by FPG 
will exhibit more general applications in predicting PD/end 
point profiles in patients. Finally, we used ΔUGEc as a valid 
PD biomarker to bridge PK exposure and disease end points. 
The results showed that the newly proposed PD biomarker 
was acceptable to fulfill its mission.

The PK/PD model showed that three drugs with the 
same Emax of 0.606 g/(mg/dL), which was similar to the 
estimated Imax value of 0.359 when fixed GFR by 125 mL/
min (normal kidney function). We assumed that the Emax 
is similar in healthy subjects and patients with T2DM, 
which was also suggested by the plot of two studies PK/
ΔUGEc data from canagliflozin and dapagliflozin.

In the end point models, we first analyzed the changes 
of FPG and built placebo and drug effects on FPG se-
quentially. The drug efficacy on FPG decrease was as-
sociated with ΔUGEc in a linear relationship, which 
is consistent with its mechanism. Then the HbA1c 
changes over time were described as dependent on FPG 
changes and also composed of both placebo and drug 
effects. The mean FPG (160 mg/dL) and HbA1c (7.92%) 
baseline in patients with different treatment types were 
similar and close to previous studies because the clinical 
trials included in our study shared similar patient accep-
tance criteria.28 The maximal placebo effect on FPG was 
found to be different in patients with different treatment 
types. Patients in add-on treatment had significantly 
decreased maximum placebo effects on FPG compared 
with other groups (1.37 mg/dL decrease from FPG base-
line vs. 1.45–4.30 mg/dL increase from FPG baseline), 
mainly because of the confounding lowering FPG effect 
from the combined hypoglycemic drugs. Because naïve 
patients usually had shorter time with T2DM and were 
better controlled by diet and exercise, the placebo ef-
fects on HbA1c in these patients were similar to patients 
who were still on another hypoglycemic drug (add-on 
patients; 0.20% decrease from HbA1c baseline vs. 0.23% 
decrease from HbA1c baseline). Whereas the placebo 
effects on HbA1c in the non-naïve group increased a lit-
tle (0.051%) from HbA1c baseline, which suggested that 
diet and exercise may not work well enough for non-
naïve T2DM and patients should also take antidiabetic 
drugs to achieve a decrease in HbA1c.29 The disease pro-
gression was estimated to be a 0.16% increase in HbA1c 
per year, which was consistent with previous studies on 
0.2% nature disease progression in HbA1c.29 The add-on 
patients sharing the same disease progression with other 
groups indicated that non-insulin hypoglycemic agents 
did not appear to slow this progression significantly. The 
FPG responses in drug effects with a Kfp of 0.34 weeks−1 
or a half-life of 2 weeks indicated a 2-week continuous 
treatment could show a significant decrease in FPG. It 
was noted that this decrease rate of FPG was faster than 

that of HbA1c as the elimination constant rate of HbA1c 
(Kout) was estimated to be 0.20 weeks−1 or a half-life of 
3.5 weeks. This was consistent with previous studies 
that HbA1c usually took a long time to reach steady-
state than FPG and could be explained by a 3-month 
delay that has been agreed clinically.29 Furthermore, 
both FPG and PPG were highly contributed to HbA1c.30 
The relative contribution of PPG decreased from lowest 
HbA1c to highest HbA1c, whereas the contribution of 
FPG increased.31 To better fit the FPG-dependent HbA1c 
time course model, an FPG-independent increase rate 
constant Kin2 of 0.50% per week was included. This 
zero-order rate constant stood for all other factors that 
increase HbA1c except for FPG.32 Other reported meth-
ods, such as setting an HbA1c lower limit or changing 
the weight of FPG on HbA1c, could also help interpret 
the data differently.28,31 Considering both blood glucose 
and hemoglobin contributed to HbA1c, and the FPG is 
not representative of overall blood glucose, a zero-order 
rate constant (Kin2) of HbA1c generation was added to 
attempt to account for HbA1c increase of other cause. 
We finally selected the model with the lowest OFV (OFV 
values −573.68) and most understandable in the mech-
anism. Further studies should be done to investigate 
the inconsistency of the two rates. However, in the PD/
end point model, the effect of other hypoglycemic drugs 
used in combination on FPG or HbA1c in add-on group 
patients cannot be isolated from placebo effect, which is 
one of the limitations of this study. This study proposed 
a PK/ΔUGEc/FPG/HbA1c model for bridging PK/PD/
end point profiles between the healthy population and 
the T2DM patient population based on the assumption 
of PK and PD/end points similarity between these two 
populations. The PK/PD data were collected from pa-
tients with glomerular filtration rate more than 60 ml/
min/1.73 m2, this assumption is more reliable when pa-
tients with T2DM have normal or at least mild injured 
renal function because there is an interaction between 
renal function and SGLT2 inhibitors.33 This model 
might be more useful in predicting patients with normal 
or mild injured renal function, which is also one of the 
limitations of this study. The similarity of PD/end point 
relationships between healthy subjects and patients 
with T2DM with moderate to severe renal injury are still 
needed to be verified using more clinical data.

In conclusion, we developed a PK/ΔUGEc/FPG/HbA1c 
model using data from three SGLT2 inhibitors and then 
used the PD data from ertugliflozin to validate the PD/end 
point model. External validation result demonstrated good 
predictability for disease end point by this model and con-
firmed the PD/HbA1c relationship proposed in this paper. 
This PK/PD/end point model may lay a solid foundation 
for facilitating drug development for SGLT2 inhibitors.
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