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Abstract

Extended reality (XR) refers to an umbrella of methods that allows users to be immersed in 

a three-dimensional (3D) or a 4D (spatial + temporal) virtual environment to different extents, 

including virtual reality (VR), augmented reality (AR), and mixed reality (MR). While VR allows 

a user to be fully immersed in a virtual environment, AR and MR overlay virtual objects over 

the real physical world. The immersion and interaction of XR provide unparalleled opportunities 

to extend our world beyond conventional lifestyles. While XR has extensive applications in 

fields such as entertainment and education, its numerous applications in biomedicine create 

transformative opportunities in both fundamental research and healthcare. This Primer outlines 

XR technology from instrumentation to software computation methods, delineating the biomedical 

applications that have been advanced by state-of-the-art techniques. We further describe the 

technical advances overcoming current limitations in XR and its applications, providing an entry 

point for professionals and trainees to thrive in this emerging field.

Introduction

With the advent of unparalleled computational power and numerous wearable devices, 

immersive technology has been developed to extend the real world by creating an interactive 

three-dimensional (3D) or 4D (spatial + temporal) digital reality. Recent technical progress 

has resulted in the rise of extended reality (XR), which encompasses virtual reality (VR), 

augmented reality (AR), and mixed reality (MR). The fundamental concept of these 
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methods is generally to integrate physical reality and virtual environments to different 

extents, creating an immersive and interactive interface through wearable sensors and hand 

controllers. Recent advances in applying XR to biomedical fields have been demonstrated in 

fundamental research, medical training, and preprocedural planning 1–6.

VR is the first widely used method to create a purely digital environment that is either highly 

similar to or completely different from the real world 7 (Figure 1a). Users can experience 

the virtual world in different manners, such as a head-mounted display (HMD) or cave 

automatic virtual environment (CAVE) 8. Along with hand controllers and haptic gloves [G], 
VR HMDs allow users to experience immersive interactions in the virtual environment with 

better portability 9. In contrast, CAVE provides a larger field of view (FOV) [G] and more 

enhanced immersion of the full-body at the cost of portability 10. VR prototypes from the 

late 1950s and 1960s led to the boom of VR in the 1990s when many commercial products 

were launched. However, these products were criticized due to their deficiency in mature 

display technology, 3D rendering, and motion detection. Beginning in 2012, the Oculus Rift 

project, along with other novel VR HMDs, stirred up the second wave of VR technology, 

drawing attention to a broader audience for the revival of the technique and unlocking 

more application scenarios for biomedical research and data visualization 6,11, procedural 

planning 12,13, medical education and clinical training 14–16, as well as digital therapeutics 

and rehabilitation 17,18.

Both AR and MR combine the real world and virtual environment, providing a partial 

immersive experience. However, the differentiation between AR and MR is still being 

debated19,20. The interactivity of MR is sometimes considered as a dimension to 

differentiate it from AR 21,22. For instance, assuming a virtual donut behind a real apple, 

AR simply overlays the entire donut on top of the real environment (Figure 1b), while MR 

will display the donut as partially occluded by the real apple 20 (Figure 1c). However, MR 

and AR are used interchangeably in most cases 20,23,24. To avoid confusion, we consider 

MR to be synonymous with AR in this Primer, defining both as a system that combines 

the real environment and virtual content, providing a real-time interactive 3D environment 
25, and we propose the use of XR as a broad term for both VR and AR. In addition to 

conventional displays such as monitors, advanced AR HMDs are also being deployed to 

show the virtual environment integrated with reality 26,27. As a technical cornerstone in AR, 

tracking and registration of virtual objects with elements in the real world serves as the 

key to bridging virtual context and reality 28. While AR is still nascent in comparison with 

VR, the inherent capability to combine the virtual and real worlds in AR allows for the 

transformative development in medical training and intraprocedural navigation 27,29–31.

Immersion and interaction are considered to be innate qualities of XR 32–36, serving 

as essential features of XR applications in biomedicine. These two capabilities enable 

us to interpret intricate biomedical data such as multiplexed imaging and multi-omics 

results in different ways compared to other conventional methods. Specifically, immersion 

within a stereoscopic environment provides users with a straightforward way to investigate 

high-fidelity models with 3D depth perception, rather than showcase the dataset on 

the conventional panel displays 37. On the other hand, interaction enables user-directed 

visualization and manipulation through advanced techniques such as hand controllers, 
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motion tracking and haptic feedback, which are different from the pre-defined operations 

of conventional animations. In this context, immersion and interaction facilitate the 

applications of XR in biomedicine, creating transformative opportunities for users to explore 

the data in fundamental research and clinical investigations with maximal efficiency and 

minimal risk 30,38.

We propose this Primer to provide an overview of intuitive XR approaches and applications. 

First, we address the working principle of XR by introducing the essential hardware 

components and software platforms in an XR system. Next, we outline the fundamental 

approaches to associate biomedical raw data with virtual environment and introduce the 

mainstream interaction strategies between reality and virtuality. Furthermore, we present the 

representative implementation of XR methods in biomedical research and healthcare. The 

general standards for data security, reproducibility, compatibility and deposition within the 

XR community are also outlined. Lastly, we explore current challenges and optimizations of 

XR techniques in biomedicine, and envision the development and applications of biomedical 

XR in the future.

Experimentation

In this section, we discuss the working principle of XR systems in the context of 

biomedical applications by introducing the hardware components and the advances in 

software platforms.

Hardware components of XR

To enable immersion and interaction in XR, fundamental hardware components including 

display, optical lenses, sensors, and computation processors are required (Figure 2a–b). 

Generally, the display and lenses contribute more to the immersive experience, while sensors 

are critical to the input and output interface for interactive operations. Computational 

processors, which include central processing units (CPU) and graphical processing units 

(GPU), provide the power necessary to generate the virtual experience.

Display and optical lenses—Immersion quality is significantly dependent on the visual 

display 39. Optical lenses along with the display contribute to the visualization quality and 

portability in HMDs, determining the FOV and angular resolution [G] for the immersive 

experience 40,41. The lenses are placed between the display and the user’s eyes to converge 

light coming from the screen onto the retina, forming a clearer image (Figure 2c–e). 

Different lens designs include Fresnel 42 and pancake lenses 43 for VR HMDs, and the 

birdbath combiner, off-axis reflective combiner and waveguide for AR HMDs 44. While 

VR HMDs and CAVE both allow for immersive experiences, they differ in technical 

parameters such as resolution and FOV, leading to distinct biomedical applications. For 

example, CAVE, which is composed of 3–6 side displays on walls, ceiling, and floor 45, 

is able to create an immersive feeling for the full-body and provides a unique opportunity 

for in vivo study of unrestrained animals 46. In contrast, portable HMDs generate a full 

stereoscopic and immersive experience through binocular disparity [G] 37, enabling cost-

effective solutions for digital therapeutics 8,47, medical education and training 15,35.
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Conventional monitors and HMDs are two dominant display devices in AR applications 48. 

Monitor-based AR employs conventional displays such as panel monitors and smartphones 

to present the real environment with overlaid virtual objects 49. AR HMDs allow users 

to directly observe the real environment through an optical combiner [G] and use micro-

displays to project virtual objects to a user’s eyes 50. In some cases, monitor-based AR 

is less cumbersome to surgeons as it does not require an additional HMD to be worn 

throughout an operation 51.

Sensors—Sensors are fundamental to input and output stimuli for enhanced immersion 

and interaction in XR systems 52. In medical XR applications such as clinical training and 

patient rehabilitation, the orientation (yaw, pitch, roll) and position of surgical instruments 

or a patient’s limbs are measured and used as the input. To achieve this, an electromagnetic 

sensor known as the inertial measurement unit (IMU) [G] 53 can be embedded in hand-held 

instruments and HMDs thanks to its small size and weight 39,54. However, the metal objects 

in the operating room may cause artifacts such as distortion errors on electromagnetic 

sensors like IMUs 55; optical sensors such as cameras are commonly used instead 56,57. On 

the other hand, haptic sensors are able to mimic force feedback, significantly improving 

authenticity and accuracy when trainees practice medical skills in XR and surgeons perform 

AR-based robotic-assisted operations 58,59. In addition, physiological signal sensors for 

electrodermal, electroencephalographic (EEG) and electrocardiographic (ECG) activity also 

hold great promise for the characterization of stress levels and different emotional states of 

users in XR medical applications 60–62.

Computational processors—The computational power of processors significantly 

impacts the immersive and interactive experience through key factors such as frame rate 

[G]. Current deployments of processors lead to three types of HMD including smartphone-

based, tethered and standalone (Table 1) 63–66. Among these, tethered HMDs, which are 

connected to external computers provide powerful rendering and computation at the cost of 

mobility and safety concerns in XR-assisted surgeries 67 39, while standalone HMDs allow 

for greater freedom of movement but with limited computational power 68. No matter the 

type of XR system, recent progress has demonstrated that a latency rate of more than 15–20 

ms between head movement and the corresponding virtual scene update in XR leads to 

vergence-accommodation conflict (VAC) [G] and motion sickness 69. Therefore, processing 

power that establishes a high frame rate (> 90 frames per second) is required to reduce 

latency and provide a successful immersive experience 70,71.

Software advances and platforms

XR development engines—There are multiple popular software platforms to create 

virtual environments for XR, such as Unity 3D, Unreal Engine 5, CryEngine, Blender and 

Amazon Lumberyard, among others. Unity 3D and Unreal Engine are widely used platforms 

that enable novices to create XR solutions. Unity is a game engine, with scripting based on 

C#, that has extensive resources for VR and AR software development. Unreal Engine 5, the 

latest iteration of the tool, allows developers to create projects for conventional rendering or 

XR with C++ code. Users can create 3D models from sketches, or purchase models directly 

from the Unity Asset Store or Unreal Engine Marketplace.
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Biomedical XR platforms—In addition to these commercial XR engines numerous 

biomedical-related XR platforms and software have also been developed to promote broad 

applications. For instance, representative platforms such as ChimeraX 11, ConfocalVR 72 

and vLUME 6, are established for interactive visualization and analysis of biomedical 

images. Medical education and clinical training can be performed through HumanSim, 

AnatomyX, SimSurgery 73 and hapTEL 74, among others. In parallel, the Food and Drug 

Administration (FDA) has cleared some platforms, such as PrecisionOS, VisAR, Knee+, and 

RelieVRx, for preprocedural planning, intraprocedural navigation, and digital therapeutics. 

Some representative platforms are listed in Table 2.

Results

Due to XR’s capability for immersion and interaction, continuing efforts have been made 

over the past decades to create virtual models via computer graphics-based simulation 

(commonly used in entertainment) or to transform real experimental datasets into a 

virtual environment. We focus on the latter in this Primer, involving the conversion of 

biomedical results into virtual objects. Using these virtual objects in XR strengthens clinical 

investigations and fundamental research by leveraging computational power and interactive 

analysis of real-world data such as multidimensional imaging and macromolecular structures 
11. Data volumes can be visualized using various conversion pipelines and graphics 

rendering which are enhanced by the immersive aspect of XR. The interactive aspect of 

XR allows for greater manipulative capabilities and analysis than conventional viewing on a 

monitor 75. In this section, we discuss the different methods of biomedical data visualization 

and interactions in XR applications.

Biomedical data visualization

Rather than viewing virtual data on a single 2D screen, XR can enable 3D visualization in 

an immersive environment, allowing for more effective qualitative insights into biomedical 

datasets. The use of this technology has great potential in the medical field, as conventional 

analysis of clinical images is restricted to viewing 2D slices or a 3D reconstruction on a 

flat monitor 76. Conversion of this data into a model within XR can permit full visibility 

of patient data. Image segmentation can be used as an initial step when generating a 

model based on user-specified boundaries. In addition to its usefulness in medicine, XR 

can be used for the visualization of biomolecular structures and sequences. The greater 

observability is an appealing aspect to researchers in the field of biology, as relationships 

and links within the data can be better discerned 77. Conversion of both imaging and 

biomolecular data to XR models are discussed further below.

Multidimensional imaging data—3D XR models based on imaging data can be useful 

to physicians in both preprocedural planning and intraprocedural operation. A model can be 

visualized using a VR system so that planning can take place in a completely immersive 

environment, such as with the platform PrecisionOS. In addition, overlaying a model onto 

a real patient using AR can provide guidance to surgeons in minimally invasive procedures 
78. To display a 3D model in the virtual environment, collected images are stored as data 

volumes, followed by visualization through three rendering methods: point cloud rendering, 
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surface rendering, or volume rendering. A point cloud is a set of points in space representing 

information about an object 79. Point cloud-based data can be acquired through segmentation 

of any imaging modality, or through post-processing of images acquired from pointillism-

based modalities, notably single-molecule localization microscopy 80. Individual fluorescent 

molecules are localized in this modality, and therefore each molecule can be represented as 

a point with coordinates. Point cloud data containing the coordinates is stored and imported 

to VR platforms such as vLUME, for subsequent rendering into the virtual scene 2,6. 

Surface rendering is used for datasets containing gross structures, such as bone and vessels 

highlighted by contrast computed tomography (CT) 81. Surface rendering is a technique that 

involves displaying a 3D surface model in the virtual environment. The data that is used 

to create this surface can be the original volume or an extracted volume based on image 

segmentation, with the latter able to be accomplished in an imaging processing platform 

such as 3D Slicer or Amira 82. When using the original volume, surfaces can be extracted 

using algorithms such as marching cubes 83. In this method, a threshold value must be 

predefined by the user in order to generate a surface 84,85. The overall structures can be 

visualized from the data once their surfaces are constructed; however, depth and underlying 

detail are lost. To retain as much detail from the original dataset as possible, volume 

rendering generates a 3D model based on the entire imaging volume, including all its voxels 
83,86,87. This technique bypasses any image pre-processing or annotation and is thus suitable 

for cases in which segmentation or labeling is difficult, such as when the surrounding objects 

are small or poorly defined, causing spurious surfaces or erroneous surface holes to generate. 

The depth and visual detail of the underlying tissue morphology is an advantage of volume 

rendering as it is rendered based on pixel data.

Image segmentation methods—To convert biomedical images to an editable 3D model 

in XR, image segmentation, which is regarded as a pixel-wise classification problem, can 

be used as an important preprocessing step to divide a digital image into contiguous parts 
88. Segmentation strategies are constantly being developed, evolving from conventional 

methods (e.g., threshold-based post-processing 89, statistical learning-based bundling 90, 

watershed methods 91, and k-means clustering 92) to more advanced algorithms (e.g., 

graph cuts 93, sparsity-based methods 94, active contouring 95, and Markov random fields 
96). Manual segmentation is generally considered to be the gold standard, but it has 

low efficiency and is time-consuming due to large data processing needs, and so its 

use for generating XR models is limited. Manual segmentation also has the potential 

for low reproducibility due to both intra-rater and inter-rater variability. Integration of 

deep learning methods in segmentation has achieved remarkably improved performance 

on biomedical images 97,98. Based on the nature of input data, deep learning can be 

categorized into supervised learning, semi-supervised learning, unsupervised learning and 

deep reinforcement learning 88,99. More detailed information can be referred to the 

Supplementary Information or elsewhere 88,99–102.

Biomolecular Data—3D biomolecular structures (e.g., protein surfaces, and atomic 

structures) and sequencing data (e.g., DNA sequences, and scRNA-seq) can also be 

converted to models for visualization within XR. Current XR applications for studying 

molecular structures and sequences expand upon conventional 2D platforms for visualization 
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77 103. Input file types depend on the biomolecule of interest, and conversion pipelines to 

generate a model vary with each platform. 3D data about protein structures can be found 

on popular repositories such as the Protein Data Bank (PDB) and eF-site, while sequencing 

data can be found on UniProt and NCBI 11,103,104. In the academic platform BioVR, PDB 

data is imported and converted into 3D mesh objects, while mRNA sequences are loaded 

and viewed alongside those objects 77. VR is intuitively used in this case to allow for a 

more explorative view of different data types simultaneously, enhancing the analysis of 

sequence-structure relationships 77. AR has also been used to visualize PDB data in learning 

environments, as the real world remains visible to provide social contexts and promote 

collaboration 103.

Interaction techniques

Interactions between the user and virtual environment play key roles to help maintain 

immersion as well as allowing for the manipulation of virtual objects. Efficient manipulative 

capabilities within XR enable inherent biomedical applications such as image analysis, 

medical training, and preprocedural planning, differing from the simple interaction based 

on flat graphics displays 40. As a vital feature of XR, interaction methodology recognizes 

user input from multiple channels such as movements and gestures, along with generating 

real-time sensory output with visual, auditory, haptic, and olfactory information. In addition 

to direct manipulation through voice, physical devices (for example, hand controllers, 

gamepad, joystick, and touch screen), and head movement tracking accomplished by IMUs, 

other advanced interaction methods in XR have been widely used to improve the interaction 

and immersion quality in XR and they are summarized as follows.

Motion tracking and gesture recognition—Motion tracking is vital to the immersive 

experience in XR and lies at the core of AR technology, especially in image-guided surgical 

navigation 56. This technology aims to locate the real-time position of the human body or 

instrument in real-world coordinates via various sensors that may take optical, ultrasonic, 

and inertial measurements 105. Methods of tracking include inside-out tracking (Figure 3a), 

where sensors are mounted on the HMD itself, and outside-in tracking, where sensors are 

placed in stationary locations in the environment (Figure 3b) 64,106. In the latter strategy, the 

sensors track and position a set of markers that are placed on the target. Outside-in tracking 

generally allows for the high precision and reliability required in medical applications, 

compared to inside-out tracking 107. However, the peripheral equipment restricts the free 

movement of surgeons and physicians. The additional calibration between the AR device 

and intraprocedural navigation systems also limits progress 108. Combining both tracking 

methods is an emerging solution to improve the accuracy and reduce the safety risks in 

XR biomedical applications 109. In addition to general motion tracking, XR can employ 

gestures [G] for the sake of input and output with higher efficiency 110. Since gestures are so 

frequently used in the real world to communicate and perform tasks, recognition of gestures 

is an easier input modality for XR systems. This is applicable for the navigation and control 

of the manipulator in robot-assisted surgery 111, non-contact control of clinical software in 

operating rooms to avoid contamination 111,112, and the monitoring and guidance of patient 

movement in XR rehabilitation 113.
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Haptic feedback—In medical education, clinical skill training, and preprocedural 

planning, an ideal haptic interaction would significantly enhance the authenticity and 

immersion when users explore the virtual environment, providing intuitive feedback for 

users when manipulating virtual objects similar to the real world 114. A successful haptic 

feedback interaction includes collision detection in the virtual environment and force 

feedback delivery in the real world through smart gloves and teleoperation controllers 
36,115,116 (Figure 3c). As haptic feedback sensation is important in conventional surgery, 

it can enhance the performance of XR-assisted pre-procedural planning, such as for 

craniomaxillofacial reconstruction 117, and teleoperated robot-assisted minimally invasive 

surgeries 59.

Applications

XR enables numerous activities including user-defined visualization and analysis due 

to the unparalleled interaction and immersion established between the user and virtual 

environment. In recent decades, XR has been increasingly employed in a broad range of 

biomedical science and clinical investigations6,75,118–123, following the rapid advances in 

hardware and software platforms. Among these integrated platforms, multiple XR strategies 

have been cleared or approved by the FDA for planning of surgical procedures. VR allows 

the surgeon to take a patient’s CT scan and create a 3D reconstruction, thereby permitting 

the focusing and definition of anatomic regions of interest, such as with the PrecisionOS 

platform 124. AR also has been approved to assist surgeons during spinal procedures, 

such as with VisAR. In this approach, surgeons virtually annotate a patient’s imaging 

data and is then converted into an immersive hologram mapped to the patient’s body 125. 

Another AR approach, Knee+, has been approved for knee replacement surgery in which 

the surgeon can judge the alignment of instruments with the knee joint in 3D space 126. 

In addition to these clinical applications, the controlled simulation of a visual environment 

in XR also enables researchers in the field of biology to study animal activity, behavior 

and molecular expression, along with promoting 3D anatomy medical training and patient 

education of specific pathologies 127. Moreover, XR is increasingly being studied for its use 

in digital therapeutics and rehabilitation 128–132, as the immersive virtual setting can serve 

as a distraction technique. In this section, we have listed representative XR applications 

in data visualization and analysis, in vivo biological study, preprocedural planning and 

intraprocedural navigation, as well as digital therapeutics and rehabilitation.

VR as a visualization and analysis tool

XR is an emerging platform for 3D or 4D visualization and interactive analyses of 

microscopic and radiological images and genomic data. The immersion and interaction of 

XR foster the advent of multiple tools including ChimeraX 11, ConfocalVR 72, ProteinVR 
133, vLUME 6, TeraVR 72, and VR-LSFM 118. For instance, ChimeraX enables interactive 

visualization and analysis of multi-channel molecular images in a large data volume 11. In 

parallel, a VR-based visualization platform, vLUME, has been developed to render large 3D 

single-molecule localization microscopy datasets for enhanced interactivity and immersion 
6 (Figure 4a), bridging the gap between high-fidelity exploration and volumetric datasets. 

These models enable users to navigate inside intricate architectures, localize distributions, 
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and interact with tremendous numbers of data points in a straightforward way from the 

molecular to cellular to tissue level. The EchoPixel True 3D Virtual Reality Solution 

system integrated into a diagnostic grade digital imaging and communications in medicine 

(DICOM) workstation was one of the first 3D displays to be cleared by the FDA. True 3D 

permits volumetric visualization and depth perception of anatomic structures from various 

imaging modalities, including echocardiography, CT, and magnetic resonance imaging 

(MRI). This stereoscopic visualization tool allows for virtual examination of anatomic 

structures such as mitral valve annulus size and mitral valve prolapse distance in the clinical 

setting with low intra-rater and inter-rater variability 134 135.

Experimental environment for in vivo study

Besides the straightforward applications in data visualization and analysis, recent progress 

also demonstrates that the modulated VR landscape has been used to generate great 

immersion for animal models. This has allowed the creation of controlled environments to 

study the response of animals to visual stimuli, which is especially promising for the study 

of neural activity and cognitive behaviors 5,46,136–138. For example, neural development 

and plasticity have been investigated in honeybees under the control of visual cues in the 

VR environment, providing a new insight of Egr1 gene upregulation in brain sections 136. 

Similarly, visual stimuli in VR have been used to study the neural activity and cognitive 

behavior in the dorsal encephalon of zebrafish 137. Another report in mice demonstrates the 

contribution of VR to the investigation of dopamine signals driven by dynamic stimulus, 

proving the feasibility of immersive VR in broad biomedical applications ranging from 

invertebrates to vertebrates to mammals 5 (Figure 4b).

Procedural planning and navigation

XR’s capability for interaction provides a unique opportunity to manipulate 3D and 4D 

clinical models, instead of viewing conventional coronal, axial, and sagittal planes, holding 

great potential for procedural planning and navigation. This ability can allow physicians to 

uncover details in an intricate environment, such as obscured blood vessels behind tumor 
29,139. HMD-based systems have demonstrated their usage in the field of neurosurgery 

including craniotomy, lumbar biopsy, ventriculoperitoneal shunt, and endoscopy 29, enabling 

surgeons to focus on the operation at hand rather than switching back and forth between the 

surgical field and a monitor 140. XR is also a platform for more effective communication 

between surgeons and patients, providing a straightforward method for the sake of training 

and education in a low stake setting 141. Collectively, the advent of XR is an emerging way 

to address the issues of patient safety, surgical complexity, and the challenges associated 

with medical training in the operating room.

Enhanced electrophysiology visualization and interaction—Currently, 

visualization in the electrophysiology laboratory relies on fluoroscopy, echocardiography, 

and electroanatomic mapping systems, constituting a wealth of 3D information however 

presented on 2D monitors. An AR approach named E ̅LVIS (Enhanced Electrophysiology 

Visualization and Interaction System) — which employs a HMD with custom rendering 

software — was developed for electroanatomic mapping display during real-time 

transcatheter ablation procedures in which cardiac electrical signals are induced and 
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abnormal electrical foci that cause arrhythmias ablated 142 (Figure 4c). E ̅LVIS permits 

patient-specific visualization of 3D cardiac geometry with real-time catheter locations and 

voltage maps, as well as direct, hands-free control of the display by the interventional 

electrophysiologist’s gesture, gaze, or voice 143. The system can integrate preprocedural data 

obtained by CT or MRI. E̅LVIS leads to a 33% improvement in mean navigation accuracy 

over standard visualization tools 144. Importantly, whereas E ̅LVIS is controlled by a single 

person at any given time, the system can be shared by up to five users and controller 

privileges passed on to others.

AR-assisted cardiac invasive procedures—Another AR strategy named RealView 

Holographic Display was developed, applicable to complex cardiac invasive procedures such 

as transcatheter atrial septal defect closure, without the need for any human-mounted device 

or goggles 145 (Figure 4d). At present, fluoroscopy images during invasive angiograms are 

displayed on 2D screens, thus requiring multiple images to be obtained using different 

angles to have a better understanding of the spatial distribution and dimensionality of the 

underlying structure of interest. Using 3D rotational angiography and 3D transesophageal 

echocardiography, RealView permits real-time 3D digital hologram visualization with the 

ability to mark, crop, zoom, magnify, rotate and slice images 145. XR guidance would 

have great value in transcatheter aortic valve replacement, as it is a complex interventional 

procedure involving careful completion of multiple steps. VR or AR can be used to simulate 

and plan this procedure, allowing for identification of an optimal landing zone for the 

replacement aortic valve 127.

Digital therapeutics and rehabilitation

Mental health care providers have been using VR-based exposure therapy for more than 

a decade as part of treatment plans for patients with various psychiatric disorders, such 

as post-traumatic stress disorder 128. Exposing patients to triggers via a VR platform 

enables the mental health care provider to provide a safe and controlled environment for 

progressive desensitization 146. Furthermore, by offering an interactive environment with 

control over stimuli, VR is effective in many phobias 147,148. VR also has applicability 

in neurological disorders, particularly in stroke rehabilitation, by making neurological 

rehabilitation therapeutics more widely accessible and affordable to patients 149, leading 

to improved physical function, activity levels, as well as cognitive function 150. The FDA-

cleared platform Luminopia One provides unique digital therapies for amblyopia. RelieVRx 

is approved with Emergency Use Authorization by FDA to help release chronic lower back 

pain. In addition, VR has been shown to help post-stroke patients in recovery by exploiting 

active movement. However, this same technique is difficult to apply in patients with a 

low level of motor control. The impact of an EEG-based brain-computer interface (BCI) 

VR intervention was assessed on a male chronic stroke patient 151,152 (Figure 4e) using 

clinical scales, motor imagery capability assessment, functional MRI data, and EEG data. 

The patient setup involved a first-person BCI game developed in Unity wherein a user 

boat rowing task consisted of mental imagery and audio feedback. All three modes of the 

evaluation showed that the patient gained an increase in motor functioning and activity in 

associated brain regions through the BCI-VR system.
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Reproducibility and data deposition

As is usual for emerging technologies, standards for XR solutions remain to be defined 
153. With advances in XR hardware and software platforms, reproducibility remains an 

unmet need for the design, implementation and assessment of XR systems and applications 
154. Technical standards hold great potential to regulate the development of XR hardware 

and software. Additionally, human factors contribute considerably to the reliability and 

applicability of XR development and applications 30,155. While independent raters are 

always required to conduct rating surveys and assess new XR platforms and biomedical 

approaches 118,156, both intra-rater and inter-rater reliability should be considered for further 

analysis in consistency, accuracy, and reproducibility. In parallel, specific committees and 

advisory groups have been formed to develop systematic approaches and standards for 

XR solutions to ensure reproducibility, making the technique transparent, accessible, and 

interoperable to everyone 157,158.

XR standards

The main organizations pursuing guidelines and standards for XR are IEEE 158, the Khronos 

Group, the Video Electronics Standards Association, the Moving Picture Experts Group, 

and the Society for Information Display, with the first two providing published standards. 

The Virtual Reality Industry Forum has also pursued setting VR guidelines, addressing the 

idea that the XR industry needs standards in production, compression, storage, delivery, and 

security. In addition, Meta released a Best Practices Guidelines, outlining soft standards 

in sections such as general user experience, vision, locomotion, user input, audio, user 

orientation and positional tracking, avatars, and rendering.

The IEEE VR/AR Working Group has initiated twelve standards termed P2048 to cover 

various areas of work, ranging from device taxonomy to immersive user interface, stream 

formats to file types, person identity to environment safety, map for virtual objects to 

in-vehicle AR, and quality metrics to content ratings 158. Until now, device manufacturers, 

technology developers, service providers, government agencies, and end users have been 

encouraged to contribute to the development of standards for the rapid rise of XR.

Data deposition

While many academic libraries have expertise in the storage, preservation, display, and 

exchange of conventional 2D objects such as images and videos for scientific research, 

standards and practices for managing XR contents are currently lacking. To keep up 

with emerging trends, research needs, application development, and to curate all types of 

information, it is imperative that libraries and other institutes create digital collections of 

3D data in XR 159. Various repository workflows and infrastructures have been proposed 

for metadata collection, access and reuse the raw files, and 3D model generation procedures 
160–166. However, standard repository solutions for the management of 3D datasets and 

online access to reuse original 3D data remain to be defined 159. While standardized XR 

data repositories are currently missing, a notable exception is the project sponsored by the 

Institute of Museum and Library Services, proposing to address this issue. We envision 
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that the establishment of a standard XR data repository will promote data reproducibility, 

repeatability, and collaborative development of XR applications.

Data security

While it is critical to keep technology visible for inspection and auditing, regulation and 

policies to address user privacy, data security and ethical concerns of XR need to be 

defined 167,168. With the rapid growth of XR, common cyber-security threats to computers, 

servers and mobile devices still exist in this emerging territory 169. New policy to protect 

user identity and data fidelity from attacks is fundamental in both standalone and client-

server XR systems 169. For this reason, authorized access to input and output devices 

such as cameras and GPS is required for XR implementations in biomedicine, assuring high-

fidelity virtual contents displayed in front of users with minimal impact on the interaction, 

immersion, and network communication 170–172. In addition to protecting developers’ 

intellectual property, addressing privacy, security, and ethical concerns of patients in clinical 

settings also needs to be considered 173. For clinical practices, international standards such 

as DICOM and picture archiving and communication system (PACS) 174 are also able to be 

used for data management and exchange in support of security and privacy. The extension of 

current protocols holds the promise to bridge the gap in biomedical XR.

Limitations and optimizations

XR solutions are not always preferable over conventional methods, and their utility 

can sometimes be contradictory in clinical investigations 14. A recent systematic review 

concludes moderate evidence of accuracy improvement using augmented reality surgical 

navigation (ARSN) as compared to freehand surgery 175, while others reported ARSN 

outperformed conventional methods in screw placement in the thoracic176 and spine fixation 

surgery177. Similarly in another orthopedic surgery investigation, the results demonstrate 

that no notable differences among trainees were observed between the VR platform and 

the physical simulation 178. In this context, XR for surgical procedures must demonstrate 

convincing improvement in procedural accuracy, with reduced complications and mortality 

rates before entering routine clinical practice. In medical education and training, some 

similar results have also been reported that VR-based training has the same effectiveness 

with traditional approaches 179–182. A neuroanatomy training test also reports no statistical 

difference between the VR-based training group and the physical model training group 183. 

Another report also points out the immersive VR platform potentially distracts learners 

from contents in comparison to those who used simulation on desktop computers 184. 

Collectively, the instructional effectiveness of immersive virtual environments in medical 

education and training needs to be further investigated. Causes of the issues are multifaceted, 

ranging from hardware to software to XR reproducibility. We have summarized some 

representative limitations leading to the restricted use of XR in biomedicine as follows.

Immersion and portability

Immersion is crucial to the performance of biomedical XR applications, especially for 

medical training, digital therapeutics, and patient rehabilitation. The first challenge of 

immersion in XR is the tradeoff between FOV and HMD weight, that is, both VR and 
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AR suffer from a weight requirement in tandem with computational capabilities when 

attempting to advance the FOV. Advanced technologies such as metasurface eyepiece 185 

and Pancharatnam-Berry phase lenses 186 hold the potential to balance the FOV and HMD 

weight. Secondly, an FOV of greater than 100° is prone to chromatic aberration, leading 

to visual and motion artifacts187 188. To address this issue, a transparent screen using three-

layered diffuser-holographic optical elements is proposed to minimize chromatic aberration 
189. Faster response times with sub-millisecond latency by utilizing a low viscosity liquid 

crystal also holds the potential to mitigate motion artifacts and overcome the tradeoff 

between FOV and resolution 187.

Limited computation capability

Clinical applications via XR systems require powerful computation capabilities to enable 

detailed rendering and precise image registration for accurate diagnosis, preprocedural 

planning and intraprocedural navigation. While untethered XR hardware is preferred to 

ensure portability, and safety, the limited computational capability on devices prevents the 

implementation of XR. Meanwhile, increasing FOV, resolution, and frame rate in XR leads 

to an exponential growth in rendering computation, thus decreasing immersive performance. 

In addition to the hardware upgrades, cloud computing and advanced algorithms such as the 

foveated rendering [G] coupled with eye tracking could significantly lower the threshold for 

hardware requirements 89,190,191.

XR standards

Current limitations of XR in biomedicine are partially attributed to the reproducibility in 

XR development and implementation. Well-accepted standards covering hardware, software, 

service, management, testing, and immersive experience assessment are indispensable to 

promoting the development of the XR ecosystem. The hardware and software developed 

under unified standards and guidelines will have better generality, scalability, and 

compatibility. The integrative platform also holds the potential to allow novice users from 

different fields to participate and enrich more application scenarios.

Outlook

With the advent of XR technology, the integration of XR with conventional biomedical study 

and clinical practice draws attention to a wide audience interested in this transformative 

opportunity. Current trends have already shown its popularity in multiple areas including 

biomedical data visualization and analysis 6,11, medical training and education 14,15, 

surgical procedures 140,141, digital therapeutics 128,149, rehabilitation 151,152 and remote 

medical practice 192–194. Emerging platforms are attempting to address unmet challenges 

in fundamental research and clinical investigations as discussed in previous sections. As 

opposed to conventional methods, XR adds another dimension to allow for user-directed 

operations in an immersive and interactive context. This capability enables users to delve 

deeper into intricate structure and function, from molecular to tissue level and under 

physiological and pathophysiological conditions. The high level of immersion also allows 

researchers to create controlled environments for visual stimuli in animal studies. In clinical 

settings, XR can allow for greater depth in education, training, and planning due to its 
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immersive and interactive environment, simulating environments for users to have realistic 

practice for high-risk procedures such as surgery. The benefits of XR further permit digital 

therapeutics for anxiety and pain management as the immersive interaction distracts users. 

While numerous examples have been reported, the full potential of XR in biomedicine 

is still under investigation. The absence of a flagship application of VR or AR in either 

fundamental research or clinical investigation is still a bottleneck. More powerful and 

influential biomedical applications using XR remain to be defined, yet there is ongoing 

technical development.

Distributed virtual environment

The long-term development of XR is inseparable from a full ecosystem of devices, services, 

and content, as well as a viable and profitable economy. With the popularization of 

the internet, the distributed XR systems will be connected under a coordinated network 

structure, standards, protocols, and databases, creating a virtual environment that is 

spatiotemporally coupled and allows for collaborative interaction and remote medical 

practices. In addition, user-friendly platforms will emerge under the functional ecosystem 

for less experienced users to create their own XR demos, and the increasing number of 

active users will further facilitate the development of XR, thereby creating a virtuous circle.

Mobile XR

Interactive programs continue to increase in the era of the internet, and this computing-

intensive and delay-sensitive application limits the immersion of standalone XR with 

independent computation and tethered XR. The large latency could significantly affect 

the accuracy and security in the XR-assisted surgical operations 195,196. Substantial 

opportunities for XR adoption will be untethered via 5G and mobile edge computing 197–201, 

which deploys servers at the network edges to provide cloud computing and capabilities to 

mobile users with reduced latency 197,198. XR applications using these new technologies will 

provide excellent transmission efficiency and an immersive experience with reduced motion 

sickness. The convergence of XR with advanced computing and communication technology 

will reduce the security concerns in healthcare and synergize more opportunities for the 

realization of XR-based biomedical applications 202.

Multi-sensory engagement

The real physical world is a multi-sensory environment, while virtual environments only 

provide degraded sensations due to under-developed audiovisual stimulation and haptic 

feedback 203–205. Aside from wearable gloves, more efforts have been made towards 

wireless devices applied on the skin to provide coordinated vibrotactile feedback for 

XR applications such as virtual prosthetics 206,207. There is also ongoing development 

of olfactory and gustatory sensory renderings 203,208–210, holding the potential to further 

enhance the immersive experience. Multi-sensory engagement not only enhances the 

immersion in the virtual environment, but also holds the promise to advance sustainable 

decisions, green choices, and prosocial behavior 211. While technical development is still in 

process, the integration of multi-sensory engagement with BCIs is one of the most promising 

and exciting directions in the future.
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Our aim with this Primer is to emphasize the theoretical potential of XR by delineating 

its technical advances and biomedical applications. While multiple issues of XR practice 

remain to be addressed, this novel strategy has shed light on its potential in numerous 

biomedical fields. With increasing interdisciplinary collaborations, the contribution of XR to 

biomedicine will be characterized.
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Glossary

Haptic Gloves
A type of wearable device that functions to provide realistic sensation and manipulation of 

virtual objects through hand motion tracking, force feedback and tactile feedback

Field of View
The visual field as one eye is stationary. In general, the monocular FOV of a human eye is 

about 160° × 130° (horizontal × vertical), and the combined binocular FOV is about 200° × 

130°, with an overlapped region of 120° horizontally

Binocular Disparity
The slight difference between left and right retinal images of the same object due to the 

location difference of the left and right eyes

Angular Resolution
The ratio between the number of horizontal pixels and horizontal FOV

Optical Combiner
The component of the augmented reality display that delivers images produced by the 

display engine to the user’s eye while also transmitting environmental light

Frame Rate
The number of consecutive images that are displayed and delivered to the user every second

Vergence-accommodation Conflict
A visual phenomenon that occurs when the brain receives mismatching cues between 

vergence and accommodation of the eye

Inertial Measurement Unit
An electronic device containing a gyroscope, an accelerometer and a magnetometer used to 

measure the specific force, angular rate and orientation of the body
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Gestures
The posture or movement of the user’s upper limbs, including fingers, hands and arms, 

containing significant interactive intentions as the input for extended reality

Foveated Rendering
A rendering method designed to improve graphics performance by maintaining high visual 

detail near the fovea, while decreasing quality towards the eye’s periphery
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Figure 1. Schematic of virtual reality (VR), augmented reality (AR) and mixed reality (MR).
a| The point-of-view for a VR head-mounted display (HMD) allows a user to be fully 

immersed in a virtual environment. b| AR overlays the virtual donut on top of the real 

apple regardless of the relative position between two objects. c| MR allows to display the 

virtual donut partially occluded by the real apple based on the depth information and relative 

position.
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Figure 2. Instrumentation and optical structure of virtual reality (VR) and augmented reality 
(AR) head-mounted displays (HMDs).
a| Main hardware components of VR HMDs. b| Main hardware components of AR HMDs. 

c| The display in a VR HMD projects virtual objects to eyes through optical lenses. d| The 

optical combiner in an AR HMD merges the real-world scene with virtual objects projected 

by lenses and the display. e| Field of view (FOV) is defined as the visual field as one eye 

is relatively stationary, and the edge of a well-designed FOV should be equal to the display 

screen border.
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Figure 3. Tracking and haptic feedback in extended reality (XR) applications.
a| Inside-out tracking. The sensors such as cameras are mounted on the head-mounted 

display (HMD) to detect the changes in surroundings with or without markers. b| Outside-in 

tracking. The sensors are mounted in the stationary location and the markers to be tracked 

are placed on the target such as HMDs. c| Haptic feedback. Hand gestures are recognized 

and tracked by sensors for virtual hands display. The collision between virtual hands and 

virtual objects are detected for the force feedback calculation. The calculated force feedback 

is delivered through the sensors on the haptic gloves.
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Figure 4. Biomedical applications of extended reality (XR).
a| vLUME facilitates the 3D virtual reality (VR) visualization of millions of molecules, 

demonstrated by the super-resolved membrane of the T cell 6. Uses can easily select and 

isolate complex biological features at the nanoscale. b| The head-fixed mouse placed on 

a cylindrical styrofoam treadmill is surrounded in a VR environment 5. Dynamic virtual 

scenes are created to provide the mouse with the illusion of movement for the investigation 

of the dopamine circuit activity at various stages. c| The ĒLVIS pipeline allows users 

to navigate through the real-time diagnostic mapping information on the electroanatomic 
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system 142. d| Live 3D holograms are created from live transesophageal echocardiography 

or rotational angiography for the user-directed interaction and manipulation 145. e| A VR 

and brain-computer-interface-based training platform induces movement illusion for severe 

stroke patients, providing patient-driven action observation in head-mounted VR 152.
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Table 1:

Representative XR HMDs.

Product name XR HMD type Optical lenses Visible FOV in degrees (horizontal / vertical / 
diagonal) Tracking type

Meta Quest 2 VR Standalone Fresnel 97 / 93 / NA Inside-out

Oculus Rift S VR Tethered Fresnel 88 / 88 / NA Inside-out

Samsung Odyssey VR Tethered Fresnel 101 / 105 / NA Inside-out

Sony PlayStation VR VR Tethered Aspherical 96 / 111 / NA Outside-in

Valve Index VR Tethered Fresnel 108 / 104 / NA Outside-in

HTC Vive Pro 2 VR Tethered Fresnel 116 / 96 / 113 Outside-in

HP Reverb G2 VR Tethered Fresnel 98 / 90 / 107 Inside-out

Google Daydream View VR Smartphone Fresnel NA / NA / 90 NA

Magic Leap 1 AR Standalone Waveguide 40 / 30 / 50 Inside-out

Magic Leap 2 AR Tethered Waveguide 44 / 53 / 70 Inside-out

Microsoft HoloLens 2 AR Standalone Waveguide 43 / 39 / 52 Inside-out

Snap Spectacles AR Standalone Waveguide NA / NA / 26.3 Inside-out

Nreal Light AR Smartphone Birdbath NA / NA / 52 Inside-out

Abbreviations: XR, extended reality; VR, virtual reality; AR, augmented reality; NA, not applicable.
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Table 2:

XR platforms for biomedical applications.

Application Software XR Function

Data visualization and analysis

TeraVR/Vaa3D 212 VR Enable big data reconstruction and visualization

vLume 6 VR Enable analysis of single-molecule localization microscopy 
datasets

BioVR 77 VR Enable protein analysis

Harvis 213 VR Provide simulation of computational fluid dynamics

Scenery 214 VR Provide rendering framework for multi-dimensional images

VRNetzer 215 VR Enable exploration of genome-scale molecular network

singleCellVR 216 VR Enable single-cell data visualization

ProteinVR 133 VR Provide web-based molecular visualization

Genuage 2 VR Enable analysis of point cloud data

ConfocalVR 72 VR Enable interactive visualization of multi-channel molecular 
images

* EchoPixel True3D AR Provide a holographic digital model of anatomic structures

ChimeraX 11 VR Enable big data visualization and analysis

Medical education and training

AnatomyX AR Enable trainees to learn biomedical knowledge and explore 
surgical solutions

RASimsAs VR Enable injection skills practice and provide surgeons with 
operation scenarios

SimSurgery 73 VR Provide simulation for invasive surgery training

hapTEL 74 VR Enable dental procedures skills training

HumanSim VR Enable students to experience rapid sedation and intubation 
techniques

Preprocedural planning and 
intraprocedural navigation

3D Slicer VR Enable image analysis, preprocedural planning, and surgical 
guidance

* PrecisionOS VR Provide 3D reconstruction for surgical panning and training

* OpenSight AR Generate and register models with patients for surgical 
procedures

*VisAR AR Provide guidance for intraprocedural stereotactic spinal 
surgeries

*xvision Spine AR Display 3D model of patient’s spinal anatomy and superimpose 
virtual trajectory on the model

* Clarifeye AR Create real-time 3D model with automatic spine segmentation 
for surgical procedures

NeuroPlanner 217 VR Enable stereotactic trajectory establishment, simulating the 
insertion of microelectrode, and postoperative analysis

NeuroTouch 218 VR Simulate craniotomy-based neurosurgical procedures with 
haptic feedback

* NextAR AR Display 3D orthopedic model for knee arthroplasty procedures, 
with the extension to shoulder, spine, and hip procedures

* IntraOpVSP AR Displays 3D holograms of patient’s anatomy with the actual 
scale in surgery

* Knee+ AR Assist the surgical procedure for the implant positioning during 
total knee arthroplasty operations
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Application Software XR Function

SyncAR & StealthStation 
S8 AR Deliver virtual models and navigation to microscope oculars 

during surgical procedure

Digital therapeutics and rehabilitation

XRHealth VR Provide pain management, stroke rehabilitation solutions, 
cognitive training for executive functions and memory span

Immersive Rehab VR Provide digital therapeutics for neuro rehabilitation

*Luminopia One VR Provide digital therapeutics for amblyopia

Social Engagement VR Provide digital therapeutics for serious mental illness and 
behavioral health

** RelieVRx VR Assist to relieve chronic lower back pain

Amelia VR Provide therapy on fears, stress, addiction, anxiety, and 
depression

Happinss VR Provide stress management

Balloon Blast VR Provide upper extremity rehabilitation and assessment of active 
shoulder range

REAL y-Series VR Provide physical and cognitive rehabilitation

Abbreviations: XR, extended reality; VR, virtual reality; AR, augmented reality; FDA, US Food and Drug Administration.

*
represents FDA-cleared

**
represents FDA emergency use authorized
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