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Abstract
Artificial intelligence (AI) has come to be used in various technological fields in 
recent years. However, there have been no reports of AI-designed clinical trials. In 
this study, we tried to develop study designs by a genetic algorithm (GA), which 
is an AI solution for combination optimization problems. Specifically, the com-
putational design approach was applied to optimize the blood sampling schedule 
for a bioequivalence (BE) study in pediatrics and optimize the allocation of dose 
groups for a dose-finding study. The GA could reduce the number of blood collec-
tion points from 15 (typical standard) to seven points without meaningful impact 
on the accuracy and precision of the pharmacokinetic estimation for the pediatric 
BE study. For the dose-finding study, up to 10% reduction of the total number of 
required subjects from the standard design could be achieved. The GA also cre-
ated a design that would lead to a drastic reduction of the required number of 
subjects in the placebo arm while keeping the total number of subjects at a mini-
mum level. These results indicated the potential usefulness of the computational 
clinical study design approach for innovative drug development.

Study Highlights
WHAT IS THE CURRENT KNOWLEDGE ON THE TOPIC?
The quality of a clinical study design is a key component of the success of the 
clinical development of new medicine.
WHAT QUESTION DID THIS STUDY ADDRESS?
This study assessed the possibility of creating a novel and innovative clinical 
study design using artificial intelligence (AI)-based approaches like genetic algo-
rithm, to overcome the limitations of traditional standard and empirical choices.
WHAT DOES THIS STUDY ADD TO OUR KNOWLEDGE?
The results of this study suggest that an AI-based approach could help the devel-
opment of a clinical study design.
HOW MIGHT THIS CHANGE DRUG DISCOVERY, DEVELOPMENT, 
AND/OR THERAPEUTICS?
The findings suggest that computer recommendations of a study design may re-
sult in opportunities to input novel and innovative ideas into model-informed 
drug development.
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INTRODUCTION

In recent years, artificial intelligence (AI)-related tech-
nology has advanced and been used to process images, 
sounds, and natural language in various fields, includ-
ing health care, such as in the research and development 
of new medicine.1,2 For example, in the field of clinical 
pharmacology, there are studies about effective model and 
covariate selection,3–6 an attempt to predict blood drug 
concentration with higher accuracy,7–9 identification of 
subgroup/biomarker/gene affecting efficacy/safety,10–13 
virtual patient generation,14 regimen creation for combi-
nation therapy,15 and causal inference and dimensional 
reduction in quantitative system pharmacology mod-
els.16 However, clinical trials that have been designed 
by AI have not been reported, although the design of a 
study is an important factor in effective new drug devel-
opment.17 Well-designed clinical studies that reveal the 
characteristics of a product, such as its distinction from 
other medicines, can maximize the potential of a product 
with minimum cost, and directly result in high productiv-
ity. Although several novel protocol designs (e.g., adap-
tive design and master protocols) have been implemented 
in recent years,18–20 further innovative study designs are 
required.21

Bioequivalence (BE) studies verify the equivalence of 
the rate and extent of drug absorption into the body be-
tween two or more formulations. Generally, healthy adult 
volunteers are used for a BE study, and blood is frequently 
sampled to assess pharmacokinetic (PK) equivalence 
using noncompartmental analysis (NCA).22 However, a 
situation in which a pediatric subject is required for a BE 
assessment may arise; the absorption profile of the for-
mulation may differ between adults and pediatrics.23,24 
Because the frequency and sample volume of blood col-
lection are more limited in pediatrics than in adults, the 
blood sampling schedule must be refined. Current sched-
ule optimization methods are unable to reduce the sam-
pling to a satisfactory level.25,26 Hence, a novel approach 
for minimizing blood drawing timepoints is required.

Understanding the relationship between dose and 
response is particularly important in the clinical devel-
opment of a new drug product. Considerably low doses 
produce insufficient efficacy, and extremely high doses 
may result in safety or tolerance issues. Various designs 
of clinical studies and analytical methods for investigating 
dose–response profile have been developed.27–29 Multiple 
comparison procedure−modeling (MCP-Mod) is an an-
alytical method for determining the dose–response re-
lationship of a drug.30,31 It is a combination of multiple 
comparison and dose–response modeling, and can iden-
tify a dose–response profile and target a therapeutic dose 
while adjusting the multiplicity. Specifically, MCP-Mod 

comprises the following steps: (1) assume candidates of 
dose–response models, (2) calculate optimum contrast co-
efficients, (3) test for a significant dose–response signal, 
(4) identify the most appropriate model, and (5) when 
statistical significance is detected, estimate the dose–
response relationship and target dose.

A clinical trial consists of several design elements. By 
setting multiple options for each element, the design of a 
trial can be interpreted as a combination optimization prob-
lem, which is a major research topic in the field of AI. In 
this study, we propose using an AI-based approach to design 
an innovative clinical trial that could not be designed by hu-
mans. We use the genetic algorithm (GA),32 which is an AI 
solution for the combination optimization problem, and 
simulate the clinical study. We conduct two experiments in 
this study. First, a blood sampling schedule for a pediatric 
BE study is designed. Second, subjects are allocated into 
groups based on dosage for a clinical dose-finding study.

METHODS

Case 1. Blood collection schedule for 
pediatric BE study

For the BE study, we aim to design a blood sampling 
schedule such that precise NCA PK parameters are ob-
tained from fewer sampling points. We impose two condi-
tions on the study design; the design should not influence 
the estimates of either the maximum blood concentration 
(Cmax) or the area under the blood concentration–time 
curve up to the time of final measurable concentration 
(AUCt).

Blood drug concentrations at 49 timepoints for 24 sub-
jects were generated by a Monte Carlo simulation based on 
the population PK model (Table 1). Subsequently, a typi-
cal blood-drawing schedule consisting of 15 timepoints for 
BE assessment were extracted (Figure 1a). Cmax and AUCt 
were calculated by NCA with the ncappc package of R.33 
The exposure parameters using all 49 timepoints were set 
as the true reference, and ones using typical 15 timepoints 
were set as a comparator. The GA identified the optimal 
combinations of blood sampling points from all 49 time-
points by minimizing both the number of blood drawing 
times and the bias of PK parameters. The accuracy and 
precision of PK parameters for both the reference and the 
GA-recommended cases were evaluated using the mean 
absolute percentage error (MAPE) and the root mean 
square percentage error (RMSPE), respectively. They are 
expressed as follows:

MAPE =
100

N

||||

∑ [Recommended] − [Reference]

[Reference]

||||
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The BE studies usually require 12–18 timepoints of 
blood collection.22 Of these, at least seven are consid-
ered mandatory (baseline, one point before Cmax, two 
points around Cmax, and three points during the elimina-
tion phase) for the precise estimation of both Cmax and 
AUCt.

34,35 A fitness function, defined as the sum of the 
MAPE and RMSPE for Cmax and AUCt, and the square 
of the number of sampling points divided by seven, was 
taken as a quantitative index to evaluate the appropriate-
ness of the study design. This term was added as a pen-
alty in cases where the number of samples significantly 

exceeded seven. On the other hand, there was only a small 
advantage to be <7 points.

The fitness function means that a reduction of the 
number of blood samplings from a typical schedule (15 
points) to minimum (7 points) is equivalent to a 0.9% 
(<1%) increase in all MAPE and RMSPE. Additionally, an 
acceptable difference (<5%) for each MAPE and RMSPE 
was set. If any MAPE or RMSPE exceeded the threshold, 
a large number (10,000) was substituted into the fitness 
function as a lethal chromosome. Because the precision of 
estimated PK parameters affects the BE study result, such 
stringent criteria were used. Finally, the set of sampling 
points that obtained the minimum fitness-function score 
was treated as the GA-recommended study design.

Case 2. Subject allocation for the  
dose-finding study

We assumed a dose-finding study for profiling the dose–
response relationship with a placebo and five active doses 
(10, 25, 50, 100, and 150 mg), and for estimating the opti-
mal clinical dose using MCP-Mod. In the planning phase, 
six patterns of dose–response profiles were expected 
(Figure  2). Both monotonic and inverted-U-shaped pro-
files were assumed for the averaging importance among 
low, middle, and high dose arms. The strongest efficacy 
showed on the highest dose in monotonic profiles. Low 
and middle doses have the strongest efficacy in betaMod1 
and betaMod2 profiles, respectively. The sample sizes 
of each arm for detecting the presence of dose–response 

RMSPE =

√
100

N

∑(
[Recommended]−[Reference]

[Reference]

)2

.

Fitness=

(
Number_of_samples

7

)2

+MAPECmax

+MAPEAUCt +RMSPECmax +RMSPEAUCt

T A B L E  1   Population PK parameters for pediatric BE study.

Parameter Typical value
IIV 
(%CV)

ka (1/h) 1.201 30

CL/F (L/h) 0.190 20

Vc/F (L) 5.1 20

Vp/F (L) 32.5 20

Q/F (L/h) 0.336 30

Tlag (h) 0.125 –

Note: Assay error (relative) = 5%CV. Assay error (absolute) = 2 ng/mL SD. 
Lower limit of quantification was set to 75 ng/mL.
Abbreviations: BE, bioequivalence; CL/F, oral clearance; CV, coefficient 
variance, IIV, interindividual variance; ka, absorption rate constant; PK, 
pharmacokinetic; Q/F, apparent inter-compartmental clearance; Tlag, 
absorption lag time; Vc/F, apparent volume of distribution in central 
compartment; Vp/F, apparent volume of distribution in peripheral 
compartment.

F I G U R E  1   Comparison of individual concentration-time relationships. (a) Typical sampling schedule (15 points), (b) GA-recommended 
sampling schedule (7 points). GA, genetic algorithm.
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relationship with 80% power31 were designed using GA. 
The total sample size was defined as the fitness func-
tion value. Design features were evaluated by compar-
ing the recommended design to two traditional designs 
(Proportion, where doses are equally assigned to all arms; 
and Double, where placebo and the maximum dose are in-
corporated twice more than in the other equally assigned 
arms), and an optimized design using the D-optimal 
method.28,36 The DoseFinding package in R was used for 
applying the MCP-Mod method.37

GA-recommended study-design planning

We used R, version 4.0.3, with the genalg package for 
the GA for all analyses.38,39 In both cases, the GA gener-
ated the 200 initial chromosomes (design patterns) using 

random numbers and an evaluated fitness value for each 
chromosome. For the BE study design, the chromosome 
was defined as the binary array corresponding with all 
49 sampling timepoints. For the phase II study dose al-
location, the chromosome consisted of the relative ratios 
of size in each dose arm compared with the placebo arm. 
The range of each ratio was limited between 0.2 and 5. 
To create a new generation, the better chromosomes were 
retained, and the others were renewed by a crossover with 
a pair of retained chromosomes and/or the mutation of 
genes. The fitness function values were evaluated in new 
generations and this was used to find the better chromo-
some again. After new generations were repeatedly cre-
ated, the best chromosome in the hundredth generation 
was selected for the outcome. The mutation rates of GA 
were set to 3% and 1% for cases 1 and 2, respectively. It was 
known that the optimal range of the mutation ratio of GA 

F I G U R E  2   Assumed dose–response relationships. Emax, maximum effect.
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is 1% to 10%, and 3% was a typical setting. Even though 
the first BE design optimization had 49 binary values in 
the chromosome, the second dose–response design case's 
individual had only five numerical values (sample size ra-
tios compared with the placebo arm) in the chromosome. 
Because the impact of a single gene mutation was huge 
for such conditions, a more conservative mutation ratio 
(1%) was adopted for the second case. The procedure was 
repeated 10 times, each time with a different random seed. 
These 10 recommended study designs were evaluated and 
compared to the reference case and to each other.

RESULTS

Case 1. Blood collection schedule for 
pediatric BE study

Figure  3 shows the GA recommendations. The trend of 
all recommended sampling schemes was nearly identical. 
Individual schemes are shown in Table S1. The manda-
tory sampling points for the BE assessment (one point 
before Cmax, two points around Cmax, and three points in 
elimination phase), except the one baseline point, were 
taken in all recommendations. The PK parameters from 
the best recommended design (that had the minimum fit-
ness function; Figure 1b) were compared to the parame-
ters from the reference design; Figure 4 shows the results. 
There was a slight impact on the PK parameter estimates, 
although the number of blood samples could be reduced 
from 15 to 7 (Table 2). The MAPE for Cmax and AUCt was 
0.431% and 0.000188%, respectively, and the RMSPE was 
0.124% and 0.213%, respectively.

Nine out of 10 sampling plans recommended that a 
blood sample be collected during the period from drug 
administration to 1  h after administration (up to Cmax). 
Subsequently, three (3/10) or four points (7/10) were rec-
ommended during the period from 1.75 to 3.5 h after dose 
administration (around Cmax). Finally, all recommended 
plans included at least three sampling points in the elim-
ination phases from all three durations at 14–24, 36–54, 
and 78–96 h. Only one plan recommended blood collec-
tion at the baseline (0 h).

Case 2. Subject allocation for the dose-
finding study

The total sample sizes of the 10 GA-recommended de-
signs ranged from 405–415 subjects, which was less than 
that of traditional designs (Proportion: 450, Double: 416). 
The D-optimal design required 415 subjects, and had 
more subjects assigned to the placebo group and a larger 

maximum dose (150 mg) than that of the Double method. 
Three of the GA designs are presented in Figure 5. These 
three designs are that of the smallest sample size (10% 
less than Proportion), the maximum power (in spite of 
the total sample size being less than that of the empirical 
methods), and the minimum number of placebo samples 
(approximately half of Double, but with same total size as 
D-optimal method). All designs are shown in Table  S2. 
Common characteristics of the GA-recommended designs 
are as follows: (1) the highest dose (150 mg) group had 
the largest number of subjects (mean 28%); (2) the 50 mg 
group had the smallest number of subjects (approximately 
one third of the highest dose group [mean 8%]); (3) the 
10 and 100 mg groups had a medium number of subjects 
(mean 16%), and the 25 mg group had only a slightly lower 
number (mean 13%); and (4) the placebo group had a large 
variance (14%–23%, mean 18%).

DISCUSSION

In this study, we attempted to generate a design of a clini-
cal study using an AI-based approach. This approach may 
more effectively find an innovative study design outside of 
the traditional standard and empirical alternatives.

In the first case, a blood-sampling schedule for the pe-
diatric BE study was designed under strict limitations in 
terms of the number of times blood could be drawn. All 10 
sampling plans adopted rich sampling (3–4 points) around 
the expected time of Cmax (that is, near Tmax), which en-
abled high-precision prediction of Cmax. Although the 
preciseness of the AUCt was lower than that of the Cmax, 
the GA-recommended sampling schedule obtained PK pa-
rameters with sufficient accuracy and precision (Figure 4). 
If the true parameters from all 49 timepoints were used for 
the optimization instead of the reference parameter values 

F I G U R E  3   Typical and recommended sampling schedules. 
GA, genetic algorithm.
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from 15 typical timepoints, a few sampling times, around 
Tmax, were added to the recommendation (data were not 
shown). The GA is a metaheuristic method that can find 
a quasi-optimal solution in a considerably large search 
space in which a traditional systematic method (e.g., grid 

search and random search) might not be applicable.40,41 
In this first case, there were ~1013 combinations of seven 
to eight points selected from 49 timepoint candidates. 
Considering the feasibility of the study, and the standard 
theory of a sampling schedule—for example, Tmax must 

F I G U R E  4   Goodness-of-fit plots among individual Cmax and AUCt estimates from the best sampling schedule recommended by the GA, 
from a typical sampling schedule, and from all of the data as true value. (a) GA recommended versus true of Cmax, (b) GA recommended 
versus typical sampling of Cmax, (c) typical sampling versus true of Cmax, (d) GA recommended versus true of AUCt, (e) GA recommended 
versus typical sampling of AUCt, and (f) typical sampling versus true of AUCt. The solid line represents identity line, and dotted lines 
represent 1% difference. AUCt, area under the blood concentration–time curve up to the time of final measurable concentration; Cmax, 
maximum plasma concentration; GA, genetic algorithm.

T A B L E  2   Summary of noncompartmental PK parameters.

Parameter Scenario
Number of blood 
samples Mean ± SD Median Min, Max

Cmax
(ng/mL)

Full data (True) 49 1491 ± 279 1491 1075, 2034

Typical schedule 15 1470 ± 270 1374 1003, 2021

Best recommendation by GA 7 1484 ± 272 1392 1075, 2034

AUCt
(ng h/mL)

Full data (True) 49 25,449 ± 2448 25,436 19,526, 29,704

Typical schedule 15 25,784 ± 2740 25,961 19,653, 30,316

Best recommendation by GA 7 25,438 ± 2421 25,181 19,789, 29,652

Note: N = 24.
Abbreviations: AUCt, area under the blood concentration–time curve up to the time of final measurable concentration; Cmax, maximum plasma concentration; 
GA, genetic algorithm; PK, pharmacokinetic.
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be included at the time of blood sampling26—the number 
of options may decrease considerably. However, numer-
ous options remain. The phenomenon in which the com-
bination pattern increases exponentially with an increase 
in the number of options is called “combination explo-
sion.”42 A comprehensive approach requires considerable 
computer resources and calculation time owing to this 
issue. Thus, the GA, which can obtain a quasi-optimum 
solution from numerous options in a relatively short time, 
is highly useful for designing a clinical study. In the BE 
case, all the GA-recommended designs had unique sam-
pling schedules, and their times of blood sampling (7–8 
points) were less than the traditional design. They were 
also comparable with a previous optimizational investiga-
tion.35 When the weight of the number of samples in the 
fitness function was changed from six to eight, the trend 
of the recommended schedule and the required number 
of samples was not changed. The seven to eight sampling 
points were considered a minimum requirement to obtain 
precise PK parameters. When the weight was set to nine 
or higher, the number of blood collection points increased 
according to the weight, but it did not increase in a specific 
time zone. Hughes et al. has reported a GA utilized sam-
pling schedule optimization based on the given number 
of samples.43 Even though a favorable sampling schedule 
was not given, they were in line with the known art in all 
10 runs. Some of the timepoints in narrow ranges should 
be treated as a recommended window. Additionally, it is 
essential to make decisions while objectively evaluating 
the study design presented by the computer, consider-
ing the PK profile and the study feasibility, rather than 
only relying on the accuracy of prediction. The GA does 
not always find the global optima for this type of prob-
lem. Considering the possibility of getting stuck in a local 
optima, the recommendation to the development team 
should be based on multiple results and/or their ensemble.

The second case considered in this study was the op-
timization of subject allocation for a dose-finding study. 
We presented several different patterns of study designs. 
The proposed designs included one with a 10% reduction 
in the total number of required subjects compared to that 
of the conventional method (“Minimum Subjects” vs. 
“Proportional”). In clinical development practice, the best 
design for a clinical trial cannot be defined. The results 
show that the GA can propose several designs that are al-
most equivalent in terms of requirements. This will en-
able the development team to select the design that meets 
the predefined requirements and considers the additional 
value. For example, the design with the smallest placebo 
group-sample size could slightly reduce the risk of placebo 
administration, which is not expected to provide efficacy. 
We expect that new findings and improved study designs 
will be discovered, based on design candidates that have 
been proposed by AI, by continuing discussions in the de-
velopment team.

The model-informed drug development approach, 
which has revolutionized the clinical development of med-
icines in recent decades, has enabled the trial and error of 
computer-simulated clinical studies that cannot be realized 
in the real world, thereby helping to identify better trial 
designs.44–48 This process can compare the superiority and 
inferiority of designs; however, it may be difficult to pro-
duce novel and innovative designs. In this study, we aimed 
to find an innovative clinical trial design using AI. In the 
first case, there were no novel designs. Thus, the proposed 
BE study designs were in line with the traditional sam-
pling guide. This could be because the already-established 
knowledge for efficiently sampling for a BE assessment is 
robust. This result also indicates that the GA selected the 
correct design for selection. The second case considered 
in this study indicated that a computer could create de-
signs with a smaller number of subjects compared to that 

F I G U R E  5   Patient allocations of traditional and GA-recommended methods. GA, genetic algorithm.
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of traditional designs. Additionally, an innovative design 
that can drastically reduce the assignment of subjects into 
the placebo group, without increasing the total number of 
subjects compared to conventional designs, was proposed.

In this study, a computer-based design was used to de-
sign some of the elements of clinical trials. However, there 
are many design elements and options in the protocol of 
an actual clinical study. The other design factors include 
inclusion/exclusion criteria, dosing patterns (e.g., cross-
over vs. parallel), scheduling (i.e., timing and frequency) 
of the outcome assessments, sample sizing, the analysis 
method (i.e., parametric or non-parametric), etc. Instead 
of MCP-Mod, a population-based exposure-response anal-
ysis that combined data across all arms can also be an 
option for case 2. If all of these elements were designed 
by the GA, combinatorial explosion would occur. Hence, 
many design factors need to be optimized sequentially. For 
example, after the sampling schedule optimization was 
performed as in case 1 during the first stage, other design 
factors were optimized during the second stage, based on 
the BE success rate. Furthermore, uncertainty in both the 
model and parameter space must be considered during 
the design study of actual conditions. These were strong 
preconditions for both cases. In the first BE case, the PK 
profiles were assumed to be known. In the second case, 
six dose–response relationship patterns were assumed. If 
the actual data will not be suited with these assumptions, 
the expected outcome may not be obtained. For these situ-
ations, sensitivity analysis with several model and param-
eter sets should be considered. The knowledge coming 
from GA recommended designs is more important than 
the recommendations themselves. This approach requires 
numerous computer resources to process multiple calcu-
lations to simulate clinical trials. These limitations pose 
difficulties for using a computer to fully design a clini-
cal trial. We believe that parallel computing technology, 
which is applicable to the GA,49,50 will be the key for im-
plementing AI-assisted clinical trial design.

In this study, we demonstrated the potential of a 
computer-assisted approach to design innovative clinical 
studies.
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