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Abstract

RNA-based therapeutics have shown great promise in treating a broad spectrum of diseases 

through various mechanisms including knockdown of pathological genes, expression of 

therapeutic proteins, and programmed gene editing. Due to the inherent instability and negative-

charges of RNA molecules, RNA-based therapeutics can make the most use of delivery systems 

to overcome biological barriers and to release the RNA payload into the cytosol. Among different 

types of delivery systems, lipid-based RNA delivery systems, particularly lipid nanoparticles 

(LNPs), have been extensively studied due to their unique properties, such as simple chemical 

synthesis of lipid components, scalable manufacturing processes of LNPs, and wide packaging 

capability. LNPs represent the most widely used delivery systems for RNA-based therapeutics, as 

evidenced by the clinical approvals of three LNP-RNA formulations, patisiran, BNT162b2, and 

mRNA-1273. This review covers recent advances of lipids, lipid derivatives, and lipid-derived 

macromolecules used in RNA delivery over the past several decades. We focus mainly on their 

chemical structures, synthetic routes, characterization, formulation methods, and structure–activity 

relationships. We also briefly describe the current status of representative preclinical studies and 

clinical trials and highlight future opportunities and challenges.
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Graphical Abstract

1. INTRODUCTION

1.1. RNA-Based Therapeutics

RNA-based therapeutics have gained extensive interest in treating diverse diseases including 

those associated with “undruggable” targets.1–3 In the past decade, a series of RNA-based 

therapies have been approved for therapeutic applications in different types of diseases 

such as macular degeneration, spinal muscular atrophy, hypercholesterolemia, and TTR-

mediated amyloidosis.4–6 Table 1 lists representative examples of RNA-based therapeutics 

for clinical use. Most recently, two formulations of lipid nanoparticles encapsulating mRNA, 

BNT162b2 and mRNA-1273, have obtained emergency use authorizations (EUA) from the 

FDA and EMA as SARS-CoV-2 vaccines for the prevention of coronavirus disease 2019 

(COVID-19).7–9 RNA molecules mainly include antisense oligonucleotides (ASOs), small 

interfering RNA (siRNA), microRNA (miRNA), and mRNA (mRNA).

Short antisense oligonucleotides (ASOs) consist of single antisense stranded DNAs or RNAs 

with a sequence length of 8–50 nucleotides that can specifically bind to their target mRNA 

through complementary base pairing, leading to the degradation of mRNA by endogenous 

cellular RNase H10,11 or a functional blockade of mRNAs through steric effects.12,13 

Chemical modification of ASOs, such as phosphorothioate ASOs, can increase the stability 

of ASOs and facilitate their interactions with targeted cells.14,15
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In 1998, Fire et al. discovered the RNA interference (RNAi) pathway,16 which involves 

the formation of an RNA-induced silencing complex (RISC) in cell cytosol and subsequent 

decay of the target mRNA. These important findings led to the emergence of RNAi as a 

new type of RNA-based therapeutics.17 Small interfering RNA (siRNA) and microRNA 

(miRNA) are two major types of RNA molecules for RNA interference. siRNA, one of the 

most important classes of RNAi therapeutics, is typically a double-stranded RNA (dsRNA) 

molecule that consists of less than 30 base pairs. siRNA-based therapeutics have been 

investigated as potential therapies for diseases caused by abnormal expression or mutation 

such as cancers,18–21 viral infections,22,23 and genetic disorders.24 Following Onpattro 

(patisiran), the first approved RNAi therapeutic,25–28 three other RNAi therapeutics 

have been approved for clinical application, including givosiran,29,30 inclisiran,31,32 

and lumasiran.33,34 Meanwhile, miRNA, usually an endogenous small noncoding RNA 

(ncRNA), negatively controls the expression of the target mRNA.35,36 Researchers have 

discovered numerous miRNA for the treatment of cancer37,38 and fibrosis.39 For instance, 

miR-34a was studied for the treatment of lung cancer.40

Messenger RNA (mRNA) carries genetic information transcribed from the genomic 

DNA in the nucleus to the sites of protein synthesis in the cytoplasm.41,42 The 

sequences of mRNA play important roles in coding a specific protein and modulating 

the post-translational modifications. Besides, mRNA has a relatively short half-life, 

which induces transient protein expression. Given these properties, mRNA has become 

a new class of therapeutics,43–45 which have shown considerable promise in vaccine 

development,46–57 allergy tolerization,58 and the treatment of a broad spectrum of diseases, 

including sepsis,59 hemophilia B,60,61 HIV,62 myocardial infarction,63 and several types of 

cancer.64,65 Theoretically, engineered mRNA can act as a vaccine platform to produce any 

emerging immunogen. Additionally, mRNA has been used for gene editing and genomic 

engineering.66,67 In recent years, gene editing systems have been a biotechnological 

breakthrough, providing a strategy for the treatment of various diseases. Specifically, the 

CRISPR/Cas system68 uses programmable DNA nucleases to permanently and precisely 

manipulate the genome.69 The codelivery of Cas9 mRNA and single-guide RNA (sgRNA) 

against a certain genomic target via base pairing between the sgRNA and the target DNA has 

been examined for gene editing in numerous genes.70–74 Additionally, RNA aptamer,75–78 

RNA decoys,79 ribozymes,80,81 and circular RNA (cirRNA)82–85 have also been explored 

for biological and therapeutic applications, which have been well-summarized in other 

reviews.

1.2. Biological Barriers to RNA Delivery

Despite the great potential of RNA-based therapeutics for treating a variety of diseases, 

many barriers must be circumvented for the successful delivery of these therapeutic RNAs 

into targeted cell types. Biological obstacles to the effective delivery of RNAs include 

extracellular and intracellular barriers (Figure 1). The extracellular matrix (ECM) is the 

first barrier that protects the integrity of the cells from foreign agents, which can inhibit 

the transport of the RNA molecules from the extracellular environment to the target 

cells. Cell membrane and endosomal trapping are two major obstacles as intracellular 

barriers.86–88 As shown in Figure 1, once RNA-loading nanoparticles are administered 
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into the bloodstream, they need to protect RNAs from rapid degradation by serum 

ribonucleases (RNase).89,90 Meanwhile, nanoparticles must evade phagocytosis, cross the 

vascular endothelial cells, and traverse the extracellular space to reach the target cells.91 

Typical nanoparticles, with small particle size, can penetrate the vascular endothelial pores 

to pass the extracellular environment. Cellular uptake of RNA-loading nanoparticles into 

the cytoplasm involves many different pathways, such as clathrin-mediated endocytosis 

(CME),92,93 caveolae-mediated endocytosis (CvME), and macropinocytosis.94,95 Then, the 

nanoparticles must escape from the endosome before the lysosome formation which would 

result in the enzymatic degradation of the nanoparticles.96–98 It was reported that only 

1–2% of lipid nanoparticles (LNPs) can escape the endosomes.99 Two main mechanisms 

have been proposed for the process of nanoparticles endosomal escape including the 

proton sponge effect and lipid flipping by fusogenic properties during nonlamellar phase 

transitions.100 During the process of endosomal maturation, the endosomal environment 

changes from neutral to slightly acidic (pH ~ 6.3 in early endosomes; pH ~ 5.5 in late 

endosomes; and pH ~ 4.7 in lysosomes),101,102 which makes the ionizable components of 

the nanoparticles become protonated. Protonation of the ionizable components destabilizes 

the anionic vesicular membrane and facilitates nanoparticle disassembly, leading to the 

release of RNA to the cytosol, where RNA elicits its functions.97,103 Upon acidification, 

lipid nanoparticles that contain protonated ionizable lipids or cationic lipids may adopt 

an inverted hexagonal (HII) phase and rapidly fuse with anionic endosomal membranes, 

resulting in the endosomal escape of nanoparticles.104 Incorporation of helper lipids, such 

as 1,2-dioleoyl-sn-glycerol-3-phosphatidylethanolamine (DOPE), can enhance endosomal 

fusion as well as endosomal escape of lipid nanoparticles, by undergoing a conformational 

change upon protonation and promoting an inverted hexagonal (HII) phase change.105–108

1.3. Techniques for RNA Delivery

Effective delivery of RNA molecules into cells is a crucial step for successful RNA-based 

therapeutics. An ideal RNA delivery technique should have high delivery efficiency, low 

toxicity, as well as high cell specificity. Currently, techniques for RNA delivery can be 

divided into three types: physical methods, biological carriers, and synthetic approaches 

Table 2.

1.3.1. Physical Methods.—The physical methods for RNA delivery generally 

provide external forces, magnetic field or electrical field to the cells of interest, 

including microinjection, electroporation, sonoporation, magnetofection, photoporation, 

hydrodynamic delivery, and microfluidic squeezing.109,110 Microinjection involves direct 

injection of RNAs into the cytosol using a glass micropipette.111–113 Electroporation 

employs an electric field, transiently increasing cell membrane permeability, to import 

RNAs from extracellular compartments into cells.114–116 Sonoporation leads to a perforated 

cell membrane using ultrasound waves.117–119 Photoporation applies a focused laser beam 

to produce a submicron hole in cell membranes, which is most commonly used to 

treat single cells.120,121 Magnetofection involves attaching RNA with cationic magnetic 

nanoparticles. These nanoparticles are concentrated into target cells under a magnetic 

field.122,123 Hydroporation is the hydrodynamic capillary effect that can create pores in 

the cell membrane to allow entry of RNAs.124 Microfluidic squeezing is a microfluidic 
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membrane deformation technique for delivering macromolecules in the surrounding medium 

into cells by forming transient pores in the plasma membrane.125–129 This technique shows 

low effects on the normal functions of cells and is broadly applicable for the cytosolic 

delivery of various macromolecules (e.g., RNA, carbon nanotubes, proteins, quantum dots) 

to different types of cells.130

1.3.2. Biological Carriers.—Biological carriers are delivery vehicles obtained from 

living organisms including extracellular vesicles (EVs) and cell/cell membrane-based 

vehicles, such as exosomes-based vehicles, red blood cells extracellular vesicles (RBCEVs), 

platelet membrane-coating vehicles, red blood cell (RBC) membrane coating nanoparticles, 

cancer cell membrane-coated nanoparticles, and macrophage-based vehicles.131–136 These 

carriers can protect RNA cargos from the degradation by RNase and early clearance by the 

immune system.137,138

Extracellular vesicles (EVs) are important mediators involved in intercellular 

communications, which are cell-derived membranous nanosized particles with a lipid bilayer 

membrane.139–142 Based on their size, surface markers, and mode of biogenesis, EVs 

are classified into three classes: exosomes (40–120 nm), microvesicles (100–500 nm), 

and apoptotic bodies (800–5000 nm).143–145 EVs have been applied as an RNA delivery 

system due to their characteristics such as high biocompatibility, long circulation time, 

and low toxicity.146–148 Exosomes are considered as “nature’s delivery system”, as it has 

been shown that exosomes naturally transport DNAs and RNAs between cells, inducing 

genetic modifications in both biological and pathogenic processes.149–151 Accumulating 

interests have been focused on harnessing exosomes as vehicles for siRNA152–155 and 

miRNA156–159 delivery to induce gene silencing.145,160–162 mRNA-loading exosomes have 

shown tumor-suppressor function in orthotopic phosphatase and tensin homologue (PTEN)-

deficient glioma mouse models.163 EVs released from mature red blood cells (RBCEVs), 

for example, have been used as an RNA delivery system for miRNA inhibiting and CRISPR/

Cas9 genome editing in xenograft mouse models.164 RBCs are selected to produce EVs 

for RNA delivery because mature RBCs lack both mitochondrial and nuclear DNA,165 so 

the risk of horizontal gene transfer is avoided. In previous studies, RBCEVs were loaded 

with ASOs, Cas9 mRNA, and sgRNAs or plasmids, respectively, and delivered these agents 

to target cells in both solid and liquid tumors.164 For example, RBCEVs encapsulating 

miRNA-125b ASO significantly silenced miRNA-125b and reduced infiltrated cancer cells 

in acute myeloid leukemia (AML) MOLM13 engrafted mice. Cas9 mRNA and sgRNAs 

can be codelivered to MOLM13 cells using RBCEVs, inducing genome editing effects.164 

Platelet-derived microparticles (PMPs) are extracellular vesicles, 0.1–1 μm in diameter, that 

are involved in the enhancement of angiogenesis, invasion, and metastasis of tumors.166 

PMPs have been shown to infiltrate solid tumors and deliver platelet-derived miRNA 

to tumor cells both in vivo and in vitro, resulting in gene silencing in tumor cells 

with broad tumor type specificity.167 Macrophages are appealing carriers for solid tumor 

targeting RNA delivery due to their inherent capacities to home to tumors at significant 

numbers throughout tumor progression.168,169 Moreover, macrophages can easily load and 

secrete nanoparticles into the surrounding microenvironment. Wayne et al. developed a 

macrophage-based targeted siRNA delivery system that delivered calcium integrin binding 
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protein-1 (CIB1)-siRNA to MDA-MB-468 human breast cancer cells, leading to reduced 

expression of CIB1 and KI67 and decreased tumor growth.170 Zhang et al. prepared 

platelet membrane-camouflaged PLGA/DOTAP nanoparticles to deliver anti-Pcsk9 siRNA 

efficiently, resulting in ~28% reduction in the level of plasma LDL-C.171

1.3.3. Synthetic Approaches.—Synthetic approaches have constructed numerous 

types of natural or synthetic materials and formulations for delivering RNAs into cells, 

including lipid-based nanocarriers, polymer-based systems, inorganic nanoparticles, nucleic 

acid nanostructures, chemically modified RNAs, and many others.172–174

Among the various synthetic approaches for RNA-based therapeutics, lipid-based 

nanocarriers have been recognized as one of the most promising RNA delivery 

systems.175–177 These nanocarriers can be prepared in various forms such as cationic 

liposomes, ionizable lipid nanoparticles (LNPs), lipid–polymer hybrid nanoparticles 

(LPHNPs), lipid calcium phosphate (LCP) nanoparticles, niosomes, cationic nanoemulsions 

(CNEs), and neutral lipid nanoemulsions (NLEs).178–183 Examples of clinical trials of 

lipid-based RNA therapies are summarized in Table 3. In the 1960s, Bangham et al. reported 

that biocompatible lipid/phospholipid spontaneously formed closed phospholipid bilayer 

structures in an excess of water, which was termed as liposome.184,185 Liposomes contain 

an aqueous compartment that is surrounded by one or more phospholipid bilayers, which 

can serve as unique vehicles for the entrapment of hydrophilic drugs (e.g., Doxil)186 and 

DNA.187,188 Cationic liposomes are also among the earliest synthetic approaches used for 

RNA delivery.189–191 The positive charges of the cationic lipid-based liposomes can improve 

the RNA encapsulation efficiency as the result of electrostatic interactions between the 

negatively charged phosphate backbone of RNA molecules and the positively charged head 

groups of cationic lipids. Generally, the nitrogen/phosphate ratio (N/P) is modulated so 

that the liposome has a net positive charge, thus neutralizing RNA molecules and avoiding 

aggregation of liposomes. Besides, the excess positive charge facilitates the binding of 

liposomes to the negatively charged cell membranes.192 PEGylated cationic liposomes were 

developed to increase the circulation stability of liposomes, thus improving RNA delivery 

efficiency in vivo.192,193

Later on, researchers synthesized ionizable lipids with apparent pKa values less than 7, 

which exhibit positive charges and interact with RNA molecules when protonated under 

acidic conditions, while they are neutral in physiologic conditions (pH = 7.4). Apart 

from ionizable lipids, PEG lipids and helper lipids are fundamental lipid components in 

the LNP formulations, such as DMG-PEG2000, 1,2-distearoyl-sn-glycero-3-phosphocholine 

(DSPC), and cholesterol.194,195 Microfluidic mixing of solutions of lipid components 

in organic solvent with aqueous solutions is a readily scalable and precisely controlled 

technique for the preparation of LNPs.196–198 Different from cationic liposomes, typical 

LNPs only have a single phospholipid outer layer encapsulating the electron-dense core, 

where the ionizable lipids aggregate into inverted micelles around the entrapped RNA 

molecules.199–201 Additionally, under acidic conditions of the endosomes, these ionizable 

lipids are protonated and can bind to the negatively charged endosomal membranes, 

inducing endosome disruption and resulting in enhanced endosomal escape.202 These 

characteristics make lipid nanoparticles important materials for RNA delivery. In terms of 
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clinical research, lipid nanoparticles (LNPs) are the most advanced synthetic approaches 

for RNA therapies for treating a range of diseases up to date.203 The approvals of 

patisiran,204,205 BNT162b2,8,9 and mRNA-12737,8 in the clinical application are milestones 

in the development of LNP-based RNA delivery.

In addition to lipid nanoparticles, both naturally derived and synthetic polymers have 

been utilized for RNA delivery, such as poly(ethyleneimine) (PEI),206,207 poly-L-lysine 

(PLL),208–210 poly(β-amino ester) (PBAE),211–213 chitosan,214–216 and polysaccharide.217 

By tuning the physiochemical characteristics of polymers, efficient RNA delivery can be 

achieved in cell and animal models.218–220 A broad range of inorganic nanoparticles have 

also been explored as carriers for the controlled and targeted RNA delivery, such as gold 

nanoparticles,221–223 silica nanoparticles,224–226 calcium phosphate nanoparticles,227–229 

and iron oxides nanoparticles.230–232 DNA and RNA strands are versatile building blocks 

for creating functional nucleic acid nanostructures with structural programmability, spatial 

addressability, molecular recognition capability, and biocompatibility.233–236 Over the past 

several decades, nucleic acid-based nanotechnology has made great achievements in various 

applications.237–246 For example, DNA and RNA nanostructures have been used in the 

delivery of ASOs and siRNA.236,238,243,246–253 Additionally, researchers have developed 

numerous chemical strategies of RNA conjugation, which can improve the RNA-binding 

affinity, thermostability, circulation time, and pharmacokinetic properties of RNA.254–260 

A chemically conjugated RNA is a direct covalent conjugation of an RNA molecule 

and various moieties that promotes intracellular uptake, targets the drug to specific 

cells/tissues, or reduces clearance from the circulation. These moieties include lipids 

(e.g., cholesterol,261 α-Tocopherol262,263), peptides (e.g., cell-penetrating peptide264,265), 

aptamers,266–268 antibodies,269–271 and receptor ligand.272–276 The conjugation of siRNA 

and N-acetylgalactosamine (GalNAc) increases the cellular internalization in the liver 

through interactions of the GalNAc with the asialoglycoprotein receptor (ASGPR) on the 

surface of hepatocytes.259,277,278 This hepatocyte-specific delivery platform has led to the 

clinical use of givosiran,29,30 inclisiran,32 and lumasiran.33,34

In this review article, we focus on the chemical perspectives of lipids including a variety 

of lipid derivatives and lipid-derived macromolecules used in lipid-based RNA delivery 

systems over the past three decades. We summarize the advances of lipids, lipid derivatives, 

and lipopolymers regarding their chemical structures, synthetic routes, characterizations, 

and structure–activity relationships. We also briefly introduce the status of representative 

preclinical and clinical studies and highlight future opportunities and challenges.

2. CATIONIC, IONIZABLE, AND ZWITTERIONIC LIPIDS

Cationic or ionizable lipids are of great importance for the delivery of RNAs because their 

positively charged head groups under the formulation environment can interact with the 

negatively charged phosphate backbone of the RNA cargos.279,280 In 1978, Dimitriadis 

reported the delivery of rabbit globin mRNA into mouse lymphocytes ex vivo using 

phosphatidylserine-based unilamellar liposomes.189 In 1987, Felgner et al. synthesized the 

cationic lipid N-[1-(2,3-dioleyloxy)propyl]-N,N,N-trimethylammonium chloride (DOTMA, 

Figure 2) and used it for in vitro gene delivery.281 The encapsulation efficiency of DOTMA-
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based liposomes to pDNA is about 100%, and their pDNA delivery efficiency is 5–100 times 

higher than that of calcium phosphate or diethylaminoethyl-dextran.281 In 1989, Malone 

et al. developed DOTMA-based liposomes (Lipofection) for in vitro delivery of luciferase 

mRNA into NIH 3T3 mouse cells.191

Structurally, synthetic lipids usually contain three parts: (i) cationic or ionizable head 

groups, (ii) linker groups, and (iii) hydrophobic tails (Figure 2).282,283 The head groups 

exhibiting positive charge(s) can interact with the negatively charged RNA backbone 

through electrostatic attractions; in this way complexes containing condensed RNA are 

formed. The lipids and lipid derivatives can be classified into various categories based on 

the characteristics of their head groups: (i) cationic lipids, (ii) ionizable lipids, and (iii) 

zwitterionic lipids.282–285 The structure of the hydrophobic tails of lipids can affect their 

pKa, lipophilicity, transition temperature, and potency for RNA delivery.105,286 A cholesterol 

derivative or a hydrocarbon chain or even a tocopherol derivative can act as a hydrophobic 

component of lipids. The hydrocarbon tails are generally between 8 to 18 carbon units in 

length with various unsaturation degrees (e.g., oleoyl group, linoleoyl group), and symmetry 

is not necessary for them.280 Incorporation of unsaturated fatty acid as lipid tails has resulted 

in higher delivery efficiency in certain formulations, possibly owing to their low transition 

temperature and their influence on increasing membrane fluidity.287 An ideal linker group 

should be biodegradable and preserve strong circulation stability to survive in a biological 

environment. The commonly employed linker groups include ethers and esters, phosphate 

or phosphonate linker, glycerol-type moiety, or peptides. Carbamate and amide are also 

frequently used as linker, as both of them are chemically stable and biodegradable. Ester and 

ether are alternative linkers, which are chemically stable. The linker groups can be designed 

to be tunable; thus, they are stable enough for storage and have higher circulation stability 

but can be degraded rapidly at the target sites to facilitate the release of the RNA payload.

Geometry is an important characteristic of amphiphile lipids with regard to their application 

as RNA carriers. Amphiphile lipids form aggregates above a certain concentration in an 

aqueous environment, adopting various structures, including the micellar phase, hexagonal 

(HI) phase, lamellar phase, inverted micellar phase, and inverted hexagonal (HII) phase 

(Figure 3). These different types of structures can be predicted by the packing parameter 

P of the lipid, which is defined as the ratio of the amphiphile lipid volume (V) to its head 

group area (a), and the critical tail length (lc) P = V /alc .288–290 When P is less than 1/2, the 

conical-shaped amphiphile lipids assemble into micelles or a hexagonal (HI) phase. When 

1/2 < P ≤ 1, cylindrical-shaped amphiphile lipids with a curvature close to 0 adopt the stable 

lamellar phase. The inclusion of lipids with a cylindrical shape, such as DSPC, increases 

the stability and circulation time of lipid-based nanoparticles.291 When P > 1, the structures 

formed by the inversed conical-shaped amphiphile lipids tend to adopt inverted micelles 

or inverted hexagonal (HII) phases. Thus, when P > 1, the inverted conical-shaped lipids 

(e.g., DOPE) can destabilize the endosomal membrane and allow the endosomal escape 

and release of the RNA payload into the cytosol of the target cells.286,292,293 This section 

describes a large number of lipid derivatives with their chemical structures, synthetic routes, 

and RNA delivery properties.
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2.1. Cationic Lipids

Cationic lipids refer to lipids with head groups bearing permanent positive charges. They 

have been well-explored for nucleic acids (DNA and RNA) delivery as components of 

liposomes and lipoplexes, due to their capability of encapsulating nucleic acids. According 

to the chemical structures of their head groups, they are grouped into four types in this 

part: quaternary ammonium lipids, guanidinium lipids, pyridinium lipids, and imidazolium 

lipids. Cationic lipids are permanently positively charged and are chemically stable even in 

the environment of strong oxidants and acids. However, the positive charges might lead to 

potential cytotoxicity, e.g., hemolytic and undesired immunostimulation.294,295 Cytotoxicity 

of cationic lipids may be related to the generation of reactive oxygen species (ROS) 

and the increase of cellular calcium levels.296,297 Besides, the positive charge of cationic 

lipids could result in their rapid plasma clearance and short circulation time.294,295 It 

is noteworthy that cationic lipids with delocalized positive charges, such as pyridinium, 

imidazolium, and guanidinium, showed lower cytotoxicity as compared to quaternary 

ammonium lipids.298–301 In certain cases, cationic lipids may act as vaccine adjuvants by 

taking advantage of their inflammatory effects.302

2.1.1. Quaternary Ammonium Lipids.—Ever since the 1980s, numerous cationic 

lipids with quaternary ammonium head groups have been developed for the delivery 

of DNA and RNA, such as DOTAP, DMRIE, and DODAB, which were reported to 

be effective for RNA delivery (Figure 4).303 As the purification of positively charged 

compounds is relatively challenging, the cationic head groups are preferentially formed via 

quaternization of the corresponding tertiary amines in the final step of the synthesis.304–306 

The synthesis of DOTMA, for example, began with the combination of amino alcohol 

1 with oleyl bromide 2 via ether bond formation; then quaternization of the resulting 

amine 3 with chloroform under reflux condition gave DOTMA.281 In 2016, Kranz et 

al. developed a DOTMA/DOPE LNPs-mRNA vaccine that specifically targeted dendritic 

cells (DCs) in vivo by changing the surface charge from positive to slightly positive or 

neutral. The optimized vaccine induced specific immune responses following intravenous 

administration.307 This DOTMA/DOPE LNPs formulation has also been used to deliver 

mRNA containing 1-methylpseudouridine (m1Ψ) instead of uracil for precision therapy of 

autoimmune diseases in mice.308 In 2020, Reinhard et al. engineered T cells by utilizing 

DOTMA-based LNPs to deliver mRNA encoding a single-chain variable fragment (scFv) 

that could specifically recognize the overexpressed cancer cell surface protein claudin 6 

(CLDN6). The resulting CAR-T cells led to improved regression in mouse models of 

intractable tumors, such as CT26 colon carcinoma mouse models.309 In a recent phase 

1 clinical trial of an mRNA vaccine for melanoma (melanoma FixVac), DOTAP-based 

LNPs were formulated to encapsulate mRNA encoding four tumor associated antigens 

(TAAs) that show high prevalence in melanoma; mRNA molecules were delivered into 

immature DCs in lymphoid tissues, driving TAA presentation on both MHC I and MHC 

II molecules after intravenous administration. Patients showed TLR activation, increased 

body temperature, elevated cytokines level in plasma, and specific response against at 

least one TAA after vaccination.310 In 2017, Cheng et al. used LNPs formulated with 

DOTAP/Cholesterol/eggPC/Tween 80 at a molar ratio of 25:20:50:5 to deliver G3139, an 

antisense oligonucleotide, into A549 lung cancer cells, resulting in 40% knockdown of 
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bcl-2 mRNA and approximately 83% reduction of the bcl-2 protein level, respectively.311 

In 2019, DOTAP LNPs encapsulating hARG1 mRNA were used to treat arginase deficiency 

in inherited metabolic liver disorder, achieving 54% of normal hepatic arginase 24 h 

after administration in mice.312 Cationic liposomes can act as immunomodulators that 

stimulate the innate immune response in some cases.313 For example, DOTAP-based 

cationic liposomes have been used as a vaccine adjuvant.302 The immunostimulatory effects 

of the components of cationic liposomes were related to the length and saturation degree 

of hydrophobic tails. Lipids possessing unsaturated tails or short saturated tails may be 

stronger immunomodulators than lipids with long saturated tails.313 Cationic liposomes 

formulated with DOTAP/DSPC/cholesterol were shown to be capable of activating Toll-

like receptor 4 (TLR4), inducing a greater pro-inflammatory response with enhanced 

Th1 cytokines expression in mice compared with ionic liposomes formulated with DSPG/

HSPC/cholesterol.314 DOTAP-based cationic nanoemulsions (CNEs) have also been used 

as vectors for mRNA delivery.315–320 For instance, CNEs formulated with DOTAP/sorbitan 

trioleate/polysorbate 80/squalene were reported to deliver an mRNA vaccine against several 

viral and bacterial infections in nonhuman primates with two doses of 75 μg.317 In a 

follow-up study, CNEs encapsulating the HIV Type 1 envelope protein mRNA were 

shown to be well-tolerated and immunogenic in nonhuman primates.318 Additionally, 

DOTAP was incorporated to prepare lipid–polymer hybrid nanoparticles (LPHNPs), which 

are composed of a biodegradable RNA-loaded polymer core surrounded by lipid/PEG-

lipid layers.321,322 LPHNPs combine the unique strengths of liposomes and polymeric 

nanoparticles but exclude some of their limitations such as short circulation time and 

structural disintegration.323 Gao et al. formulated LPHNPs with DOTAP/DOPE/cholesterol 

(25:43:25) and poly(amidoamine)/siRNA for siRNA delivery. The resulting LPHNPs 

effectively delivered T7-modified anti-EGFR siRNA to an MCF-7 tumor xenograft murine 

model and inhibited tumor growth.324

A hydroxyalkyl chain incorporated in the head group was capable of providing hydrogen 

bonding to neighboring head groups, thus decreasing the head group hydration and 

improving the encapsulation of nucleic acids via hydrogen bonding with the lipid. In the 

previous studies lipids used in DNA delivery, DORIE and DORI, were obtained by replacing 

one of the methyl groups in the head groups of DOTMA and DOTAP with a hydroxyethyl 

group, respectively, and both of them exhibited greater DNA delivery activity than DOTMA 

or DOTAP (Figure 5).325,326 DMDHP and MLRI were synthesized as analogs of DOTAP for 

mRNA delivery.327,328 MLRI, an asymmetric analog of DORI, contains a myristoyl group 

and a lauroyl group as the hydrophobic tails. Results indicated that mRNA/cationic lipid 

lipoplexes formulated with MLRI or DMDHP could protect mRNA from degradation by 

RNases in human cerebrospinal fluid (hCSF) for at least 4 h.327

In 1999, Kikuchi et al. developed a series of quaternary ammonium lipids and identified 

DC-16-4 as the lead cationic lipid for delivering pDNA to human peritoneal disseminated 

tumors both in vitro and in vivo.329 As shown in Figure 6, the hydrophobic tails were 

installed via acylation of diol 4 with myristoyl chloride 5, and the head group was installed 

via an amide bond formation followed by quaternization of the tertiary amine group. In 

2008, Sato et al. reported the delivery of gp46 siRNA using vitamin A-coupled DC-6-14 
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LNPs in rats, resulting in effective treatment of liver fibrosis and prolonged survival time 

by targeting hepatic stellate cells.330 ND-L02-s0201 is another vitamin A-coupled DC-6-14 

LNP encapsulating siRNA targeting heat shock protein 47 (HSP47), which is involved in 

the fibrosis of the liver. Results of the phase I clinical study of ND-L02-s0201 showed that 

intravenous administration of ND-L02-s0201 at a siRNA dose of 90 mg for 3 weeks was 

well-tolerated in healthy adults.331

In 1997, Gorman et al. reported that dimyristoyl-sn-glycero-3-ethylphosphocholine 

(EDMPC, 12), a phosphotriester derived from phosphocholine, was able to mediate 

efficient gene delivery.332 Then, Macdonald et al. found that phosphotriesters were 

slowly metabolized by intracellular phospholipases in endosomes and lysosomes and 

showed low cytotoxicity.333 In 1999, Macdonald et al. developed a series of alkyl 

phosphatidylcholine triesters, the cationic ethylphosphatidylcholines (ePCs), by introducing 

a third alkyloxy group, through substitution reaction between the phosphoric acid and 

ethyl trifluoromethylsulfonates (Figure 7).334 This method represents a straightforward 

way to convert zwitterionic phospholipids to cationic phospholipids via a simple 

substitution reaction. This transformation not only eliminates the negative-charge of 

phosphatidylcholines but also reduces their hydrogen bond accepting potential. This class 

of cationic lipids has shown effective delivery of pDNA both in vitro and in vivo for 

anticystic fibrosis and antitumor gene therapies.335–338 Dimyristoleoyl-ePC (EDMPC) 12 
was identified as the most efficient ePC that could be used for delivering GFP siRNA 

into breast cancer cells.339 The structure–activity relationship of the ePCs showed that 

the high siRNA delivery efficiency of dimyristoleoyl-ePC (EDMPC) 12 stems from its 

high fusogenicity and ability to induce inverted hexagonal (HII) phases.339 In 2017, a 

lipopolyplex mRNA vaccine was prepared by trapping the mRNA/PBAE core in a bilayer 

lipid shell containing EDOPC/DOPE/DSPE-PEG. This mRNA vaccine showed adjuvant 

activity by stimulating the expression of INF-β and IL-12 in dendritic cells. Subcutaneous 

administration of this mRNA vaccine resulted in a reduction of tumor nodules by 90% 

in mice with lung metastatic B16-OVA tumors.340 In 2019, Zhang et al. prepared LNPs 

with dipalmitoyl-ePC 11 and cholesterol at a molar ratio of 70:30 for delivering mRNA.341 

Results indicated that these LNPs could deliver mRNA encoding an anti-RAS antibody into 

a range of human cancer cells.341

The membrane-disruptive properties of detergent (e.g., Triton X-100 (TX100)) are 

considered for improving nucleic acids delivery. Pierrat et al. synthesized a panel of cationic 

phospholipid–detergent conjugates by covalently attaching a detergent molecule (such as 

Triton X-100 (TX100)) to DOPC (Figure 8).342 Conjugate 14 was able to deliver luciferase 

siRNA into mammalian cell cytosol without helper lipids, but its application was limited 

by its high toxicity. To address the toxicity issue, DOPC and Triton X-100 were conjugated 

through linker groups showing various chemical and biological stabilities (Figure 8).342 

Results showed that conjugates 20 and 21 obtained by replacing the phosphoester bond of 

conjugate 14 with a phospho(alkyl)enecarbonate group showed no loss of siRNA delivery 

activity, whereas the cytotoxicities of conjugates 20 and 21 were significantly decreased. 

The conjugates incorporating the succinate moiety (conjugates 18 and 19) showed even 

lower toxicity along with a reduced siRNA delivery efficiency. The low siRNA delivery 
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efficiency of conjugates 18 and 19 may be attributed to their more labile chemical structures. 

Another such series of conjugates were synthesized by coupling DOPC with low molecular 

weight alcohol or carboxylic acids.343 Lipids 30 and 31 efficiently delivered luciferase 

siRNA into U87 cells, provoking up to 80% of luciferase gene knockdown, whereas the 

other lipids (24–28) were inactive.343

Didodecyldimethylammonium bromide (DDAB) (Figure 9) was previously used to prepare 

nanoparticles as gene delivery vectors, such as cationic liposomes,344 niosomes,345 and 

LNPs.346 In 2011, lipid nanoparticles prepared with DDAB/MOG/siRNA showed effective 

siRNA delivery and induced gene silencing in vitro.347 DDAB-based liposomes have 

also been used in delivering siRNA to lung metastasized tumor following systemic 

injection348 and siRNA delivery targeting dendritic cells.349 The quaternary ammonium 

lipids can be further modified by introducing a second quaternary ammonium group, 

giving cationic gemini lipids (Figure 9).350,351 In 2001, Rosenzweig et al. developed 

a class of diquaternary ammonium lipids for DNA delivery via quaternization of their 

corresponding tetramethyldiamines with alkyl halides.352 A class of dimers of DODAC were 

synthesized by the Cullis group, among which TODMACS6 exhibited the best delivery 

ability. Results suggested that the second quaternary ammonium group may strengthen the 

interactions with DNA, and the delivery efficiency could be tuned by the length of the 

linker between the two head groups.353 Cardiolipin is a class of natural phospholipids that 

exists mainly in the heart and skeletal muscles.354 In 2005, Kasireddy et al. synthesized 

a series of gemini quaternary ammonium cardiolipin analogs (CCLAs) by replacing the 

two negatively charged phosphate groups of cardiolipin with two quaternary ammonium 

groups (Figure 9).355 The CCLA-based liposomes, formulated with CCLA/DOPA at a ratio 

of 1:2, delivered c-raf siRNA efficiently both in vitro and in vivo, inducing up to 62% 

of tumor growth repression in mice.356 A CCLA-based liposome encapsulating anti-Raf-1 

siRNA, designated as NeoPhectin-AT, was shown to repress Raf-1 gene expression and 

concomitantly downregulate cyclin D1 gene expression.357

Previous reports suggested that the incorporation of carbohydrate in cationic lipids increases 

the stability of DNA-loading cationic liposomes, decreases cytotoxicity, and enhances 

DNA delivery efficiency.306,358 Besides, cholesterol is biologically compatible and able 

to stabilize membranes and form stable liposomes. Maslov et al. synthesized a library 

of cholesterol-based cationic lipids with morpholinium, pyridinium, or imidazolium as 

their head groups (Figure 10). They also synthesized other cholesterol-based cationic 

lipids incorporating a carbohydrate residue with piperidinium, morpholinium, pyridinium, 

or imidazolium as the head groups.359,360 LNPs formulated with lipid 37/DOPE showed 

effective EGFP siRNA delivery in vitro and provided pronounced down-regulation of EGFP 

expression in BHK cells.348

Nucleolipids are amphiphilic compounds that possess head groups that can recognize 

nucleic acids and hydrophobic tails.361–364 Ceballos et al. developed a series of nucleoside 

lipids containing different bases attached at the anomeric position, a quaternary ammonium 

head group at the 5′, and two hydrophobic tails at the 2′ and 3′ positions. As for 

nucleolipids 38–43 (Figure 11), two oleoyls were installed to the 2′ and 3′ positions 

and 3-nitropyrrole, 5-nitroindole, or 4-nitroimidazole was attached at the anomeric carbon 
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atom with different stereochemistry.365–367 Nucleolipids 44 and 45 are cationic lipids with 

hydrophobic domains connected to the nucleosides via a ketal linker (44) or an orthoester 

linker (45), respectively.367,368 The synthesis of nucleolipid 38 started with the selective 

protection of the hydroxy groups of D-ribose 46, giving protected sugar 47.369 Next, the 

protected sugar 47 was stereoselectively chlorinated with hexamethylphosphorus triamide 

(HMPT) and CCl4370 followed by attachment of 3-nitropyrrole.371 Removal of the TBS 

protecting group gave alcohol 49, which was tosylated, desilylated, and coupled with oleic 

acids to afford compound 50. The final quaternization reaction with trimethylamine afforded 

the nucleolipids 38. In the case of nucleolipid 45, the starting material 2′-deoxythymidine 

53 was methanesulfonylated with methanesulfonyl chloride and the resulting compound 

underwent a coupling reaction with trihexadecyl orthoformate 52 promoted by pyridinium 

p-toluenesulfonate (PPTS).372 siRNA delivery by nucleolipid 38 LNPs resulted in protein 

knockdown in several cell lines, such as hamster ovarian cells, mouse fibroblast cells, and 

human liver cells. In the following studies based on lipids 40–42, results showed that both 

the stereochemistry at the anomeric carbon and the properties of the bases affected the 

formation of nucleolipids–siRNA complexes. Nucleolipid 45 LNPs were shown to be able 

to deliver the human RecQ helicase (RECQL4) siRNA into tumor cells. The cleavage of 

the orthoester group might promote endosome escape via the in situ generation of fatty 

alcohol.367,368

As mentioned in previous sections, ePCs are quaternary cationic lipids with two nonrigid 

hydrophobic tails, while DC-Chol is an example of a lipid with a rigid cholesterol 

component that has been reported to be efficient in DNA delivery (Figure 12).373,374 It 

was reported that rigid cationic lipids could self-assemble into tightly packed nanoparticles 

due to limited motional flexibility at the hydrophobic domain.375 In 2012, Pungente et al. 

developed five carotenoids-derived single-tailed rigid cationic lipids, which were expected 

to be capable of self-assembling and delivering siRNA efficiently.376 As shown in Figure 

12, cationic lipids 56–60 contain the same rigid C30-carotenoid hydrophobic tails and 

different cationic head groups. The synthesis of these lipids started with the hydrolysis 

of ethyl-β-apo-8′-carotenoate 61, affording β-apo-8′-carotenoic acid 62. Then, these lipids 

were obtained via esterification followed by amination or quaternization. Results indicated 

that these single-tailed rigid cationic lipids were able to deliver siRNA to eukaryotic cells 

in vitro. Cationic lipids containing quaternary ammonium head groups with a hydroxyethyl 

moiety (lipids 58–60) showed enhanced siRNA delivery efficiency. Additionally, introducing 

a second hydroxyethyl group to the head group (lipids 59 and 60) increased the cytotoxicity 

without enhancing siRNA delivery efficiency.376

It is known that sialic acid (SA) is overexpressed on the surface of a variety of cancer 

cells377,378 and phenylboronic acid (PBA) is an effective targeting ligand for improving 

cancer cell recognition and adhesion via interacting with SA.379–381 In 2019, Tang et al. 

synthesized a cationic lipid incorporating a phenylboronic acid ligand, designated as PBA-

BADP,382 via quaternization of the bioreducible ionizable lipid BADP developed by Wang 

et al. (Figure 13).383 PBA-BADP LNPs showed an enhanced delivery of luciferase mRNA 

compared with BADP NPs in SA-overexpressing HeLa cervical cancer cells. Besides, PBA-

BADP LNPs selectively delivered firefly luciferase (FLuc) mRNA to cancer cells including 

Zhang et al. Page 13

Chem Rev. Author manuscript; available in PMC 2023 April 11.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



HeLa cells and DU145 cells rather than noncancer HK-2 and CCC-HPF-1 cells. PBA-BADP 

LNPs encapsulating Cas9 mRNA and HPV18E6 sgRNA induced 18.7% HPV18E6 gene 

knockout efficiency in HeLa cells.382

2.1.2. Guanidinium Lipids.—Potential toxicity is one of the challenges for the 

application of quaternary ammonium-based delivery materials.384,385 One strategy to 

overcome this issue is to delocalize the permanently positive charge of the cationic head 

group. Thus, cationic lipids with amidine, guanidinium, pyridinium, or imidazolium head 

groups are developed. Lipid diC14-amidine (Vectamidine) with an amidine head group is an 

early example of this class of lipids to delocalize the positive charge (Figure 14).386

Cationic lipids incorporating a guanidinium functional group represent another option for 

RNA delivery because guanidinium has the following characteristics: (a) The guanidine is a 

basic functional group with a pKa value at about 13.5, so it can be protonated over a wide 

range of pH environments, resulting in a permanently positively charged guanidinium head 

group at physical pH. (b) The guanidinium group interacts with the phosphate backbone 

of nucleic acids, thus facilitating their encapsulation.387 (c) Hydrogen bonding between 

the guanidinium group and the RNA phosphate backbone can also enhance nucleic acids 

entrapment. (d) The guanidinium group binds with negatively charged proteoglycans on the 

cell membrane, thus enhancing cell uptake of the nanoparticles.388–390

Several groups have chosen arginine, a natural amino acid containing a guanidinium group, 

as the starting material to develop guanidinium type cationic lipids. In 2006, Santel et al. 

synthesized an arginine-derived guanidinium lipid AtuFECT01 (Figure 15).391 Formulated 

with commercially available helper lipids DPhyPE and DSPE-PEG, the resulting siRNA-

Lipoplex was delivered to the tumor endothelial cell following intravenous administration, 

resulting in reduced Tie2 and CD31 expression in the vasculature of mice.391,392 Aleku et 

al. used Atu027 for the inhibition of protein kinase N3 (PKN3) in endothelial cells for the 

treatment of prostate and pancreatic cancers in mice;393,394 the favorable preclinical data 

led to the clinical trial of Atu027.395,396 A phase Ib/IIa study of synergistic therapy of 

pancreatic adenocarcinoma with Atu027 and gemcitabine showed this therapy for pancreatic 

carcinoma was safe and well-tolerated.396 In 2009, Chen et al. synthesized a series of 

guanidinium lipids which contain an L-lysine residue as well as a guanidinium functional 

group as the head group, such as DSGLA (Figure 15).397 siRNA encapsulated in the 

LNPs containing DSGLA showed enhanced cellular uptake and induced stronger gene 

silencing in H460 tumor cells both in vitro and in vivo as compared to that formulated 

with DOTAP.397 In their following work, they used liposome–polycation–DNA (LPD) 

nanoparticles containing DSAA to codeliver VEGF siRNA and Dox. Results showed that 

DSAA acted as an agent that increased the sensitivity of MDR cells to chemotherapy drugs 

and inhibited the expression of MDR transporters.398

In 2010, Mevel et al. reported the synthesis of several cationic lipids comprising a dialkyl 

glycyclamide or cholesteryl-moiety conjugated with a guanidinium head group (Figure 

16).399 The synthesis of DODAG-9 was accomplished in three steps. The starting N-Boc-

glycine 71 was coupled with dioctadecylamine 72 via amide bond formation to give 

amide 73, which was treated with TFA to remove the Boc protecting group, leading 
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to the key glycine amide intermediate 74. Conjugation of intermediate 74 with the 

guanidinylation reagent, 1H-pyrazole-1-carboxamidine monohydrochloride 75,400 in ethanol 

afforded DODAG-9. DODAG-9 was used to deliver antihepatitis B virus (HBV) siRNAs to 

the murine liver in vivo.399

In 2011, Adami et al. created a library of guanidinium type lipids termed DiLA2 based on 

natural and modified arginine for siRNA delivery (Figure 17).401 The amino groups and 

carboxyl groups on these compounds are reaction sites for attaching hydrophobic tails with 

various unsaturation degrees and lengths. A series of DiLA2 analogs were synthesized based 

on nornorarginine, norarginine, L-arginine, and homoarginine; two sets of short hydrocarbon 

tails (C8 and C10) were attached to the α-amino group and the carboxyl group. In vitro 
screening of this panel of DiLA2 led to the identification of norarginine as the desirable 

amino acid to build the DiLA2 library. Then, a series of symmetric norarginine DiLA2 was 

synthesized by incorporating hydrocarbon tails from C12 to C18, and the asymmetric C18:1-

norArg-C16 was synthesized by incorporating a C18:1 tail along with a C16 tail.401 C18:1-

norArg-C16 was identified as the best-performing lipid in this library, which could deliver 

FVII siRNA efficiently, leading to 90% inhibition of FVII mRNA at a dose of 1 mg/kg after 

intravenous administration in mice.401 In 2020, Sanchez-Arribas et al. synthesized another 

arginine-based double-chained guanidinium type lipid, designated as C12ANHC18, which 

consists of the arginine residue linked to a 12-carbon atom alkyl chain and an unsaturated 

C18 alkyl chain.402 The C12ANHC18 LNPs lipoplexes could deliver GFP siRNA efficiently 

into HeLa cells and T731 cells in vitro.402

In 2011, Metwally et al. synthesized four guanidinium derivatives of N4,N9-diacylated 

spermine,403 based on the symmetrical fatty acid amides of spermine (Figure 18).404 

Starting from the selective protection of the two primary amino groups of spermine 

92 with ethyl 1,3-dioxoisoindoline-2-carboxylate 93, followed by coupling of amine 

94 with oleic acid 95, amides 96 was obtained. Removal of phthalimides protecting 

group with ammonium hydroxide gave diamine 97, which was treated with 1,3-di-Boc-2-

(trifluoromethylsulfonyl)-guanidine 98 to install the protected guanidinium group, affording 

compound 99. Guanidinium lipid 90 was obtained after deprotection of 99 with TFA in 

DCM (Figure 18). These guanidinium lipids efficiently bound siRNA and formed the 

corresponding nanoparticles for siRNA delivery in HeLa cells. LNPs formulated with 

guanidinium lipid 90 were able to deliver GFP siRNA into HeLa cells, leading to a reduction 

of GFP expression by 26%.404

Squalene, a natural precursor for the synthesis of cholesterol, has low toxicity and is well-

tolerated in animal tests.405 It has been used as a helper lipid, in substitution of cholesterol, 

in the preparation of cationic niosomes used in gene delivery.406 Bertrand et al. reported the 

delivery of anti-EWS/Fli-1 siRNA into A673 cells in vitro by taking advantage of squalene-

derived guanidinium lipid 100 (SQ-NH(NH2)C=NH2
+, AcO−) (Figure 19).407 Cholesterol-

derived cationic lipid may function as not only a helper lipid but also a complexation 

agent of RNA in the preparation of LNPs encapsulating RNA molecules, as cholesterol is 

an important stabilizer in the preparation of lipid-based nanoparticles. In 2015, Jon et al. 

reported an arginine–cholesterol-derived guanidinium lipid named MA-Chol (Figure 19).408 

MA-Chol was synthesized via the coupling of the protected form of arginine [Boc-Arg(Pbf)-
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OH] 101 and cholesterol followed by deprotection with TFA. Systemic administration of 

anti-PSK siRNA-loaded MA-Chol LNPs resulted in preferential accumulation of siRNA at 

the tumor site and ~81% suppression of tumor growth at a dose of 1 mg/kg in mice.408

In 2018, Bang et al. prepared a library of guanidinium lipids with arginine, oleyl amine, and 

cysteine as the building blocks (Figure 20).409 A cysteine was incorporated in the peptides 

because cysteine has been shown to increase intracellular delivery.410 These compounds 

were composed of two linear peptides (H-RCL and Bz-RCL) and two branched peptides 

(Tri-RCL and Di-RCL). Results showed that H-RCL and Bz-RCL were able to effectively 

deliver GAPDH siRNA in HeLa cells, while Di-RCL and Tri-RCL exhibited low delivery 

efficiency. The incorporation of the hydrophobic benzoyl group in Bz-RCL may improve its 

interaction with the cell membrane and consequently enhance siRNA delivery compared to 

H-RCL LNPs.409

2.1.3. Pyridinium Lipids.—Apart from the guanidinium head group, the permanent 

positive charge can also be delocalized in heterocyclic rings, such as pyridinium rings 

and imidazolium rings. The pyridinium cationic lipids generally have lower cytotoxicity 

compared to lipids with quaternary ammonium head groups.300

In 1997, van der Woude et al. developed a class of pyridinium lipids, termed synthetic 

amphiphiles interdisciplinary (SAINT) (Figure 21).299 As shown in Figure 21, the synthesis 

of SAINT began with the reactions of dialkylation of 4-methylpyridine 103 and various 

alkyl bromides, giving alkylpyridine 104, which was quaternized with methyl iodide to 

afford N-alkylpyridinium iodide 105. Finally, N-alkylpyridinium iodide 105 was treated with 

ion exchange resins (Cl− form) to obtain the N-alkylpyridinium chloride salts.299 SAINT-

C18 liposome (SAINT-O-Somes) could selectively and effectively deliver anti-VCAM-1 

siRNA and anti-E-selectin siRNA into inflammation activated primary endothelial cells 

in vitro, inducing significant downregulation of target genes.411,412 In 2014, they further 

reported that specific PEGylated SAINT-C18 LNPs could deliver anti-VCAM-1 siRNA to 

activate endothelial cells in vivo, resulting in attenuation of VE-cadherin gene expression 

after intravenous administration.413

In 2010, Maslov et al. prepared cholesterol derived pyridinium lipid 111 (Figure 22), 

in which the pyridinium head group is attached to C-6 of the carbohydrate β-glucosyl 

spacer.359 Cationic lipids with imidazolium or morpholinium or piperidinium as the head 

groups were also synthesized. Condensation of acetobromoglucose 106 and cholesterol 

in the presence of Hg(CN)2 gave glucosides 107. Removal of the acetyl groups with 

sodium methoxide gave cholesteryl β-D-glucoside 108, of which the C-6 hydroxy group 

was regioselectively mesylated followed by acylation of the other hydroxy groups to afford 

compound 109. After direct quaternization of pyridine with 4 and deacylation, pyridinium 

lipid 111 was obtained. LNPs containing lipid 111 showed effective EGFP siRNA delivery 

and down-regulation of EGFP in BHK IR780 cells in vitro.359

In 2013, Maslov et al. developed a series of pyridinium cationic lipids that contained various 

hydrophobic domains, including tetradecanol, dialkyl glycerol, and cholesterol (Figure 

23).359,360 Carbamates 118 were obtained via coupling of 6-amino-1-hexanol 117 with 
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tetradecanol 115 promoted by N,N′-carbonyldiimidazole (CDI). Bromination of the hydroxy 

group in compounds 118 followed by quaternization with pyridine gave cationic lipid 112. 

Results showed the type of hydrophobic tails determines the delivery activity of siRNA; 

LNPs containing lipid 113 exhibited better activity in siRNA delivery in vitro than that of 

112 and 114.345

Pyridinium gemini surfactants (GSs), with a higher charge/mass ratio than pyridinium 

type lipids, can generate lipoplexes with smaller size.414,415 Structure–activity relationship 

studies of GSs in DNA delivery showed that the gene delivery efficiency of GSs was 

similar to or higher than that of their pyridinium lipid analogs.299,416,417 GSs with C2 

spacing showed higher delivery efficiency than the other analogs. Although the relatively 

high molecular curvature of GSs is beneficial for increasing the delivery efficiency, it will 

increase their cytotoxicity.418–421 In 2017, Satyal et al. developed a class of analogs of GS, 

named pyridinium pseudogemini surfactants (PGS), in which one of the pyridinium head 

groups were replaced by a noncharged polar moiety that were capable of biodegradation 

and hydrogen bonding (Figure 24).422 The pyridinium pseudogemini surfactants (PGS) 

can mimic the tapered shape of pyridinium gemini surfactant (GS) with one positive 

charge.423 These pyridinium lipids can be hydrolyzed by amidase into neutral components, 

thus reducing their potential cytotoxicity. Type I PGSs showed efficient delivery of pDNA 

and siRNA toward several cell lines.416 To further reduce the cytotoxic effect, type II 

PGSs are designed in which the position of the amide was switched. Upon biodegradation, 

type II PGSs generate two species with no net charge and therefore display much lower 

cytotoxicity. The type II pyridinium PGSs were synthesized via the reaction of pyrylium 

salts 120 with the amino acid 121 to generate the substituted pyridinium head group 

followed by amide bond formation (Figure 24). Py13-16/DOPE was shown to be an efficient 

formulation for the delivery of pDNA, siRNA, and mRNA in vitro.422

2.1.4. Imidazolium Lipids.—In 2009, Dobbs et al. developed two series of imidazolium 

lipids, chloride (142–145) and bromide (146–149) derivatives of 1-methyl-3-[3,4-

bis(alkoxy)-benzyl]4H-imidazolium with different lengths of hydrophobic tails (Figure 

25).424 These lipids were prepared in three steps, following a slightly modified literature 

procedure.425 Methyl 3,4-dihydroxybenzoate 124 was used as the starting material, which 

was etherified with 1-bromoalkanes 125–128 in the presence of potassium carbonate 

in DMF followed by reduction of the ester group, giving benzyl alcohols 129–132. 

Bromination or chlorination of benzyl alcohols 129–132 was carried out with SOBr2 

or SOCl2 as the solvent, respectively; the resulting 3,4-bis(alkoxy)benzyl chlorides or 

bromides were finally converted to the desired imidazolium lipids via quaternization with 

1-methylimidazole 141. Both 143 LNPs and 147 LNPs could induce 80% inhibition of the 

luciferase gene in A549-Luc cells at the anti-Luc siRNA concentration of 10 nM. Structure–

activity relationship analysis showed that imidazolium lipids containing dodecyl tails 

(143, 147) showed enhanced siRNA encapsulation efficiency and higher siRNA delivery 

efficiency than other analogs.424

In 2011, Perche et al. reported the preparation of histidylated LNPs by incorporating 

imidazole/imidazolium lipophosphoramidate lipids (Figure 26).426,427 Results showed that 
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histidylated LNPs were an efficient delivery system for the tumor antigen mRNA delivery 

into splenic dendritic cells.426,427 In 2013, they developed siRNA-loading LNPs formulated 

with imidazole/imidazolium lipophosphoramidate and histidinylated polyethylenimine for 

siRNA delivery into HeLa cells in vitro.428

In 2012, Kumar et al. reported the synthesis of imidazolium gemini lipids and evaluated 

their application in siRNA delivery.429 The imidazolium gemini lipids were synthesized 

as shown in Figure 27. Bromination of the diol 154–156 with PBr3 in dichloromethane 

gave 157–159; alkylation of imidazole was realized via substitution reaction between 

imidazole 160 and 1-bromohexadecane 161 according to the reported procedure.430,431 The 

imidazolium gemini surfactants 163–165 were synthesized by refluxing the corresponding 

dibromoalkoxyalkanes 157–159 with N-n-hexadecyl imidazole 162 in ethanol at 80 °C for 3 

days.429 In vitro biological analysis indicated that imidazolium gemini surfactants 163–165 
yielded efficient siRNA delivery into HEK 293T cells, H1299 cells, and HeLa cells.429

Cationic gemini lipids generally show greatly enhanced properties and lower cytotoxicity 

as compared to their corresponding monovalent counterparts.432–434 In 2013, Pietralik et al. 

prepared a library of imidazolium gemini lipids (166–174) with ether type linking groups 

and hydrophobic tails with different lengths (m = 5, 6, 7, 8, 9, 11, 12, 14, and 16) (Figure 

28).435 Structure–activity relationship analysis showed that the hydrophobic tails should 

not be shorter than 11 carbon atoms (m > 9) to form complexes with 21 bp DNA and 

RNA. When the hydrophobic tail was 12 atoms (m = 12) in length, lipids exhibited the 

highest complexing activity with various nucleic acids.435 In 2016, Andrzejewska et al. 

developed another library of imidazolium gemini lipids (175–181) with variable lengths of 

dioxyalkyl linker groups and dodecyl tails.436 All of these gemini surfactants can effectively 

complex siRNA in a P/N ratio ranging from 1.5 to 10. Imidazolium gemini lipids containing 

dioxyethyl (n = 2, 175) and dioxyhexyl (n = 6, 177) spacer groups showed the strongest 

complexing with siRNA, and they also promoted the formation of an inverted hexagonal 

(HII) phase.436 In 2016, Martínez‐Negro found that gemini lipid with shorter linking spacer 

(182, o = 1) showed higher anti-GFP siRNA delivery efficiency in vitro than gemini lipid 

with longer linking spacer (183, o = 2).437

2.2. Ionizable Lipids

In order to overcome the limitation of cationic lipids and further improve the RNA delivery 

efficiency, numerous ionizable lipids with ionizable amino head groups have been developed 

as a critical component for the formulation of LNPs.384,438–440 These ionizable lipids 

usually contain amino head groups and have an acid dissociation constant (pKa) less 

than 7;441,442 thus, they are protonated and positively charged at acidic pH (pH < 6.0) 

and neutral at physiological condition (pH = 7.4). They can form LNPs with an overall 

surface charge close to neutral, which exhibit reduced toxicity and prolonged circulation 

times as compared with cationic delivery systems after systemic administration, resulting 

in access to many tissues.443–445 In 2001, Semple et al. reported that ASO-loading LNPs 

formulated with DODAP/Chol/DSPC/PEG-CerC14 exhibited a half-life (t1/2) of 5–6 h, 

whereas ASO-loading LNPs containing DODAC/Chol/DSPC/PEG-CerC14 exhibited a half-

life of only 15 min.444 Rapid plasma elimination of DODAC LNPs may be caused by 
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the interactions between the cationic lipid DODAC and the anionic plasma proteins. In 

an acidified endosome, ionizable lipids are protonated and the resulting positively charged 

lipids can interact with negatively charged endosomal membranes, leading to the endosomal 

membrane destabilization and the release of RNA cargo into the cytosol.292 Optimization of 

ionizable lipids is explored by combining iterative screening and modification of lipids in 

one or more domains of their head groups, linkers, or hydrophobic tails.

2.2.1. Primary and Secondary Amino Lipids.—DOSPA is a multivalent lipid in 

which the spermine head group is linked to the hydrophobic domain that contains two 

oleyl tails via an amide bond (Figure 29).446 Lipofectamine is a widely used commercially 

available transfection reagent for pDNA or RNA delivery that contains DOSPA and DOPE 

at a molar ratio of 3:1.447–449 In 2002, Ewart et al. synthesized MVL5, a pentavalent 

ionizable lipid used for nucleic acid delivery.450 As depicted in Figure 29, the multivalent 

building block 186 was prepared by Michael addition of ornithine 184 to acrylonitrile 

followed by hydrogenation of the resulting nitrile moieties 185. Boc-protection of all 

amino groups in compound 186 yielded acid 187. Benzoic acid 190451 was synthesized 

by etherification of ethyl 3,4-dihydroxy benzoate 188 with oleyl bromide 189 followed 

by hydrolysis of the ethyl ester. Coupling of benzoic acid 190 and ethylenediamine 191 
afforded amine 192, which was coupled with acid 187; the resulting product was deprotected 

with TFA to give MVL5. Compared to the monovalent cationic lipid DOTAP/DOPE, 

MVL5/DOPE exhibited lower toxicity and higher gene silencing efficiency in mammalian 

cells.452 As for a LNP formulated with MVL5 and monooleate glycerol (MOG), the high 

positive charge density of MVL5 and positive Gaussian curvature due to MOG facilitated 

endosomal escape, leading to efficient siRNA delivery and gene silencing in vitro.453

In 2006, Ghonaim et al. synthesized six symmetric N4,N9-diacyl spermines based on 

spermine, a naturally occurring polyamine, to evaluate the effects of the length and 

unsaturation degree of hydrocarbon tails on DNA and siRNA formulation.454 These 

N4,N9-diacyl polyamines with long chains454 (Figure 30) were synthesized through a 

three-step route based on their previous work.455,456 First, the two primary amino groups 

of spermine 193 were selectively protected as trifluoroacetamides via reaction with ethyl 

trifluoroacetate.457 Then aliphatic acyl chains were attached to the remaining secondary 

amino groups via amide bond formation. Lastly, the desired lipids were obtained after 

selective removal of the ditrifluoroacetyl protecting groups.458 By adding two mono-cis-

unsaturated C20 or C22 chains, the resulting N4,N9-dieicosenoyl spermine 197 and N4,N9-

dierucoyl spermine 199 were shown to be the lead lipids for siRNA delivery in FEK4 and 

HtTA cells in vitro.454 In 2012, Metwally et al. synthesized seven asymmetric N4,N9-diacyl 

spermines (e.g., 201 and 202), which contained two different hydrocarbon tails, varying in 

length from C18 to C24 with different unsaturation degrees.459 Results showed that C18 

acyl tails with one or two unsaturation degrees induced effective EGFP gene silencing 

in HeLa cells. Besides, lipids that improved cell uptake of siRNA-loading LNPs did not 

necessarily show higher gene silencing activity.459 Among another six asymmetric N4,N9-

diacyl spermines, N4-oleoyl-N9-stearoyl spermine 203 and N4-myristoleoyl-N9-myristoyl 

spermine 202 were effective in siRNA delivery, leading to 34% EGFP gene silencing in 

FEK4 primary skin cells in vitro. Structure–activity relationship analysis showed that the 
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presence of an unsaturated bond in at least one of the hydrophobic tails is necessary for 

effective gene silencing.460

Aminoglycosides, broadly used as antibiotics, are applied for the synthesis of ionizable 

lipids for RNA delivery due to their natural affinity for RNA461–463 as well as their 

multifunctionality and structural variety. In 2007, Desigaux et al. synthesized a series of 

primary amino lipids by linking two dioleyl tails to various aminoglycoside head groups via 

a succinyl spacer (Figure 31).464 DOST and DOSK are derived from aminoglycosides which 

contain a 4,6-disubstituted 2-deoxystreptamine (4,6-DDS) ring, whereas DOSP and DOSN 

are derived from aminoglycosides with a disubstituted 2-deoxystreptamine (4,5-DDS) ring. 

Results showed that compared with the other three aminoglycoside-derived lipids,465 DOSP/

siRNA complexes, with smaller particle size and higher colloidal stability, exhibited obvious 

GFP silencing in d2GFP cells and lamin A/C silencing in HEK293 and Hela cells in 
vitro. The flexibility of DOSP may enhance the endosomal escape of siRNA by forming 

lamellar microdomains, which can destabilize the endosomal membrane efficiently.464 

Afterward, a structure-activity relationship study was performed to assess the importance 

of the hydrophobic tails, the spacer between the head group and the tails, and the behavior 

of stimuli-responsive linkers in delivering different DNA, siRNA, and mRNA.466 With 

DOST as the starting point, a set of another seven tobramycin-based lipids (DMST, DPST, 

DSST, DOAT, DOSUT, DOSET, DODT, and DOSST) were synthesized. As shown in Figure 

31, starting with tobramycin, consecutively selective Cbz-protection of the less sterically 

hindered primary amine and Teoc-protection of the four remaining primary amines were 

realized by sequential addition of reagents 204 and 205 in one pot, giving the protected 

tobramycin derivative 206 in 71% yield. Hydrogenation of 206 allowed for the removal 

of the Cbz protecting group to provide 207. Diacylation of N-Boc serinol 208 with oleoyl 

chloride 209 yielded 210, which was treated with TFA to release the free amino group, 

resulting in amine 211. Then, amine 211 was reacted with succinic anhydride 212 to give 

the conjugate 213. Lastly, 213 and protected tobramycin 207 were coupled via the amide 

bond formation and afforded DOSST after deprotection of the Teoc groups. DOSST was an 

effective lipid for the delivery of mRNA, siRNA, and DNA. Structure-activity relationship 

studies showed that the length of the linker and the properties of the hydrophobic tails 

were important parameters to be considered in building efficient lipids, with the dioleyl tails 

suggested to be a better choice compared to shorter or saturated alkyl tails.466

Ionizable lipids containing naturally occurring amino acids, such as lysine, with different 

hydrophobic tails were first reported to be used for DNA delivery.467,468 In 2009, Suh 

et al. synthesized an ionizable lipid N,N′-dioleylglutamide (DoGo1), which contains two 

oleylamine tails connecting to the two carboxylic acid groups of glutamic acid through 

amide bond linkages (Figure 32).469 Results showed that RFP-specific siRNA formulated 

with DoGo1 was effective in siRNA delivery in vivo, resulting in significant RFP gene 

knockdown in tumor tissues in mice.469 To minimize the toxicity of the amino head groups 

and increase the biostability of the resulting lipids, Xiao et al. synthesized a series of 

lipids incorporating peptidomimetics based on lysine and glutamine (Figure 32).470 N-Boc-

glutamic acid 214 was coupled with oleylamine via amide bonds formation; the resulting 

amide was treated with trifluoroacetic acid to give DoGo1, which was attached to the 
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Boc-protected diornithine peptide 217 followed by Boc removal to afford DoGo3. A single 

injection of siRNA-loading DoGO3 LNPs resulted in a 90% knockdown of apolipoprotein B 

(ApoB) mRNA and a 60% decrease in ApoB protein level in mouse liver at a siRNA dose of 

7 mg/kg.470

The Lu group developed a family of multifunctional ionizable lipids that are comprised of 

an ionizable head group, two distal hydrophobic tails, and two peptide-type linkers (Figure 

33).471–473 In their first library, EHCO LNPs showed a high siRNA delivery efficiency 

into U87-Luc cells.456 Then they further modified EHCO and SHCO by removing the 

histidine residue and incorporating hydrophobic tails with various unsaturation degrees. In 

the secondary library, ECO and ECLn exhibited the highest luciferase gene silencing activity 

in HT29 cells and CHO cells.472 These lipids were synthesized using resin-based solid phase 

synthesis. For example, the synthesis of ECO started with the covalent attachment of one of 

the amine groups of ethylene diamine 219 to the solid material 218; then Michael addition 

of the remaining amine group to methyl acrylate 221 gave compound 222. Aminolysis of 

the esters of compound 222 with ethylene diamine 219 afforded diamine 223, which was 

coupled with Fmoc-Cys(Trt)-OH 224 via peptide bonds formation. The Fmoc group in 

the resulting compound was selectively removed with 20% piperidine to afford compound 

225. Finally, the hydrophobic tails were attached to the free amino groups via amide bond 

formation and ECO was obtained after global deprotection with TFA (Figure 33).456 These 

lipids can form stable LNPs with siRNA without the inclusion of other helper lipids. 

Auto-oxidation of the thiol groups in the cysteine residue incorporated in the linker leads 

to the formation of intermolecular disulfide bonds, which can further stabilize the LNPs.474 

The disulfide bonds in LNPs are relatively stable in the plasma and can be reduced by the 

endogenous glutathione to facilitate siRNA release. Besides, the thiol groups can also act 

as functional groups for modification of LNPs with biocompatible polymers and targeting 

ligands to minimize the immunogenicity and improve the siRNA delivery efficiency of the 

LNPs.475–477

In 2011, Asai et al. synthesized a dicetyl phosphate–tetraethylenepentamine conjugate 

(DCP-TEPA) that contained four ionizable amino groups attaching to the hydrophobic 

phosphate portions through a phosphoramide bond (Figure 34). In HT1080 human 

fibrosarcoma cells, the silencing activity of DCP-TEPA LNPs encapsulating siRNA 

was closely related to the N/P ratio of DCP-TEPA/siRNA.478 In 2019, Asai et al. 

synthesized similar lipids, a dioleylphosphate-diethylenetriamine conjugate (DOP-DETA) 

(Figure 34). The two oleyl tails offered DOP-DETA higher membrane fluidity and 

induced membrane fusion. EGFP siRNA-loading LNPs formulated with DOP-DETA/DPPC/

cholesterol produced significant gene knockdown in HT1080-EGFP human fibrosarcoma 

cells in vitro. The molar ratio of DOP-DETA to siRNA is the determining factor of the 

gene knockdown efficiency.479 In 2019, Okamoto et al. studied the pKa of ionizable lipids 

by replacing hydrogen atom(s) with fluorine atom(s) and evaluated the influence of pKa on 

gene silencing efficiency.480 Two groups of lipids, the EtDA group and the DiETA group, 

were synthesized (Figure 34). The synthesis of ET-CH2F, for example, started with reductive 

amination of 2-fluoroethylamine 226 with N-Boc-2-aminoacetaldehyde 227; the resulting 

amine was treated with 4 M HCl to remove the Boc protecting group to give diamine 228. 
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Chemoselective phosphorylation of the primary amine with dicetyl chlorophosphate 229 
gave Et-CH2F (Figure 34). Due to the strong electron-withdrawing inductive effect of the 

fluorine atom,481 the pKa’s of the ionizable lipids decreased with the increase in the number 

of fluorine atoms. Results showed that the optimal lipid pKa for a high gene silencing effect 

varied according to the number of ionizable amines. LNPs containing Et-CH3 (pKa = 8.2) 

showed the highest gene knockdown efficiency in the EtDA group, and LNPs containing 

Di-CF3 (pKa1 = 7.1, pKa2 < 3.0) outperformed other lipids in the DiETA group. These 

results indicated that the balance between the number of ionizable amines and fluorine 

atoms was crucial to achieving high gene silencing activity.480

In 2011, Chang et al. developed a codelivery system of Mcl-1-specific anticancer siRNA 

and anticancer drugs mitoxantrone (MTO), in which lipids derived from anticancer drug 

acted as ionizable lipids that formed the LNPs for siRNA delivery.482 As shown in Figure 

35, palmitoleic acid was conjugated to the mitoxantrone (MTO), generating two palmitoyl 

MTO (Pal-MTO) lipids: monopalmitoyl MTO 233 and dipalmitoyl MTO 232 (Figure 35). 

Nanoparticles containing monopalmitoyl MTO 233 and dipalmitoyl MTO 232 at a molar 

ratio of 1:1 showed effective Mcl-1 siRNA delivery in vitro, resulting in a reduction of 

B16F10-RFP tumor cell viability by 81%. This LNP-siRNA formulation showed stronger 

anticancer activity after intratumoral administration compared to LNPs alone.482

2.2.2. Tertiary Amino Lipids.—Tertiary amines are compounds in which a nitrogen 

atom has three organic substituents. Generally, tertiary amines are less basic than secondary 

amines, because the steric hindrance of the attached alkyl or aryl groups hinders the 

protonation of the nitrogen atom. Sometimes primary and secondary amino lipids may 

exhibit different charge states in specific pH conditions compared to their tertiary amino 

counterparts. According to the characteristics of the chemical structures and moieties that 

are incorporated, tertiary amino lipids are divided into two major types in this session: (i) 

two-tailed amino lipids and (ii) bioactive molecules derived lipids.

2.2.2.1. Two-Tailed Amino Lipids.: In 2005, Heyes et al. synthesized two-tailed dimethyl 

amino lipids by modifying DOTMA.105 The trimethylammonium head group was replaced 

by a dimethylamino head group, and four hydrophobic tails with incremental degrees of 

saturation were conjugated via the ether linkers, leading to four amino lipids (DSDMA, 

DODMA, DLinDMA, and DLenDMA) (Figure 36). They showed that the unsaturation 

degree of the hydrophobic tails affected fusogenicity, lipid pKa, cellular uptake, and 

intracellular RNA delivery efficiency. The 31P-NMR analysis indicated that the increase 

of the saturation degree of hydrophobic tails from 2 to 0 double bonds compromised the 

fusogenicity of the LNPs. They also found that DLinDMA that contains two 18-carbon 

hydrocarbon tails with two unsaturated degrees showed the highest luciferase gene silencing 

effect in Nuro2A cells. They speculated that the linoleyl chains could produce a lipid 

with an inverted conical shape and tend to adopt the membrane-destabilizing inverted 

hexagonal (HII) phase.105 In 2006, LNPs formulated with DLinDMA/DSPC/cholesterol/

PEG-C-DMA were used to deliver siRNAs, resulting in significant silencing of ApoB 

(>90%) when administrated systemically in nonhuman primates at a dose of 2.5 mg/kg.483 

LNPs containing DODMA could also deliver CDK4 siRNA to MDAMB-468 cells and 

Zhang et al. Page 22

Chem Rev. Author manuscript; available in PMC 2023 April 11.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Hela cells, inducing a significant reduction of CDK4 protein expression.484 In 2013, 

DODMA-based LNP was used for systemic delivery of R-122 miRNA, a liver-specific 

tumor suppressor miRNA, leading to growth suppression of hepatocellular carcinoma (HCC) 

xenografts by 50% in mice.485 A-066 is an analog of DODMA that contains a pyrrole head 

group. A-066 LNPs encapsulating TetR siRNA could induce significant antitumor efficacy 

in orthotopic hepatocellular carcinoma models.486

Researchers have shown that lipids containing asymmetric tails may improve delivery 

efficiency compared to lipids with symmetric tails, owing to the increased fusogenesity 

of lipids and improved membrane fluidity of LNPs.487–490 For example, Tao et al. developed 

a library of dimethylamino lipids with asymmetric tails that were a unique modification of 

DLinDMA (Figure 37).491 Different from DLinDMA, the CLinDMA series incorporated a 

cholesteryl ether hydrophobic domain in the lipid tail. They evaluated the siRNA delivery 

efficiency of these lipids to elucidate their structure–activity relationship and found that 

the interaction between ionizable lipid and biomembrane was closely related to the pKa 

value of the lipid and the environmental pH, and highly charged ionizable lipids lead 

to stronger interaction.492–495 Results also showed that the enhanced fusogenesity and 

membrane destabilizing capability of the ionizable lipids with asymmetric tails appeared 

to correlate with the overall lipid volume.496 Besides, the inclusion of a rigid cholesterol 

ether tail in lipids could produce LNPs that more mimic cell membrane and decrease protein 

adsorption to lipid membranes.497

Other modifications include replacing the ether linkers in DODMA and DLinDMA 

with esters, leading to DODAP and DLinDAP (Figure 38). 3-(Dimethylamino)propane-1,2-

diyldioleate (DODAP), an ionizable variant of DOTAP with a pKa of 6.6, is one of the 

early biodegradable ionizable lipids used for the delivery of nucleic acids.498–500 In 2016, 

LNPs formulated with DODAP/DSPC/cholesterol/C16-PEG2000-Ceramide were used to 

deliver RVG-9r siRNA, leading to efficient silencing of mutant ataxin-3 gene and reduction 

in behavior deficits in two Machado–Joseph disease (MJD) mice following intravenous 

administration.501

In 2010, Semple et al. described the synthesis of latently biodegradable cationic lipids by 

introducing a ketal ring into the linker domain, named as a class of DLin-K-DMA (Figure 

39).502 As shown in Figure 39, at the beginning of the synthesis of DLin-KC2-DMA, 

linoleyl alcohol 234 was converted into linoleyl bromide 236 via methanesulfonylation 

followed by bromination. Then addition reaction between ethyl formate 237 and Grignard 

reagent prepared from 236 gave secondary alcohol 238, which was oxidized to afford 

ketone 239. Finally, the head group was attached via ketalization of ketone 239 with 

diol 240 to furnish DLin-KC2-DMA.502 These ionizable lipids, with pKa values in a 

range between 6.2 and 6.7, displayed potent gene silencing activity in vivo. Particularly, 

DLin-KC2-DMA was identified as the lead candidate among the four lipids for siRNA 

delivery. DLin-KC2-DMA showed tolerability in both rodent and nonhuman primates, 

LNPs formulated with DLinKC2-DMA/DSPC/cholesterol/PEG-lipid at a molecular ratio of 

40:10:40:10 exhibited activity at anti-TTR siRNA doses as low as 0.01 mg/kg in rodent and 

0.1 mg/kg in nonhuman primates, respectively.502 In 2012, a DLin-KC2-DMA formulation 

with an androgen receptor (AR) siRNA was developed as an AR inhibitor to treat prostate 
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cancer. This formulation showed strong suppression of AR both in vitro and in vivo.503 

In 2013, Lin et al. examined in vivo gene silencing activities of LNP-siRNA systems 

incorporating DLinDAP, DLinDMA, DLin-K-DMA, and DLinKC2-DMA and found that 

their activity varied over 3 orders of magnitude with the following order DLinKC2-DMA > 

DLin-K-DMA > DLinDMA ≫ DLinDAP.504 This tendency was in accordance with results 

of previous in vivo gene silencing studies in human prostate tumor tissue503 and primary 

antigen-presenting cells (APC) of the spleen and peritoneal cavity.505

Based on the studies on DLin-K-DMA, additional biodegradable two-tailed dimethyl amino 

lipids were then synthesized (Figure 40).441 The linker domain of the amino lipid was 

further modified by introducing biodegradable ester, amide, carbamate, or carbonate groups 

to modulate the lipid pKa (Figure 40a). 53 amino lipids with pKa values between 4.17 

and 8.12 were prepared and complexed with siRNA to form LNPs. Interestingly, gene 

silencing potency was closely related with pKa value: ionizable lipids with pKa between 

6.2 and 6.5 had the lowest ED50. The lead compound identified in this study was named 

DLin-MC3-DMA (MC3), which contains a dilinoleic acid tail and an ester linker group 

and enables potent hepatic gene silencing with an ED50 of 0.005 mg/kg for rodents and 

less than 0.03 mg/kg for nonhuman primates (a molecular ratio of 50:38.5:10:1.5 for MC3/

cholesterol/DSPC/PEG-lipid).441,502 This LNPs formulation has been applied in Onpattro 

(patisiran), the first FDA approved LNP-based siRNA drug, which targets liver hepatocytes, 

the primary site for the synthesis of TTR protein.506 In 2016, Nabhan et al. used MC3 LNPs 

encapsulating human frataxin (FXN) mRNA for supplementing FXN protein in dorsal root 

ganglia in mice following intrathecal administration.507

In 2013, Rungta et al. synthesized 3-(dimethylamino)propyl-(12Z,15Z)-3-[(9Z,12Z)-

octadeca-9,12-dien-1-yl]henicosa-12,15-dienoate (DMAP-BLP) (Figure 40b), an analog of 

DLin-MC3-DMA.508 The synthesis of DMAP-BLP began with sulfonylation of secondary 

alcohol 238 with methanesulfonyl chloride followed by SN2 reaction with sodium cyanide, 

giving cyanide 246. Cyanide 246 was reduced with DIBAL-H, and the resulting aldehyde 

247 was treated with NaBH4 to afford primary alcohol 248, which was converted to cyanide 

249. Then, reduction of cyanide 249 gave aldehyde 250, which was oxidized with oxone 

to generate acid 251. Finally, the combination of the head group with the hydrophobic tails 

via an esterification reaction between acid 251 and amino alcohol 252 promoted by EDCI 

provided DMAP-BLP (Figure 40).508 Rungta et al. used LNPs formulated with DMAP-BLP 

to deliver GRIN1 siRNA, resulting in efficient silencing of neuronal gene expression in vitro 
and selective reduction of synaptic N-methyl-D-aspartate receptor (NMDAR) currents in the 

brain in mice through intracranial injection.508 In 2016, DMAP-BLP-based LNPs were used 

for investigating the effect of particle size on the in vivo activity of siRNA-loaded LNPs. 

Results showed that siRNA-loading LNPs with diameters < 45 nm were considerably less 

potent in gene silencing as compared to LNPs in larger sizes. This is partially attributed 

to the rapid dissociation of lipid components which leads to a decrease in the stability of 

smaller LNPs.509 DMAP-BLP has also been used to formulate mRNA vaccines in several 

preclinical studies510,511 and clinical studies.510,512 In a series of influenza preclinical 

studies, DMAP-BLP LNP delivered nucleoside-modified mRNA encoding hemagglutinin 

(HA) immunogens intradermally, resulting in full protection of mice against a lethal 
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challenge with a single dose of 0.4 μg per mouse.510 In a phase 1 trial using DMAP-BLP 

LNPs to deliver two distinct mRNA-encoded HA immunogens, all of the 23 participants 

had HAI titers > 1:40 at a dose of 100 μg via intramuscular injection.512 In 2017, a DMAP-

BLP-based LNP formulated with DMAP-BLP/cholesterol/DSPC/PEG-lipid at a weight ratio 

of 50:38.5:10:1.5 was used for delivering IgEsig-prM-E mRNA encoding immunogen for 

the Zika virus. This LNP-mRNA formulation was capable of protecting mice lacking type 

I and II IFN signaling against a lethal challenge with a single dose of 10 μg or two 2 μg 

doses in a prime-boost approach.513,514 In 2018, Jhon et al. prepared DMAP-BLP LNPs 

encapsulating mRNAs encoding the human cytomegalovirus (CMV) glycoprotein B (gB). 

The DMAP-BLP/mRNA vaccine was efficiently delivered in mice and nonhuman primates 

(NHPs) following intramuscular injection, resulting in broadly neutralizing antibodies and 

potent immune responses.515

It is challenging to introduce biodegradable functionality in lipids and maintain high RNA 

delivery efficacy at the same time. In 2013, Maier et al. further modified DLin-MC3-DMA 

by incorporating a biodegradable primary ester linker in place of one of the double bonds 

in the hydrophobic tail (Figure 41).516 The synthesis of L-319 started with the addition of 

Grignard reagent prepared from 9-bromo-1-nonene 253 to ethyl formate, giving secondary 

alcohol 254, which underwent acylation with 4-bromobutanoyl chloride 255 to provide ester 

256. Oxidization of the terminal alkene groups in 256 with RuO4 led to bis-acid 257. 

Then, the dimethylamino head group was installed via substitution of the bromine atom to 

afford amino bis-acid 258. L-319 was finally obtained via bis-esterification of bis-acid 258 
with (Z)-2-nonen-1-ol 259 with EDCI as the carboxyl activating agent. Structure-activity 

relationship analysis showed that the position of the ester bond was critical to the delivery 

efficiency and clearance rate of lipids. Moving the ester bond closer toward the amine head 

group led to decreased delivery efficacy in vivo, which might be related to the decreased 

pKa. When the ester bond was positioned further away from the amine head group, the lipids 

were more resistant in the mouse liver. L-319 was identified as the lead biodegradable amino 

lipid from the screening, and L-319 LNPs had an FVII ED50 of less than 0.01 mg/kg in 

mouse studies. Results from pharmacokinetic studies in mice suggested that the resulting 

water-soluble metabolites from ester cleavage of L-319 were rapidly cleared from plasma 

and tissues without significant toxicity.516

In 2020, Miao et al. synthesized a library of biodegradable analogs of DLin-MC3-DMA by 

introducing ester and alkyne groups into the hydrophobic tails (Figure 42).517 They observed 

that the incorporation of alkyne groups in the hydrophobic tails of the ionizable lipids could 

enhance their fusion with the endosomal membrane, thus facilitating endosomal membrane 

destabilization, endosomal escape, and the release of the mRNA payload. Particularly, A6 

showed an 8.5-fold higher production of human erythropoietin (hEPO) than MC3 LNPs in 

mice. The enhanced endosomal fusion might be caused by the tail protrusion and the lateral 

diffusion of the outer layer lipids into the endosomal membrane. Additionally, coformulation 

of A6 and cKK-E12518 synergistically boosted mRNA delivery into hepatocytes.517

Rajappan et al. synthesized a library of biodegradable ionizable lipids (referred to as ATX) 

that contain a central nitrogen atom connecting with two esterase-sensitive hydrophobic 

tails and the amino head group via a thiocarbamate union (Figure 43).519,520 ATX with 
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diverse chemical structures were obtained by changing the acid chain length, altering 

the esterforming alcohol, and tuning the distance between the sulfur atom and the 

head group. The synthesis of ATX-2, for example, started with the combination of 

methyl-8-bromooctanoate 260 and benzylamine 261, giving benzylic amine 262, which 

was hydrogenated in the presence of Boc-anhydride, affording diester 263. Hydrolysis 

of bis-ester 263 led to diacid 264, which was bis-esterified with (Z)-2-nonenol 265 to 

provide diester 266. The Boc protection was removed, and the resulting Bisester 267 
was treated with triphosgene and 2-(dimethylamino)-ethanethiol 268 in pyridine to yield 

ATX-2. The lipophilicity (indicated by cLogD) and basicity (indicated by pKa) of the lipids 

were measured, and lipids were formulated into LNPs encapsulating anti-FVII siRNA for 

evaluating their activities in the FVII knockdown assay in vivo. Results showed that the in 
vivo activity of lipids is related to a multivariable equation with strong ties to not only its 

pKa but also its lipophilicity. For example, ATX-131 LNP, with a measured pKa of 6.21, 

showed no FVII gene knockdown activity due to its low lipophilicity (cLogD < 10).519 In 

2017, ATX-2 LNPs encapsulating human FIX (hFIX) mRNA were used for treating a Factor 

IX (FIX)-deficient mouse model of hemophilia B, resulting in 2-fold more hFIX protein 

expression than MC3 LNPs at an mRNA dose of 2 mg/kg following intravenous injection.61 

One of the ATX was used to deliver mRNA in the development of the SARS-CoV-2 vaccine 

(LUNAR 36-COV19), of which a single dose of 2 μg per mouse protected mice from both 

mortality and infection following wild-type SARS-CoV-2 challenge.521

In 2020, Ramishetti et al. synthesized a library of analogs of MC3 that contained other linker 

groups such as hydrazine, ethanolamine, and hydroxylamine for gene silencing in leukocyte 

subsets (Figure 44).522 Lipids incorporating hydroxylamine and ethanolamine linkers were 

more efficient in gene silencing in CD8+ and CD4+ T leukocytes compared to that with 

hydrazine linkers. Additionally, lipids with a piperazine head group (lipid 270) accumulated 

more in the spleen than the liver, while lipids with a dimethylamino head group (lipid 

269) resulted in more accumulation in the liver than the spleen. Moreover, lipids with a 

branched ester as the tail (lipids 271 and 272) were less effective for siRNA delivery than 

those with linoleyl chains (lipids 273 and 269). Systemic administration of lipid 269 LNPs 

encapsulating CD45 siRNA resulted in signification reduction of the CD45 level in both 

CD4+ and CD8+ T lymphocytes.522

The results of clinical trials of BNT162b2523–525 and mRNA-1273526–528 vaccines 

successfully led to their approval in clinical application,7–9 providing a powerful approach to 

counteract the worldwide COVID-19 pandemic. Ionizable lipids used in the BNT162b2 and 

mRNA-1273 formulations were disclosed as ALC-0315529,530 and SM-102 (Lipid-H),530,531 

respectively (Figure 45). ALC-0315 has two degradable branched ester tails, and SM-102 

contains a primary degradable ester tail and a degradable branched ester tail. ALC-0315 

LNPs showed approximately 6-fold higher firefly luciferase level than MC3 LNPs at 

a FLuc mRNA dose of 0.3 mg/kg in mice,529 whereas Lipid 5, an analog of SM-102 

(Lipid-H), displayed a 3–6-fold increase in protein expression or immune responses in mice 

compared to MC3 when delivering an mRNA encoding influenza immunogen.531 These 

results indicated that the branching of tails may create a more cone-shaped structure and 

facilitate the endosomal escape of RNA molecules.532,533 BNT162b2 uses LNPs formulated 
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with ALC-0315/cholesterol/DSPC/PEG-lipid to deliver mRNA encoding immunogen that is 

a diproline-stabilized, membrane-bound spike protein.525 mRNA-1273 uses SM-102 LNPs 

to deliver mRNA encoding transmembrane-anchored diproline-stabilized prefusion spike 

with a native furin cleavage site. SM-102 (lipid H)531 and lipid 5534 belong to a class 

of biodegradable ionizable lipids that were synthesized by incorporating greater branching 

rather than the dilinoleic alkyl tails of MC3.531,534 Both lipid 5534 and SM-102 (lipid H)531 

contain an ethanolamine head group, a saturated linear tail with a primary ester linker and 

a second saturated branched tail with a less biodegradable secondary ester linker. Lipid 5 

LNPs displayed luciferase expression 3-fold higher as compared to MC3 LNPs in mice and 

induced hEPO expression 5-fold higher than MC3 LNPs in nonhuman primates following 

intravenous administration. The enhanced protein expression may possibly be due to a high 

endosomal release of the mRNA cargo in lipid 5 LNPs. Pharmacokinetic studies revealed 

that lipid 5 LNPs decreased liver accumulation and were fully degraded within 24 h in both 

rats and nonhuman primates. SM-102 (lipid-H), which structurally differs from lipid 5 by a 

two-carbon displacement of the primary ester tail, was identified as the most promising lipid 

following intramuscular (IM) administration. The pKa of SM-102 LNPs is slightly higher 

than that of lipid 5 LNP (6.68 vs 6.56).531 Results of a phase 3 clinical trial showed that 

two 30 μg doses of BNT162b2 induced 95% protection against COVID-19 (95% credible 

interval, 90.3 to 97.6),525 and mRNA-1273 conferred 94.1% protection against COVID-19 

illness after receiving two 100 μg doses in another phase 3 clinical trial.527 In 2021, Elia 

et al. used lipid 274 LNPs and lipid 275 LNPs to deliver mRNA encoding SARS-CoV-2 

human Fc-conjugated receptor binding domain (RBD-hFc mRNA).57 While both lipid 274 
LNP RBD-hFc mRNA and lipid 275 LNP RBD-hFc mRNA induced equal cellular and 

humoral responses in mice at an mRNA dose of 5 μg, only lipid 275 LNP RBD-hFc mRNA 

exhibited strong immunogenicity following intradermal administration. Both intradermal 

administration and intramuscular administration of lipid 275 LNPs could activate antigen 

presenting cells (APCs), thus inducing cellular responses.57

The stability of LNP–RNA formulations is related to the properties of both RNA molecules 

and LNPs. For example, chemically modified siRNA molecules are double-stranded and 

relatively stable, while mRNA molecules are prone to be degraded via hydrolysis of the 

phosphodiester bonds535 and oxidation of the nucleobases.536 The chemical and physical 

features of LNPs can greatly affect their stability. The unsaturated hydrocarbon tails of 

lipids or cholesterol can be oxidized by various enzymes or agents.537,538 Aggregation 

and fusion can lead to physical destabilization of LNPs.539,540 Generally, PEG-lipids are 

incorporated in LNPs to prevent the aggregation of nanoparticles and to improve their 

circulation stability.541 At 2–8 °C, mRNA-1273 and BNT162b2 can be stored for 30 days 

and 5 days, respectively. Both of them need to be stored in a frozen state at extremely low 

temperature for long shelf life (6 months) and thawed before injection.542 The shelf life of 

the LNP–siRNA formulation of patisiran is as long as three-years when kept between 2 and 

8 °C. The main difference of lipid components between the two LNP–mRNA vaccines and 

the LNP–siRNA formulation of patisiran lies in the ionizable lipids (SM-102, ALC-0315 vs 

MC3); therefore, it may be the stability of mRNA, rather than that of LNP, which determines 

the storage conditions and shelf life of LNP–mRNA formulations.543
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In 2017, Fin et al. reported the simultaneous delivery of Cas9 mRNA and sgRNA 

for transthyretin gene editing in vivo by using LP-01 LNPs, resulting in a significant 

transthyretin gene editing in the liver in mice and a reduction in serum transthyretin levels 

by >97% after a single administration (Figure 46).544 In 2017, Dahlman et al. developed 

an efficient method to measure the biodistribution of many barcoded nanoparticles in a 

single mouse.545 This barcoded nanoparticle system can facilitate the characterizations of 

a large number of LNPs targeting specific tissues and cells and aid understanding of the 

structure–activity relationship of lipids in vivo. In 2019, they found that certain LNPs could 

deliver sgRNA and siRNA into splenic T cells in vivo.546 They synthesized a library of 

16 constrained ionizable lipids containing small head groups (diethylamino head group or 

1-pyrrodinyl head group), carbonate linkers, and two hydrophobic tails. As shown in Figure 

46, the two hydrophobic tails were attached to two hydroxyl groups trimethylolmethane 276 
via successive esterification, and the amino head group was conjugated to the remaining 

hydroxyl group via a carbonate linker to afford the desired lipids. 55 LNPs carrying anti-

GFP siRNA and unique barcodes were formulated from 15 ionizable lipids, C14-PEG2000, 

cholesterol, and DSPC at four different ratios. Results showed that the top-performing 

11-A-M LNPs were enriched more than other LNPs at a dose of 0.5 mg/kg in mice. The 

biodistribution of 11-A-M LNPs was in splenic CD8+ T cells, CD4+ T cells, and B cells. 

11-A-M LNPs were also used to deliver chemically modified sgRNA targeting GFP to 

downregulate the expression of GFP in CD8+ and CD4+ T cells in mice.546

ssPalm are a class of gemini ionizable lipids, in which the two tertiary amino head 

groups are connected via a bioreducible disulfide linker and each amino head group is 

connected with a methyl group and hydrophobic tails (Figure 47).547–552 The starting 

material for the preparation of ssPalmM was 2,2′-dithioldiethanol 282, which was 

methanesulfonylated to give methanesulfonate ester 283. The head groups were installed 

via the substitution reaction between methanesulfonate ester 283 and 3-(methylamino)-1-

propanol 284, affording diol 285. Diol 285 was esterified with myristic acid to give 

ssPalM.547 Prior studies reported that ssPalm was protonated after internalization of ssPalm 

LNPs into cells, thus facilitating the endosomal escape of ssPalm LNPs.504 Besides, the 

disulfide bridge cleavage induced by intracellular glutathione (GSH) in lysosomes facilitated 

the disassembly of LNPs and the release of the encapsulated RNA molecules.547,553 In 

2015, Akita et al. found that ssPalmE LNPs could deliver FVII siRNA to hepatic cells 

more efficiently as compared to ssPalmM or ssPalmA after intravenous administration at 

a siRNA dose of 4 mg/kg in mice.554 ssPalmA LNPs were used to deliver siRNA against 

Col1a1, resulting in an inhibitory effect on hepatic fibrosis in mice following systemic 

injection, with an ED50 of 0.25 mg/kg.555 In 2015, they further modified ssPalmE by 

incorporating more flexible piperidine and systemically prolonging the distance between the 

hydrophobic domains and the ionizable nitrogen atoms, resulting in the pKa being increased 

from 6.03 to 6.18, thus allowing the tertiary amine groups more readily to be pronated. The 

increased pKa of the ssPalmE-P4-C2 led to the ED50 value for the ssPalm-P4-C2 LNPs in 

FVII knockdown as low as 0.035 mg/kg in mice.554 In 2018, by integrating the oleic acid 

scaffold into the ssPalm, Tanaka et al. prepared ssPalmO and its derivatives, which exhibited 

high mRNA delivery efficiency in the colon and less immune stimulation.556,557 In 2019, 

Tateshita et al. reported the ex vivo transfection of DCs using ssPalmE LNPs encapsulating 
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ovalbumin (OVA) mRNA; the transfected DCs induced strong cytokines production in 

mouse bone marrow-derived dendritic cells (BMDCs).558 In 2020, Tanaka et al. synthesized 

a self-degradable analog of ssPalmO, ssPalmO-Phe, by introducing a phenyl ester linker. 

The self-degradation of ssPalmO-Phe involved in the mechanism of “hydrolysis accelerated 

by intra-particle enrichment of reactant (HyPER)”.550 In this reaction, disulfide bonds are 

cleaved under a reducing environment, generating enriched hydrophobic thiols, which can 

attack the phenyl ester linker group and break them down. Additionally, codelivery of Cas9 

mRNA and sgRNA targeting TTR by ssPalmO-Phe LNPs allowed the editing of 55% of 

the TTR-encoding genome and led to a 95% reduction in serum TTR level after systemic 

administration in mice.550

The Harashima group developed the YSK series of ionizable lipids; among them several 

lead lipids have been identified, such as the first generation YSK05,202 the second 

generation YSK13-C3,559,560 as well as the third generation YSK12-C4561 and CL4H6562 

(Figure 48). In 2012, DODAP-based lipid YSK05 was developed, which contained an 

ionizable cyclic tertiary amino head group, a ketal linker, and two linoleyl chains. YSK05, 

with a pKa value of 6.4, could promote endosomal membrane fusion and endosomal escape. 

YSK05 LNPs encapsulating anti-PLK1 siRNA showed efficient and durable PLK1 gene 

silencing activity after intravenous administration in mice.202,563 YSK05 LNPs have also 

been used in siRNA delivery for the treatment of hepatitis C virus (HCV) infections in mice 

with humanized livers564 and the codelivery of sorafenib (SOR) and anti-midkine gene (anti-

MK) siRNA to treat hepatocellular carcinoma (HCC).565 To enhance the tissue clearance 

as well as RNA delivery efficiency, biodegradable YSK13-C3 was then developed.559,560 

The ED50 of gene silencing in mice following intravenous administration of YSK13-C3 

LNPs encapsulating blood-clotting factor VII (FVII) siRNA was 0.015 mg/kg, which was 

about 4-fold more active than that of YSK05 LNPs.560 Intravenous injection of HBV 

siRNA-loading YSK13-C3 LNPs into mice could simultaneously reduce the levels of 

the HBV DNA and HBV antigens (HBsAg and HBeAg).560 In 2016, they developed 

YSK12-C4, which contained a hydroxy group near the amino head group. The use of 

YSK12-C4 LNPs encapsulating scavenger receptor class B type 1 (SR-B1) resulted in a 

gene silencing in mouse BMDCs, with an ED50 of 1.5 nM. Additionally, downregulation 

of the suppressor of cytokine signaling 1 led to an elevation of the cytokine level and 

significant inhibition of tumor growth.561 Based on the study of YSK12-C4, CL4H6, a 

lipid that contained oleic acid esters in the hydrophobic tails and had a pKa value of 6.25 

was identified as another lead lipid (Figure 48).562 Structure–activity relationships showed 

that the structure of the head group was key to the apparent pKa’s of ionizable lipids and 

played an important role in the intrahepatic distribution and endosomal escape of LNPs. 

Intravenous administration of CL4H6 LNPs encapsulating FVII siRNA into mice resulted in 

significant FVII gene silencing with a hepatic ED50 of 0.0025 mg/kg.562 As shown in Figure 

48, the starting material for the synthesis of CL4H6 was 6-bromo-1-hexanol 286, which 

was treated with tert-butyldimethylsilyl chloride (TBSCl) to protect the hydroxy group, 

giving compound 287. Grignard reagent prepared from compound 287 was reacted with 

δ-valerolactone 288 to afford diol 289. The amino head group was installed via chemical 

selective sulfonylation of the primary hydroxy group of diol 289 followed by a substitution 

reaction with dipropylamine 290, providing compound 291. Removal of the two TBS 
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protecting groups led to triol 292, which underwent bis-esterification of the two primary 

hydroxy groups with oleic acid to obtain EL4H6 (Figure 48).562

In 2014, Gindy et al. reported that LNPs containing lipids with asymmetric tails were 

well-tolerated as they were rapidly cleared in vivo.566 Asymmetric lipid-formulated LNPs 

favor the adoption of destabilizing nonbilayer structures to facilitate the release of RNA 

cargo. However, these LNPs suffer from physical instability during storage, due to their 

weak hydrophobic interactions between the lipid components in LNPs, which may be 

driven by the asymmetric lipids.566 Based on this work, Suzuki et al. developed a series 

of ionizable lipids that contained two asymmetric hydrophobic tails (e.g., L021) (Figure 

49). In vitro screening and structure–activity relationship studies identified L021 that 

contained an N-methylpiperdine head group and a C9 short tail, as the lead candidate for 

siRNA delivery (Figure 49).567 Intravenous injection of L021 LNPs encapsulating FVII 

siRNA induced significant FVII gene knockdown with an ED50 of ~0.02 mg/kg in mice. 

Additionally, L021 LNPs were stable to be stored at 4 °C for 1.5 years as a liquid without 

an increase in LNPs size or degradation of lipids. The cyclic N-methylpiperidine head group 

may increase hydrophobic interactions between the lipid components in the LNPs, thus 

enhancing the bilayer packing and conferring LNPs with sufficient stability.567 In 2016, 

they also revealed that both low-density lipoprotein (LDL) receptor and Apolipoprotein 

E (ApoE) played significant roles in in vivo intracellular uptake of L021 LNPs. Besides, 

in vivo biodistribution of L021 LNPs was significantly influenced by ApoE.568 In 2017, 

they synthesized a biodegradable analog of L021, L101, by introducing an ester linker 

into the long hydrophobic tail (Figure 49).569 As shown in Figure 49, monohydrolysis of 

diethyl decanedioate 294 gave decanedioic acid monoethyl ester 295, which was treated 

with oxalyl chloride to afford acyl chloride 296. Substitution reaction between acyl chloride 

296 and in situ generated organocuprate reagent led to ketone 297. The biodegradable tail 

was installed via transesterification between 297 and (Z)-non-2-en-1-ol 298 catalyzed by 

Ti(Oi-Pr)4, giving compound 299. Finally, the ketone 299 was reduced and coupled with 

amino acid 301 to furnish lipid L101. L101 LNPs encapsulating anti-FVII siRNA induced 

significant FVII gene silencing in vivo in mice in a dose-dependent manner with an ED50 of 

0.02 mg/kg in terms of siRNA. They also found that L101 was resistant to mouse or human 

serum esterase but could be degraded by intracellular hepatic enzymes (e.g., lysosomal 

esterases). Compared to biodegradable L101, nondegradable L021 showed a 100-fold more 

accumulation in mouse liver.569

In 2017, Viricel et al. developed a series of ionizable switchable lipids that contained 

a tricyclic ionizable head group and two dodecyl hydrophobic tails.570 Various ionizable 

amino groups can be attached to the 4′-position of the central pyridine ring to modify the 

head group (Figure 50a). The synthesis of CSL3 began with a substitution reaction between 

2,6-dibromopyridin-4-amine 302 and 2-iodo-N,N-dimethylethan-1-amine 303 followed by 

methylation of the resulting amine, giving amine 304. The tricyclic core 306 was formed 

via Suzuki coupling571,572 between compound 304 and phenylboronic acid 305. Finally, the 

hydrophobic tails were installed via Sonogashira coupling573 followed by hydrogenation of 

the carbon–carbon tribonds (Figure 50b). As reported in their previous work, lipids with this 

type of backbone can change their conformation upon protonation of the central pyridine at 
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endosomal pH values (pH 5) (Figure 50c), and lipids with alkyl tails of 12 carbons showed 

the highest siRNA delivery efficiency in vivo.574 Once the central pyridine is protonated, 

intramolecular hydrogen bonding within the tricyclic core will lead to an orientation change 

of the two hydrophobic tails. Conformation change of the hydrocarbon tails destabilizes 

LNPs and prompts the release of the siRNA payload (Figure 50c).570,574 Results showed 

that siRNA-loading CSL2 LNPs and siRNA-loading CSL3 LNPs showed dose-dependent 

gene knockdown activity in vitro, whereas siRNA-loading CSL1 LNPs was ineffective. The 

failure of CSL1 LNPs in gene knockdown may be attributed to the bulky head group that can 

inhibit intramolecular hydrogen bond formation. CSL4, lacking the two methoxy groups, 

remained in endosomes as it could not undergo a conformational change.570

2.2.2.2. Bioactive Molecules Derived Lipids.: Lipids incorporating various bioactive 

molecules, such as oligopeptides/amino acids, sugar,575 and small molecular drugs,59,576,577 

have been developed as formulation components for RNA delivery. Cholesterol, for 

example, is biologically compatible and generally used as a helper lipid to stabilize the 

LNPs.578,579 Many cholesterol-based ionizable lipids have been synthesized and used in the 

applications of RNA delivery.496,580,581

In 1991, Gao et al. reported the synthesis of DC-Chol, a cholesterol-derived ionizable 

lipid in which the dimethylamine head group is attached to the cholesterol moiety via a 

biodegradable carbamate linker (Figure 51).581 In contrast to cationic liposome formulated 

with fully charged cationic lipids, such as DOTMA and DOTAP, LNPs formulated with 

DC-Chol/DOPE are only partially charged at pH 7.4,582 thus inhibiting the aggregation of 

LNPs.583 In 2011, Zhang et al. found that at a DC-chol/siRNA weight ratio as high as five 

or ten, DC-Chol/DOPE LNPs showed the highest siRNA delivery efficiency into SK-BR3 

cells in vitro.584 In a mouse tumor model, PEGylated DC-Chol/DOPE LNPs containing 

kinesin spindle protein (KSP) siRNA led to a significant KSP gene silencing at tumor 

sites and a strong inhibition of tumor growth after systemic administration in mice at a 

siRNA dose of 1 mg/kg.585 The DC-Chol/DOPE LNPs have also been used in encapsulating 

alpha-1-antitrypsin (AAT) mRNA, resulting in high transfection efficiencies and sustained 

AAT protein expression in A549 cells in vitro.586 In 2016, Zhao et al. synthesized another 

cholesterol-based ionizable lipid, designated as DMAPA-chems, in which the head group 

and cholesterol moiety were connected through a 1,4-succinic acid linker with biodegradable 

ester and amide linkage bonds (Figure 51).587 DMAPA-chems LNPs encapsulating Notch1 

siRNA showed high Notch1 gene knockdown efficiency in SKOV3 cells at an N/P ratio of 

100.587

In 2019, Hou et al. reported a library of vitamin-derived lipids: VB3-Lipid, VC-Lipid, VD-

Lipid, VE-Lipid, and VH-Lipid (Figure 52).59 These vitamin-derived lipids were prepared 

through the conjugation of vitamins or their derivatives with an amino lipid with a 

carboxylic acid group through ester or amide bond formation. LNPs formulated with VC-

Lipid were optimal in delivering mRNA encoding an antimicrobial peptide IB367 along with 

a cathepsin B (CatB) via a cleavable linker into macrophages. The VC-LNPs engineered 

macrophages provide a promising therapeutic against multidrug-resistant bacteria-induced 

sepsis.59
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Given the fact that phospholipids and glycolipids are natural components of the cell 

membrane, Zhang et al. synthesized a library of phospholipid and glycolipid-derived 

ionizable lipids (PLs and GLs) and used these materials to formulate biomimetic 

nanoparticles for mRNA delivery (Figure 53).588 The synthesis of PL1 started with 

phosphorylation of 3-bromo-1-propanol 309, giving phosphate triester 310, while the 

synthesis of GL1 began with glycosylation of β-D-galactose-pentaacetate 314 with 3-

bromo-1-propanol 309 promoted by a boron trifluoride diethyl etherate complex. The 

remaining chemical conversions include the substitution of bromide in compounds 310 
and 315 with monoprotected 1,3-propanediamine 311, removal of the Boc protecting group 

using TFA, and reductive amination reaction.

2.2.3. Lipidoids.—Combinatorial chemistry approaches permit the rapid synthesis 

of large libraries of ionizable lipids, which are termed lipidoids or lipid-like 

compounds.518,589–592 An important advantage of combinatorial chemistry approaches is 

that a vast number of lipids with large diversities can be synthesized by assembling variant 

building blocks. The combination of this method with high-throughput screening can lead 

to the quick discovery of ionizable lipids with good RNA delivery efficiency.518,589–591 

Many types of reactions can be applied to produce lipidoids, including aza-Michael 

addition of amines with acrylamides or acrylesters,589,593,594 ring-opening of epoxides with 

amines,590,595,596 and reductive amination of aldehydes597–599 (Figure 54). Thiol–yne click 

reaction600,601 and multicomponent reactions602–604 can also be used in the synthesis of 

lipidoids (Figure 54).

2.2.3.1. Lipidoids Synthesized via Michael Addition.: In 2008, the Anderson and Langer 

group reported a library of lipidoids composed of 1200 lipids by conjugating 54 polyamines 

with 17 acrylamides and acryl ester with varying length of the alkyl group (between 9 

to 18) (Figure 55).589 98N-12 with 5 tails attached (98N12-5) turned out to be a lead 

lipid when tested for gene silencing in HeLa cells. 98N12-5 LNPs encapsulating anti-FVII 

siRNA induced a 90% reduction of expression of the blood clotting Factor VII at a siRNA 

dose of 5 mg/kg in murine liver.589 In 2009, Nguyen et al. found that 98N12-5 LNPs 

encapsulating siRNA targeting the influenza nucleoprotein gene could lead to effective 

antiviral activity in vivo following systemic administration in mice.605 Pharmacodynamic 

studies of 98N12-5 LNPs showed they specifically targeted the liver following intravenous 

and intraperitoneal injection,606 and tissue biodistribution data indicated that >90% injected 

dose was distributed in the liver.607 PCSK9 siRNA-loading LNPs formulated with 98N12-5/

cholesterol/DMG-mPEG2000 at a molar ratio of 42:48:10 led to significant silencing of 

PCSK9 gene in mice following systemic administration.608

In 2014, Whitehead et al. evaluated the antifactor VII siRNA delivery efficacy of a library 

of 1400 lipids prepared from amines and acrylate tails and identified 304O13 as the lead 

candidate, which induced factor VII gene silencing with an ED50 of 0.01 mg/kg in mice 

(Figure 56).609 Structure–activity relationship studies showed that lipids containing three 

or more O13 tails and at least one tertiary amine may exhibit strong siRNA delivery 

efficacy. Then a secondary library of lipids was prepared from 12 polyamines and O13, 

and 503O13 was shown to be the best lipid for siRNA delivery in vivo.609 In 2016, the 

Zhang et al. Page 32

Chem Rev. Author manuscript; available in PMC 2023 April 11.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Whitehead group studied another library of lipidoids synthesized from the combination 

of 6 amines and 13 tails (Figure 56) and found that lipidoids synthesized from alkyl 

acrylate were shown to be more effective in siRNA delivery than lipidoids prepared 

from the methacrylate tail.610 Isodecyl acrylate (Oi10)-conjugated lipidoids exhibited the 

highest siRNA delivery efficiency in the whole library. The chemical structure of the tails 

significantly affected the surface pKa values of LNPs.610 In 2018, Ball et al. reported that 

306Oi10-based LNPs can codeliver Factor VII siRNA and luciferase mRNA in vivo, which 

may be a potential method for treating diseases associated with both aberrant upregulation 

and downregulation of genes. Co-formulation of siRNA and mRNA in a single LNP 

substantially enhanced their delivery efficiency compared to LNPs encapsulating individual 

RNAs.611 In 2019, Hajj et al. found that 306Oi10, with a one-carbon branch, increased 

luciferase mRNA delivery 10-fold compared to the linear tailed 306O10 (Figure 56).612 

The improvement may be due to the branch in the Oi10 tail that increases the distance 

between lipidoid molecules within the LNP bilayer, thus facilitating protonation of the 

lipidoid molecules at the late stage of the endosome.612 Additionally, 360Oi10 LNPs could 

deliver Cy5-labeled luciferase mRNA to hepatocytes, endothelial cells, and Kupffer cells 

in the liver following intravenous administration. Besides, 360Oi10 LNPs were capable of 

sufficiently encapsulating and codelivering functionally three different mRNAs (mCherry, 

firefly luciferase, and erythropoietin) in mice in vivo.613

By utilizing the combinatorial strategy, the Xu group has developed many bioreducible 

ionizable lipids, of which the hydrophobic tails contain both disulfide bonds and ester bonds 

(Figure 57).614–621 Disulfide bonds are cleavable under the intracellular GSH condition, and 

esters can be hydrolyzed by esterase, thus facilitating degradation of lipidoids and RNA 

release. In 2014, 1-O16B was found as a lead candidate, which can deliver GFP-targeting 

siRNA to downregulate GFP in MDA-MB-231 cells.383 In 2016, by screening another 

library of bioreducible ionizable lipids, 8-O14B was shown to be capable of delivering 

Cas9 and sgRNA into GFP-HEK cells, resulting in greater than 70% knockdown of 

GFP expression with efficiency. Structure–activity relationship study suggested that lipids 

containing hydrophobic tails with a tail length between 14 to 18 carbons were more efficient 

in Cre protein delivery than lipids with 12-carbon tails.622 BAME-O16B LNPs were used in 

codelivery of Cas9 mRNA and sgRNA, leading to knockout of cellular GFP expression with 

efficiency up to 90% in human embryonic kidney cells and reduction of serum PCSK9 by 

80% in C57BL/6 mice.618 In 2019, LNPs formulated with 306-O12B-3/cholesterol/DOPE/

DSPE-PEG2000 at a ratio of 16:4:1:1 (w/w) were used to deliver ASOs targeting proprotein 

convertase subtilisin/kexin type 9 (PCSK9) in mice, resulting in significant PCSK9 silencing 

with the ED50 as low as 0.034 mg/kg following systemic administration.623 In 2020, Ma 

et al. synthesized a class of neurotransmitter-derived lipidoids (NT-lipidoids)615 for brain 

delivery of RNA, as neurotransmitters (e.g., tryptamine) can traverse the blood–brain barrier 

(BBB) effectively.624,625 LNPs formulated with 306-O12B-3 and NT1-O14B at a ratio of 

7:3 (w/w) could cross the BBB and deliver Tau-ASO into neuronal cells, leading to a 

reduction of tau mRNA by ~50% and a reduction of tau protein by ~30% at a Tau-ASO 

dose of 20 μg following five times intravenous administration.615 In 2021, Zhao et al. 

reported two top lipidoid candidates, 93-O17S and 9322-O17S, for delivering mRNA into 

the primary T lymphocytes via a rough-to-detail screening approach.614 Structure–activity 
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analysis showed that the amine head group, heteroatom substitution, spacer length, and 

linker type in the tail are all critical factors that influenced the RNA delivery efficiency. Both 

93-O17S LNPs and 9322-O17S LNPs could deliver Fluc mRNA to the spleen efficiently in 

mice in vivo. Systemic delivery of Cre mRNA using 93-O17S LNPs could result in ~8.2% 

and ~6.5% of delivery efficacy into CD4+ and CD8+ T cells in mice, respectively.614

In 2016, Zhou et al. prepared a library of over 1500 degradable dendrimer-like lipids 

via Michael addition between various amines and acrylate esters followed by thiol–ene 

reaction with alkyl thiols.626 5A2-SC8, a lipid with five nitrogen atoms and five short 

alkyl chains, was identified as the top-performing lipid in the library (Figure 58). LNPs 

encapsulating let-7g miRNA prepared from 5A2-SC8/DSPC/cholesterol/PEG-lipid induced 

strong let-7g gene silencing effects, inhibited tumor growth, and prolonged the survival 

time of mice with liver cancer at a miRNA dose of 1 mg/kg following weekly intravenous 

administration.626 In 2018, Zhou et al. optimized the formulation of 5A2-SC8 LNPs by 

lowering the mole fraction of 5A2-SC8 to 24% and using DOPE instead of DSPC; the 

optimized 5A2-SC8 LNPs showed strong luciferase mRNA delivery efficacy in mice.627 In 

FAH−/−mice, 5A2-SC8 LNPs encapsulating fumarylacetoacetate hydrolase (FAH) mRNA 

induced equivalent levels of ALT, TBIL, and AST compared to wild type mice following 

intravenous injection.627

2.2.3.2. Lipidoids Synthesized via Epoxide Ring-Opening.: In 2010, Love et al. 

synthesized a library of amino alcohol-derived lipids via a ring-opening reaction of epoxides 

with varying tail lengths with amines (Figure 59a).590 C12-200 LNPs encapsulating FVII 

siRNA induced effective silencing of factor VII in mouse hepatocytes at low doses after 

intravenous administration.590 In 2013, Sahay et al. confirmed that siRNA delivery by 

C12-200 LNPs was mediated by Cdc42-dependent micropinocytosis.628 In a later study, a 

formulation of C12-200/DOPE/cholesterol/C14-PEG2000 at a molar ratio of 35:16:46.5:2.5 

was used to prepare the optimized mRNA-loading C12-200 LNPs, which induced 7-fold 

more EPO protein expression than the initial formulation (C12-200/DSPC/cholesterol/C14-

PEG2000).629 C12-200 LNPs prepared in this formulation have been used in the study 

for mRNA-mediated human α-galactosidase protein replacement therapy in mice and 

nonhuman primates.630 In a later study, direct intramyocardial injection of C14-113 LNPs 

encapsulating GFP mRNA in mice induced rapid and transient GFP expression in a dose-

dependent manner with limited off-target biodistribution.631 In 2013, Xu et al. synthesized 

G0-C14632 via epoxide ring-opening of alkyl epoxide by generation 0 of poly(amidoamine) 

(PAMAM) (Figure 59b); this ionizable lipid has been used in the delivery of both siRNA632 

and mRNA633,634 for the treatment of cancer in mice.

Aminoglycosides are a class of antibiotics that contain three to five amino-substituted 

sugars.635,636 The general mechanism of their antibacterial bioactivities is to selectively bind 

to bacterial 30S rRNA (rRNA).637,638 Besides, aminoglycosides are capable of penetrating 

the cell membrane of bacteria by disrupting the lipopolysaccharide components639 which 

might facilitate endosomal escape. In 2013, Zhang et al. synthesized a family of lipid-

modified aminoglycosides for in vitro and in vivo siRNA delivery.640 Eight aminoglycosides 

were reacted with terminal epoxides bearing tail lengths of 10–16 carbons (Figure 60). Their 

results indicated that C11 and C12 tails were the preferred chain length for siRNA delivery, 
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whereas lipids with tails longer than C13 were generally inefficient in siRNA delivery, 

which may be caused by their decreased solubility and lower fluidity. HG and GT are 

favored core scaffold aminoglycosides for the synthesis of lipids with high siRNA delivery 

efficiency, while AP-, PR-, NO-, and RB-derived lipids generally showed low siRNA 

delivery efficiency. HG-C11 LNPs encapsulating anti-FVII siRNA were able to induce 

effective Factor VII knockdown in mice with an ED50 of 0.04 mg/kg.640 In 2020, Yu et al. 

synthesized another library of aminoglycoside-derived lipids and evaluated their potency as 

mRNA formulation components.641 Four aminoglycosides, namely hygromycin, amikacin, 

gentamycin, and Geneticin, were reacted with seven epoxides bearing hydrocarbon tails and 

with five acrylic esters through epoxide ring-opening and Michael addition, respectively. 

GT-C10, obtained from the reaction of gentamycin and epoxide C10, was able to deliver 

luciferase mRNA at a dose of 0.05 mg/kg to produce a 107 average luminescence intensity 

in mouse liver following an intravenous administration.641

In 2014, Dong et al. developed a series of 1,3,5-triazinane-2,4,6-trione (TNT)-derived lipids 

that contained a six-membered core and three hydrophobic tails (Figure 61). TNT-4 was 

identified as a lead lipid, which showed efficient delivery of pDNA and siRNA both in 
vitro and in vivo.642 In 2016, Li et al. synthesized four analogs of TNT-4 by exchanging 

the positions of the tertiary amino group and secondary hydroxyl group relative to the TNT 

ring (Figure 61) and evaluated the effects of spacing around the trazinane trione (TNT) 

ring on mRNA delivery.643 The TNT-b10 luciferase mRNA LNPs induced 2-fold higher 

luciferase level than that of TNT-4 in vitro. Intravenous and intraperitoneal administration 

of TNT-b10 LNPs encapsulating luciferase mRNA induced the luciferase expression in the 

mouse spleen.643

In 2014, Dong et al. developed a library of biomimetic ionizable lipids derived from 

amino acids, peptides, and polypeptides.518 These biomimetic lipids were synthesized via 

an addition reaction of amines to alkyl epoxide and acrylate esters as well as a reductive 

amination reaction between amines and alkyl aldehyde (Figure 62). cKK-E12 was identified 

as the lead lipid, which reduced FVII protein by 50% at a siRNA dose as low as 0.002 

mg/kg in mice. Intravenous injection of cKK-E12 siRNA LNPs into nonhuman primates 

(NHP) at a siRNA dose of 0.3 mg/kg led to a reduction of TTR serum level by 95%. 

Structure–activity relationship analysis showed that lipids that contained a dilysine-derived 

diketopiperazine core and lipid tails between 12 and 14 carbon tail length were the 

most effective. cKK-E12, composed of a diketopiperazine core derived from lysine and 

four amino alcohol-based hydrophobic tails, can be synthesized via dimerization of Cbz-

protected lysine, followed by removal of Cbz and epoxide ring-opening of the epoxide 

compound. cKK-E12 LNPs had also been used in codelivery of Cas9 mRNA and sgRNA to 

hepatocytes at clinical doses in mice, inducing >80% editing of PCSK9 gene in the liver.644 

In 2019, Lokugamage et al. used cKK-E12 LNPs encapsulating mRNA to study the effects 

of toll-like receptor 4 (TLR4) on LNPs-mediated mRNA delivery.645

In 2016, Fenton et al. synthesized four alkenyl α-amino alcohols (AAA)646,647 type analogs 

of cKK-E12 by conjugating the dilysine-derived diketopiperazine core of cKK-E12 with 

alkenyl epoxides derived from biologically relevant fatty acids (Figure 63a).648 Alkenyl 

epoxide precursors derived from the corresponding fatty acids were synthesized in four 
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steps. First, a lithium aluminum hydride reduction of fatty acids followed by oxidation gave 

aldehydes 325. Then a one-pot α-chlorination/sodium borohydride reduction of aldehyde 

325 provided the 1,2-chloroalcohols 326.649 The following basic dioxane promoted ring 

closure of these 1,2-chloroalcohols furnished the desired alkenyl epoxides AE-00 through 

AE-03 in 4 steps with only one silica gel chromatographic purification. Lastly, epoxide 

ring-opening of these alkenyl epoxides with the dilysine-derived diketopiperazine core 

324 gave the desired alkenyl α-amino alcohol lipids OF-00 through OF-03. EPO mRNA-

loading OF-02 LNPs outperformed EPO mRNA-loading cKK-E12 LNPs, with a 2-fold 

increase in EPO concentration to 14200 ± 1500 ng/mL when administrated intravenously 

at a dose of 0.75 mg/kg in C57BL/6 mice.648 In another report, Fenton et al. developed 

an OF-Deg-Lin LNPs mRNA delivery system that was able to induce functional protein 

expression in mouse B lymphocytes.650 OF-Deg-Lin is a biodegradable variant of OF-02 

lipid with four degradable ester linkers attached to the diketopiperazine core and four doubly 

unsaturated tails; it can generate nontoxic linoleic acid upon hydrolytic cleavage (Figure 

63b). The synthesis of OF-Deg-Lin started with the conjugation of the TBS-protected 

aldehyde 327 and the diketopiperazine core via reductive amination; then removal of 

the TBS protective group promoted by TBAF followed by esterification of the hydroxyl 

groups with linoleic acids gave OF-Deg-Lin. Much like nondegradable OF-02 Cy5 mRNA 

LNPs, intravenous administration of OF-Deg-Lin Cy5 mRNA LNPs in mice resulted in 

predominant accumulation of Cy5 mRNA in the liver. Systemic injection of nondegradable 

OF-02 LNPs encapsulating FLuc mRNA in mice resulted in protein expression mainly 

in the liver.442,651 In 2018, Fenton et al. further modified OF-Deg-Lin by prolonging the 

carbon linker length from a two carbon spacer to a four carbon spacer (Figure 63b); the 

resulting lipid OF-C4-Deg-Lin was shown to be more potent than OF-Deg-Lin for both 

anti-FLuc siRNA and FLuc mRNA delivery in HeLa cells in vitro. OF-C4-Deg-Lin LNPs 

encapsulating firefly luciferase mRNA induced the majority of FLuc protein expression in 

the mouse spleen following an intravenous administration.652

In 2020, Billingsley et al. synthesized a library of 24 ionizable lipids for delivering mRNA 

to human T cells ex vivo.653 The 24 ionizable lipids were synthesized via epoxide ring-

opening of three alkyl epoxides with eight polyamines (Figure 64), and their luciferase 

mRNA delivery efficiency in vitro was evaluated. Results showed that C14-4 LNPs were the 

top performers, which could deliver CAR mRNA efficiently into primary human T cells ex 
vivo, generating CAR T cells with enhanced antitumor ability.653

2.2.3.3. Lipidoids Synthesized via Reductive Amination.: In 2016, Li et al. reported 

a library of ionizable lipids, designated as TTs, which consist of a phenyl ring, three 

amide linkers, and three hydrophobic hydrocarbon tails (Figure 65).598 TT2-TT8 lipids 

vary in the spacer length of the amide linker. In vitro screening identified TT3 as the 

lead lipid. PEGylated TT3 LNPs can efficiently deliver human factor IX (hFIX) mRNA in 

FIX-knockout mice in vivo after intravenous injection, resulting in the restoration of the 

level of hFIX.598 In 2020, TT3 LNPs were formulated to encapsulate engineered mRNA 

encoding various SARS-CoV-2 antigens.52 Vaccination of mice with this TT3 LNPs-mRNA 

formulation resulted in over 300-fold more specific antibody against anti-S1 as compared to 

that of MC3 LNPs-mRNA formulation. Additionally, antigen-specific antibodies induced by 
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intramuscular administration of this formulation were 5-fold more than that of subcutaneous 

injection.52 In 2020, Zhang et al. further developed a library of ionizable lipids designated 

as FTT by combining the core of TT3 with various biodegradable tails (Figure 65).597 

Results showed that LNPs formulated with FTT lipids with branched ester tails (e.g., FTT6) 

mainly delivered mRNAs into the liver and spleen, and their mRNA delivery efficiencies 

were higher than that of FTT lipids with linear ester tails (e.g., FTT10). Among all the 

FTT compounds, FTT5 was the lead lipid to deliver mRNA to the liver. Images of FTT5 

LNPs captured by cryo-TEM revealed the spherical morphology of FTT5 LNPs. Intravenous 

injection of FTT5 LNPs encapsulating FVIII mRNA in both wild type mice and hemophilia 

A mice resulted in potent expression of hFVIII protein. Moreover, FTT5 LNPs were able to 

induce dramatic base editing of PCSK9 at a dose of 0.125 mg/kg in mice.597

2.2.3.4. Lipidoids Synthesized via Click Chemistry.: In 2012, Li et al. employed thiol–

yne click chemistry654,655 to synthesize a library of more than 100 ionizable lipids (Figure 

66a).601 These lipids were synthesized using eight alkyl thiols with varying length of the 

alkyl group (C6–C16), two alkynyl carboxylic acids, and seven amines. The synthesis was 

realized in two consecutive modular steps. First, a carboxylic acid with two hydrophobic 

tails was obtained via a thiol–yne click reaction between an alkyl thiol and an alkynyl 

carboxylic acid. Then the ionizable head group was installed through amide coupling, giving 

an ionizable thioether lipid (Figure 66a). Ionizable lipids with undecyl and dodecyl as 

hydrophobic tails showed stronger in vitro pDNA delivery efficiency compared to the other 

lipids, and A1C11 surpassed Lipo2000 in delivering siRNA into HEK293T cells in vitro.601 

In 2013, Alabi et al. produced a library of 32 ionizable lipids using a similar method.600 

In this study, lipids were synthesized via Michael addition between amines and propargyl 

acrylate followed by the thiol–yne click reaction with alkyl thiols in the presence of UV and 

a photocatalyst (Figure 66b).600 These lipids were then utilized to evaluate a multiparametric 

approach to screen LNPs. Results showed that the pKa of the whole LNPs, rather than the 

pKa of individual lipids, was a key determinant of LNPs function in vivo. LNPs with above 

50% silencing had pKa values ranging from 6 to 7, while LNPs with pKa values below 5.8 

exhibited no gene knockdown activities both in vitro and in vivo.600

2.2.3.5. Lipidoids Synthesized via Multicomponent Reactions.: Multicomponent 

reactions represent an efficient way to synthesize compounds with diversities.656 In 2018, 

Molla et al. reported the synthesis of a library of 288 ionizable lipids via a three-component 

thiolactone ring-opening reaction followed by a thiol–disulfide exchange reaction.604 

Structurally, these lipids are composed of a head group with one or more ionizable 

tertiary amines, an amide linker, and two asymmetric alkyl tails, of which one contains 

a bioreducible disulfide bond (Figure 67). In vitro screening of these lipids identified 

some potent lipids for pDNA delivery in HEK-293T cells.604 In 2020, Molla et al. further 

evaluated the in vitro anti-GFP siRNA delivery efficiency of these lipids in HeLa-GFP 

cells.602 T16-PY12-A17, T18U-PY12-A17, and T18U-PY18-A4 (Figure 67) were shown to 

be effective in in vitro siRNA delivery, resulting in a reduction of GFP expression by 65%. 

Kdrl:EGFP Zebrafish embryos injected with T18U-PY18-A4 LNPs encapsulating anti-GFP 

siRNA showed a significant reduction in EGFP expression in blood vessels.602
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In 2019, Miao et al. developed a library of 1080 ionizable lipids603 via isocyanide-mediated 

three-component reaction (3-CR)657 that simultaneously coupled primary or secondary 

amines,658 ketones with different alkyl tail lengths and different degrees of saturation,648,659 

and isocyanides or isocyanide derivatives (Figure 68).660 Results showed that lipids with 

longer, unsaturated tails showed higher mRNA delivery efficiency, and A2-Iso5-2DC18 (A2) 

and A12-Iso5–2DC18 (A12) were the top-performing lipids for mRNA delivery in bone 

marrow-derived dendritic cells (BMDCs), bone marrow-derived macrophages (BMDMs), 

and Hela cells. Both A2 and A12 contain two amines that are spaced three carbons apart and 

an ester group. A2 LNPs and A12 LNPs encapsulating Cre mRNA led to comparable levels 

of protein expression and could deliver mRNA into central APCs including CD11b+ and 

CD11c+ in the Ai14D reporter mouse model. A2 LNPs encapsulating mRNA encoding OVA 

induced much higher adaptive immune response and antitumor efficacy in the Ovalbumin 

(OVA)-expressing B16F10 mouse compared to A12 LNPs encapsulating mRNA encoding 

OVA. Rechallenge experiments indicated that only the A2 LNPs were able to induce strong 

antitumor immunity. Structurally, the main difference between A2 and A12 lies in their 

head groups: A2 has a heterocyclic amine head group whereas A12 contains a linear 

amine head group. They further developed a secondary library of lipids with different 

head groups to investigate the relationships between the head group (cyclic versus linear) 

and their immunogenicity (Figure 68). Lipids containing heterocyclic amine head groups 

induced higher expression of IFN-γ as compared to lipids with linear amine head groups 

after mRNA encoding OVA vaccination. In particular, A18 LNPs showed much higher 

IFN-γ-positive secretion than the other lipids, and lipid A18 also had intrinsic stimulatory 

effects. A18 was finally identified as the lead cyclic lipid candidate, which facilitated the 

mRNA delivery and induces a strong immune response partially mediated by the stimulator 

of the interferon gene (STING) pathway.

2.2.3. Zwitterionic Lipids—Zwitterionic lipids are lipids that contain covalently 

bonded cationic groups and anionic groups. In 2011, Sonoke et al. synthesized a galactose-

modified zwitterionic lipid GDOPE by conjugating lactose with DOPE via reductive 

amination reactions (Figure 69).661 Compared to nongalactosylated LNPs, GDOPE-based 

LNPs showed enhanced delivery of siRNA to the liver in mice.

In 2012, the Szoka group synthesized a class of zwitterionic lipids with head groups 

containing a tertiary amine or quaternary ammonium head group and carboxylate linked 

by various carbon spacers (Figure 70).662 LNPs containing these zwitterionic lipids showed 

efficient siRNA encapsulation when ionized.662 DOBAQ LNPs was used for the delivery of 

Cas9 mRNA to the back of the eye in mice.663

In 2013, Walsh et al. developed a series of lysine-based zwitterionic lipids termed ILL, 

which contained a zwitterionic lysine head group linked to dialkyl amines through an 

amide linker at the lysine α-amine (Figure 71).664 As shown in Figure 71, synthesis of 

LOA-LysC2 began with the coupling of linoleic acid 351 with oleylamine 350 promoted 

by EDC; the resulting amide 352 was treated with lithium aluminum hydride to give 

dialkylamine 353. The dialkylamine 353 was then functionalized via Michael addition 

reaction with tert-butyl acrylate 354 followed by deprotection of the resulting tert-butyl ester 

355, affording β-amino acid 356. Compound 356 was coupled with protected lysine 357 via 
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amide bond formation; the following global deprotection of the resulting compound yielded 

LOA-LysC2. Containing a primary amine, a tertiary amine, and a carboxylate, these ILLs 

exhibited a pH-dependent ionization property that varied with their chemical structures.664 

ILLs form small-diameter LNPs that could efficiently entrap anti-Luc siRNA and deliver 

anti-Luc siRNA in HeLa cells, resulting in potent luciferase gene silencing.664

In 2017, Miller et al. developed a library of zwitterionic amino lipids (ZALs) that contained 

a zwitterionic sulfobetaine head group and an amine-rich core that were attached to various 

hydrophobic tails via Michael addition or epoxide ring-opening (Figure 72).665 Acrylation 

of N,N1-dimethylethane-1,2-diamine 359 gave 2-(dimethylamino) ethyl acrylamide 360, 

which underwent ring-opening reaction with 1,3-propane sultone 361 to afford the 

electrophilic precursor 362 (SBAm). Then a series of zwitterionic amines were prepared 

by conjugate addition of a library of polyamines to SBAm. The free amines of the resulting 

zwitterionic intermediate 364 were reacted with alkyl epoxides and alkyl acrylates to install 

hydrophobic tails and alcohol or ester groups, resulting in a 72-member ZALs library 

(Figure 72). Epoxide-based ZALs (ZAx-Epm) were more efficient than acrylate-based ZALs 

(ZAx-Acn; Figure 72) in siRNA delivery into HeLa cells. Intravenous administration of 

ZA3-EP10 LNPs containing Cas9 mRNA and LoxP sgRNA induced floxed tdTomato 

expression and enabled elimination of the STOP cassette in the liver, lungs, and kidneys 

of engineered mice.665

In 2020, Hirai et al. synthesized a DOPE-derived charge-reversible lipid, 

dioleoylglycerophosphate–diethylenediamine conjugate (DOP-DEDA), which was 

composed of a negatively charged phosphoric acid, two ionizable amino groups, and two 

oleyl hydrocarbon tails.666 LNPs composed of DOP-DEDA/DPPC/cholesterol (DOP-DEDA 

LNPs) were stable in the physiological medium in the absence of PEG-conjugated lipid. 

The charge property of DOP-DEDA LNPs depends on pH: at pH 6.0 the DOP-DEDA LNP 

is protonated and positively charged, at physical pH (pH 7.4) it is neutral, and at pH 8.0 

it is negatively charged (Figure 73). DOP-DEDA LNPs encapsulating polo-like kinase 1 

(PLK1) siRNA-induced suppression on the PLK1 expression in a dose-dependent manner in 

MDA-MB-231 cells.666

To improve the endosomal escape of LNPs, Liu et al. synthesized a library of zwitterionic 

phospholipids (iPhos) that mimic natural phospholipids (e.g., DOPC and DOPE) through 

combinatorial chemistry in 2021.667 As shown in Figure 74, phosphorylation of variant 

aliphatic alcohols with different alkyl tail lengths gave the key intermediate alkylated 

dioxaphospholane oxide (Pm), which underwent ring-opening reaction668,669 when treated 

with variant amines (1A-28A), generating the library of 572 zwitterionic phospholipids 

(iPhos). Results of initial screening experiments for mRNA delivery in ovarian cancer cells 

showed that iPhos 7A1P4–13A1P16, containing an ionizable tertiary amine, a negatively 

charged phosphoric acid, and three hydrophobic hydrocarbon tails, were the top-performing 

phospholipids for mRNA delivery. 7A1P4–13A1P16, composed of the small head groups 

and large tails body, tend to adopt the inverted hexagonal (HII) phase, thus promoting 

membrane fusion, destabilizing the endosomal membrane, and allowing the endosomal 

escape of RNA molecules. iPhos 9A1P9 was shown to be the most active component 

of iPhos LNPs (iPLNPs); it exhibited 40 and 965 times higher in vivo mRNA delivery 
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efficiency than DOPE and DSPC, respectively. Optimization of formulation of 9A1P9 LNPs 

was then carried out by introducing a supplemental selective organ-targeting (SORT)670,671 

lipid. 9A1P9-5A2-SC8 LNPs mainly delivered Cre mRNA in the liver, while 9A1P9-DDAB 

LNPs mediated high accumulation of Cre mRNA in the lung. 9A1P9-5A2-SC8 LNPs and 

9A1P9-DDAB LNPs were used for codelivering Cas9 mRNA and Tom1 sgRNA into Ai9 

mice via intravenous administration at an mRNA dose of 0.75 mg/kg, resulting in specific 

Tom1 gene editing in the liver and the lung, respectively.667

2.4. Other Lipids

In 2016, Kim et al. developed a class of coordinative amphiphiles (CAs) as transporters 

for siRNA delivery.672 These amphiphiles mimic cationic lipids, in which the cationic 

head group was replaced by zinc(II)–dipicolylamine complex (Zn/DPA) as an RNA 

phosphate backbone coordinating group, and a variety of membrane-directing groups were 

incorporated as substitutes of the hydrophobic tails (Figure 75). The CAs aggregate in 

aqueous solutions and the Zn/DPA head group coordinate with the negatively charged 

phosphate backbones of siRNAs, protecting siRNAs from degradation by RNase. The 

induction of different membrane-directing groups is necessary for enhanced siRNA delivery, 

as the Zn/DPA head group alone exhibits only moderate delivery efficiency.672

In 2018, Tai et al. developed a class of bifunctional chemical tags (366–371) that were 

capable of noncovalently binding and delivering siRNA into the cytosol directly (Figure 

76).673 The bifunctional tags are composed of a siRNA-binding domain and a steroid region 

that can readily fuse with cell membrane. Compared to the conventional covalent siRNA–

steroid conjugates, the noncovalently tagged siRNA is cell membrane-permeant and cytosol 

targeting, thus enabling effective siRNA delivery directly into PC-3 cells without involving 

the endocytic pathway.673

3. HELPER LIPIDS

To stabilize the lipid-based RNA delivery system, many helper lipids, such as 

cholesterol, 1,2-dioctadecanoyl-sn-glycero-3-phosphocholine (DSPC), or 1,2-dioleoyl-sn-

glycerol-3-phos-phoethanolamine (DOPE),288 have been included as the formulation 

components. These helper lipids may not only stabilize the particles but also enhance RNA 

delivery efficiency.194

3.1. Phospholipids

A typical phospholipid is composed of glycerol, two hydrophobic fatty acid tails, and 

a phosphate-linked head group (Figure 77). Due to their amphiphilic characteristic, they 

can form lipid bilayers as the main components of the cell membrane. Modifications of 

the phosphate group with the simple organic molecules choline, ethanolamine, or serine 

can give the corresponding phosphatidylcholine (PC), phosphatidylethanolamine (PE), and 

phosphatidylserine (PS). Phospholipids provide important structural components for the 

LNPs and may also aid the process of endosomal escape.107 Both synthetic and natural 

phospholipids can be used in the formulation of LNPs for RNA delivery.
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3.1.1. Phosphatidylcholines.—Phosphatidylcholines (PCs) are one of the major 

components (50%) of cell membranes. Due to the cylindrical geometry of PCs, 

they tend to adopt a bilayer phase (Figure 78),674 thus improving the stability of 

LNPs.675 PCs with saturated tails, such as HSPC (hydrogenated soybean PC) and DSPC 

(distearoylphosphatidylcholine), have high melting temperatures and are generally used to 

prepare highly stable LNPs. It is worth mentioning that DSPC is used as a helper lipid in 

patisiran, mRNA-1273, and BNT162b2.530 DOPC liposomes encapsulating EphA2 siRNA 

were shown to induce EphA2 gene silencing and repression of tumor growth in mice 

following either intravenous or intraperitoneal administration.676,677 Cyclo PC is found 

in the membrane of Escherichia coli.678 In 2019, the Cullis group studied the role of 

DSPC-cholesterol in LNPs formulation of siRNA and found that in empty LNP systems, 

DSPC-cholesterol resides in the outer layers of LNPs, whereas in siRNA-loaded LNPs, 

DSPC–cholesterol was partially internalized together with siRNA.195 DSPC can enhance 

the encapsulation of siRNA in the LNP–siRNA system by participating in the formation 

of siRNA–lipid complexes.195 In 2020, the Sahay group formulated LNPs with Cyclo PC 

instead of DSPC; the resulting Cyclo PC-LNPs showed enhanced delivery of mRNA into 

the cells compared to DSPC LNPs.679 They found that the structural differences between 

Cyclo PC and DSPC were not significant enough to influence in vitro delivery.679 This 

can be further supported by the report that alteration of symmetrical hydrophobic tails to 

asymmetrical hydrophobic tails did not significantly change the siRNA delivery efficiency of 

LNPs.568 DOPC has also been used in the formulation of neutral lipid emulsions (NLEs)288 

along with Tween 20/squalene; the resulting NLEs selectively delivered R-34a miRNA 

to lung tumors, resulting in a 60% reduction of tumor area in mice after intravenous 

administraiton.680

Adamantane is a diamondoid hydrocarbon that consists of three linked cyclohexane 

rings. When the adamantyl group is incorporated in small molecular drugs, not only 

can it influence the interactions between the small molecules and cell membrane,681 

but it also can improve the pharmacokinetics of small molecule drugs.682 Besides, the 

constrained adamantyl group improves drug metabolic stability.683 In 2019, the Dahlman 

group reported that LNPs formulated with ionizable lipids that contain an adamantly 

group could deliver siRNA to splenic T cells without targeting ligands (Figure 79).546 

Generally, PCs that are incorporated in LNPs contain unconstrained hydrocarbon tails. 

Based on the unique properties of constrained adamantyl groups, they developed a library 

of phosphatidylcholines containing an adamantyl group and further evaluated their mRNA 

delivery in vivo.684 They synthesized a series of constrained phosphatidylcholines, each 

of which contained a quaternary ammonium head group, a phosphodiester linkage, a 

constrained adamantly group, and an unconstrained hydrocarbon chain with varied length 

and saturation degree. The synthesis of these phosphatidylcholines started with the dibutyltin 

oxide-mediated chemoselective monoacylation of L-α-glyceryl phosphorylcholine 374 with 

adamantyl chloride 373.685 Then the hydrocarbon tail was attached to the remaining 

hydroxyl group via Steglich esterification,686 affording desired lipids A-10 through A-17-2Z 

(Figure 79). Then they utilized Fast Identification of Nanoparticle Delivery (FIND)687 

to quantify mRNA delivery mediated by the 109 LNPs formulated with the constrained 

phosphatidylcholines in a single Ai14 mouse. Intravenous administration of A-11 LNPs 
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encapsulating Cre mRNA in Ai14 mice at a dose of 0.5 mg/kg resulted in Cre mRNA 

accumulation in the liver Kupffer cells preferentially.685

3.1.2. Phosphatidylethanolamines.—Previously, DOPE (Figure 80) was frequently 

used as a helper lipid in the formulation of cationic liposomes for DNA delivery for gene 

therapy.688 DOPE is composed of a primary amino head group, phosphoethanolamine, 

and two unsaturated oleoyl tails. With two unsaturated chains, DOPE has low melting 

temperatures (30 °C). In the physiological temperature, DOPE can induce the inverted 

hexagonal (HII) phase, facilitating membrane fusion and/or bilayer disruption.689

Phosphatidylcholines (PCs), containing a quaternary amine head group and two saturated 

hydrocarbon tails, have a P value less than 1, so they tend to aggregate into a lamellar 

structure. Phosphatidylethanolamine (PE), which contains a bit smaller primary amine 

head group than that of PCs and a P value > 1, favors inverted micelles or an inverted 

hexagonal (HII) phase.690 Kauffman et al. designed a series of experiments to determine 

the importance of LNP formulation on delivery efficacy and found that the use of the 

phospholipid DOPE instead of DSPC enhanced RNA delivery efficiency.629 In several 

studies, DOPE-formulated LNPs are more efficient than DSPC-formulated LNPs for mRNA 

delivery.598,611,627,629 The inclusion of DOPE during the formulation of LNPs may reduce 

membrane stability, thus facilitating endosomal escape.691,692 Another possible reason may 

be that the stronger complexation of mRNA to lipid in LNPs containing DSPC may hinder 

the decomplexation of mRNA from lipids in the cytosol, thus inhibiting the release and 

translation of mRNA payload. DSPC usually inhibits membrane fusion with the endosomal 

membrane, thus inhibiting endosomal escape, whereas DOPE, with unsaturated hydrophobic 

tails, can undergo a phase transition to an inverted hexagonal (HII) phase, thus facilitating 

membrane fusion-mediated endosomal escape.693,694 In 2006, Santel et al. prepared siRNA-

lipoplex by formulating ATUFect01 with DPhyPE, a diphytanoyl zwitterionic phospholipid. 

Systemic administration of this siRNA-lipoplex led to downregulation of the corresponding 

mRNA and protein in vivo.391 In 2021, Zhang et al. investigated the influence of DOPE and 

DSPC on the interactions between LNPs and ApoE.695 Results of high-throughput in vivo 
screening of 96 LNPs showed that several LNPs incorporating DOPE (e.g., LNP 42) tended 

to accumulate in the liver, whereas LNPs formulated with DSPC (LNP 90) preferentially 

delivered RNA in the spleen. Results of QCM-D experiments showed that LNP containing 

DOPE (e.g., LNP 42) had stronger interactions with ApoE than LNP 90.695

3.1.3. Phosphatidylglycerols.—Phosphatidylglycerol (PG) is a non-pH sensitive 

anionic lipid that can provide balancing charges to an ionizable lipid (Figure 81). In 2012, 

Kapoor et al. developed effective DOPG-based anti-eGFP siRNA lipoplexes.696 In this 

work, anionic lipoplexes were prepared by complexing anionic liposomes formulated with 

DOPG and DOPE and siRNA using calcium ion bridges. The silencing activity of the 

anionic lipoplex composed of DOPG/DOPE was similar to that of Lipofectamine 2000. 

To inhibit the rapid growth of calcium phosphate (CaP) particles697 that encapsulate RNA, 

Zhang et al. developed a lipid-coated calcium phosphate (LCP) nanoparticle encapsulating 

cMyc siRNA, wherein the CaP core is coated with DOPA and DOTAP.698 The combination 
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of chemo- and gene-therapeutics resulted in a dramatic suppression of tumor growth in 

H460 tumor-bearing mice following intravenous administration.698

3.1.4. Phosphatidylserines.—In 1978, Giorgos J. Dimitriadis prepared 

phosphatidylserine-based unilamellar liposomes to deliver rabbit globin mRNA into mouse 

lymphocytes ex vivo, resulting in functional protein expression.189 It was reported 

that anionic phosphatidylserine in the endosomal membrane could displace plasmids 

from the plasmids lipoplex, thus assisting in the release of plasmid after cell uptake 

of nanoparticles.699–701 In 2001, Hafez et al. found that coformulation of anionic 

phosphatidylserines (Figure 82) and cationic lipids preferentially adopts the inverted 

hexagonal (HII) phase, thus facilitating the release of nucleic acid payload into the 

cytoplasm.292 Besides, replacing 1,2-distearoyl-sn-glycero-3-phospho-L-serine (DSPS) with 

1,2-dioleoyl-sn-glycero-3-phospho-L-serine (DOPS) resulted in a clear inverted hexagonal 

(HII) phase when fusogenic cationic lipids were incorporated.292

3.2. Sterols

Steroids are a family of terpenoid lipids that contain four fused cyclic carbon rings, and 

sterols are steroids that contain a hydroxyl group, such as cholesterol.702 Cholesterol and 

related sterols are precursors for the synthesis of many vital steroids; they are naturally 

occurring lipids present in animal cell membranes. In the formulation of lipid-based 

nanoparticles, cholesterol acts as a helper lipid that can enhance nanoparticle stability 

and promotes the fusion of the nanoparticles with the cell membrane.176,703,704 Lipid 

nanoparticles without cholesterol may result in cholesterol shuttling from serum components 

to nanoparticles.705 Besides, cholesterol might reside on the surface of lipid nanoparticles 

in a crystalline form.706,707 It is reported that a cholesterol level increase by 7% improved 

the release of drug from 5% to 90%,708 which proves the essentiality of cholesterol in the 

delivery of siRNA.

Cholesterol variants derived from natural esterification and oxidation of cholesterol are 

differentially trafficked via lipoproteins to cells including endothelial cells, hepatocytes, 

and macrophage.709 In 2018, Paunovska et al. evaluated whether incorporation of different 

cholesterol variants (Figure 83) in LNPs would lead to different nanoparticle targeting in 
vivo.710 In vivo RNA delivery data points showed that modified cholesterols could affect the 

targeting ability of nanoparticles. Additionally, LNPs formulated with esterified cholesterol 

(e.g., cholesterol stearate) showed higher RNA delivery efficiency compared to LNPs 

containing regular or oxidized cholesterol (e.g., 7B-OH cholesterol) in mice. They also 

identified LNPs containing cholesteryl oleate as efficient nanocarriers for delivery of siRNA 

and sgRNA to liver endothelial cells in mice.710 This work also showed the possibility that 

rational design of the cholesterol analogs that closely mimic natural lipoproteins or interact 

with natural cholesterol trafficking pathways may enhance LNPs delivery efficiency.711

In 2019, a library of nine cholesterol analogs was studied to evaluate the influence of 

chemical structures of sterol variants on mRNA delivery efficiency of LNPs.712 These 

side-chain or ringoxidized cholesterol analogs were obtained via treating cholesterol with 

enzymes (Figure 84). 125 FIND545,713 LNPs were formulated with the ionizable lipid cKK-
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E12,714 two PEG-lipids, the DOPE, and one of nine cholesterol variants. They observed that 

systematically oxidative modifications on the hydrocarbon tail (e.g., 20-hydroxycholesterol) 

were more potent than those with an oxidized B ring (e.g., 7-ketohydroxycholesterol). 

LNPs formulated with 20-hydroxycholesterol preferentially delivered Cre mRNA to hepatic 

cells and Kuffper cells rather than hepatocytes at a dose of 0.5 mg/kg after systemic 

administration in Ai14 mice. Oxidation of the tail attached to the sterol ring D may alter 

the interaction between LNPs and serum proteins, resulting in the biodistribution of LNPs in 

preference to the liver endothelial cells and Kupffer cells.712

The Sahay group improved RNA delivery by using plant-based analogs of cholesterol 

instead.715–717 In 2020, Eygeris et al. found that when C-24-alkylated derivatives of 

cholesterol (e.g., β-sitosterol) were included in the mRNA-loading LNPs, enhanced mRNA 

delivery was observed.715 To further evaluate the effect of cholesterol analogs on RNA 

delivery efficacy, three groups of naturally occurring cholesterol analogs were selected 

based on structural resemblances (Figure 85).716 Group I contained vitamin D1, vitamin 

D2, and vitamin D3, group II was composed of C-24 α-alkyl sterols (e.g., β-sitosterol), and 

group III consisted of pentacyclic terpenoids (e.g., betulin). The screening result showed 

that group I analogs showed low mRNA delivery efficiency. Incorporation of the group II 

analog β-sitosterol in LNPs could result in mRNA translation efficiency improvement by 

48-fold in cancer cells, whereas the inclusion of group III analogues led to ≥50% decrease 

in mRNA encapsulation efficiency and increased size of LNPs, resulting in poor mRNA 

delivery efficiency.718,719

The C-24 alkyl group of phytosterols induces crystal defects that are in proportion to 

the length of the C-24 alkyl group (cholesterol < campesterol < β-sitosterol).720 Three 

additional phytosterols, namely stigmastanol, fucosterol, and campesterol, were selected and 

formulated (Figure 86). The resulting LNPs exhibited high encapsulation (>90%) and an 

11- to 211-fold improvement in mRNA delivery efficiency than cholesterol-based LNPs. 

Results of brassicasterol, ergosterol, and 9,11-dehydroergosterol (Figure 86) showed that 

reduced flexibility in the body and tail domain of cholesterol variants could inhibit RNA 

delivery. β-Sitosterol amino acid conjugates (polar) and β-sitosterol acetate (nonpolar) were 

also evaluated and showed that shielding the hydroxy group on ring A resulted in low 

or no RNA delivery efficiency. Lysosomal transporters recognize the hydroxyl group on 

cholesterol ring A and deliver cholesterol to the endoplasmic reticulum.721 The structure–

activity relationship analysis of cholesterol analogs revealed that the high mRNA delivery 

efficiency was closely related to the flexibility of the sterol ring, the alkyl tail length, and 

the polarity associated with the hydroxyl group. The enhanced mRNA delivery efficacy 

may have been caused by morphological changes in the internal and external structure 

of mRNA-loading LNP.716,722 The structural analysis revealed that LNPs formulated with 

phytosterols had a polymorphic shape and exhibited different degrees of multilamellarity 

and rigidity. Unlike the smooth surface of LNPs containing cholesterol, LNPs containing 

β-sitosterol had a multifaceted surface, which might be caused by the changes in the surface 

lipid composition723 and could enhance the fusion of LNPs with membranes,724 thus leading 

to higher mRNA delivery efficiency. LNPs formulated with campesterol, stigmasterol, or 

β-sitosterol showed higher lamellarity and few internal defects as compared to LNPs 

containing cholesterol. The increased lamellarity may promote the fusion of LNPs with 
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the endosomal membrane, while the internal structure of the LNPs may not be critical 

for the improved mRNA delivery efficiency of LNPs.715 They further found that LNPs 

formulated with vitamin D2 cannot cross the cell membrane due to the high fragility of 

their fluid lipid membrane, while the fucosterol-containing LNPs fail to deliver the mRNA 

payload due to their strong stability caused by the excessively rigid membrane. Moreover, 

live-cell imaging showed that LNP containing β-sitosterol showed extended retention in the 

endocytic vesicles, thus boosting the endosome escape of LNPs.717

3.3. Fatty Acids

When anionic lipids (Figure 87) are formulated into LNPs, they can interact with 

cationic lipids to form ion pairs, which can improve the pH-sensitivity of the LNPs 

and promote endosomal membrane destabilization, thus increasing nucleic acids delivery 

efficiency.725,726 Anionic lipids, such as fatty acids, can be protonated in the acidic 

endosome following cellular uptake. Protonation of the anionic lipids can cause the LNPs 

to be surface positively charged and/or induce lipid phase transition. Previous studies 

showed that if unsaturated fatty acids such as oleic acid (OA), linoleic acid (LA), or 

linolenic acid (LNA) are incorporated in LNPs, in place of PCs, the delivery efficiency 

of siRNA or miRNA may be significantly enhanced.194,727,728 DOTMA-based LNPs 

containing oleic acid (OA) were shown to be more efficient in microRNA-122 delivery 

than the commercially available Lipofectamine 2000.729 As linoleic acid (LA) is an essential 

fatty acid, which can participate in fatty acid metabolism of liver cells through plasma 

membrane fatty acid binding protein (FABPpm),730–733 the inclusion of LA can enhance 

hepatocyte uptake of LNPs. Yu et al. reported that their TRENL3-based LNPs formulated 

with anionic fatty acids had a much lower surface charge, thus leading to the improvement 

of the biodistribution of LNPs and enhanced uptake into hepatocytes in mice following 

intravenous administration. Besides, incorporating unsaturated fatty acids in LNPs led to 

a slight reduction of the mean diameter of LNPs.734 In the formulation of Smarticles 

LNPs, carboxylate-based anionic lipids (e.g., CHEMS) were incorporated to achieve pH-

responsiveness. Smarticles LNPs have been used in the delivery of small activating RNA 

(saRNA) into HepG2 human hepatocellular carcinoma cells in vitro, resulting in activation 

of CEBPA mRNA and growth inhibition of liver cancer cell.735 Sodium dodecyl sulfate 

(SDS) is an anionic lipid that is not commonly used in the preparation of RNA delivery 

systems. In 2013, SDS-CTAB vesicles were developed by Russo et al., which could 

efficiently deliver CAT-A98 mRNA into the HEK-293 cells.736

He et al. synthesized an anionic helper lipid named DC and developed DC-based LNPs, 

termed nano-Transformers.737 Synthesis of DC began with the coupling of (9E)-octadec-9-

enoic acid 379 with diol 380; the resulting ester 381 was treated with TFA to remove the 

Boc protecting group, giving amine 382. Ring-opening reaction of citraconic anhydride 383 
with the primary amine group of 382 afforded DC (Figure 88). DC LNPs were negatively 

charged in physiological pH (pH = 7.4) and nearly neutral in endosome. Upon protonation 

at acidic pH, the positive surface charge of DC LNPs induces endosomal membrane fusion, 

thus facilitating the release of siRNA into the cytosol. DC LNPs delivered cyclin-dependent 

kinase 1 (CDK1)-siRNA efficiently, leading to up to 95% reduction of CDK1 mRNA in 

HepG2 cells in vitro, and significantly suppressed the HepG2 tumor growth in nude mice.737
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3.4. Fatty Acid Esters

Both Span80738 and Tween80739 (Figure 89) have been used as surfactants in the 

formulation of cationic noisome for siRNA delivery. MOG can act as a helper lipid in LNPs-

siRNA-mediated gene silencing because it can form gyroid inverted cubic structures that 

favor membrane fusion.347,437,740–744 DODAB/MOG (2:1) liposomes showed an efficient 

siRNA delivery.743,745,746 Cetyl palmitate is used as a component of some LNPs for RNA 

delivery, where the inclusion of cetyl palmitate can decrease the diameter of LNPs.747 

Compritol 888 ATO is a mixture of glyceryl monobehenate (12–18% w/w), glyceryl 

dibehenate (45–54% w/w), and glyceryl tribehenate (28–32% w/w). Montana et al. reported 

delivery of siRNA via LNPs formulated with Compritol ATO 888 as matrix lipid.748

3.5. Other Helper Lipids

LNPs can be modified by incorporating lipids that contain various ligands to control 

their biological properties such as circulation stability and targeting ability.749 Antigen-

presenting cells (APCs), such as dendritic cells and macrophages, express abundant 

mannose receptors on their cell surfaces; these mannose receptors can bind carbohydrates 

and their conjugates.750–753 To achieve site-specific targeting and enhance uptake of LNPs, 

mannose has been extensively investigated for modification of LNPs.575 Mannosylated 

lipid conjugate 384 (Figure 90) contains a D-mannose residue that is connected with 

dialkylglycerol via succinyl. The mannosylated LNPs incorporating mannosylated lipid 

conjugate 384 were used to deliver melanoma total RNA into DCs both ex vivo and in 
vivo and was shown to be more efficient in inducing CTL response compared to the control 

group.754 Mannosylated LNPs formulated with lipoconjugate 384 or 385 were efficient 

in delivering melanoma B16 RNA in vivo, inducing the generation of the melanoma B16-

specific T-lymphocytes in mice and B16 cell apoptosis.755 Manchol, a mannose–cholesteryl 

amine conjugate, has also been used in the formulation of mannosylated LNPs loading 

self-amplifying mRNA (SAM) encoding hemagglutinin.756 Compared to the unglycosylated 

LNPs, mannosylated LNPs showed enhanced in vitro cellular uptake in BMDCs and 

induced a faster antibody response in mice, independent of the administration route.756 

DGTS (Figure 90), a plant-derived structural lipid, is associated with lipid metabolism679 

and cell survival in stress conditions.757,758 Kim et al. substituted DSPC in an LNP 

formulation, to a series of naturally occurring membrane lipids, especially DGTS.679 DGTS 

LNPs induced 20-fold lower luciferase expression compared to DSPC LNPs. However, 

DGTS led to an enhanced liver delivery of mRNA. This discrepancy may be due to 

the DGTS-induced LNP morphology modification, which changes both the stability and 

tolerance of LNPs.759 Both squalene760–762 and lycopene763,764 (Figure 90) can be used as 

neutral helper lipids in the preparation of noisome for RNA delivery.

4. LIPID-DERIVED MACROMOLECULES

In addition to small molecular lipids and lipid derivatives, lipid-derived macromolecules 

have also been extensively explored as RNA delivery materials.722,765 The composition, 

structure type, and charge of lipid macromolecules have an important impact on the 

delivery efficiency of RNA.183 The lipid-derived macromolecules used for RNA delivery 

mainly include lipopolymers,766 lipopeptides,767 and lipoproteins.768 Since each type of 
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macromolecule contains a large number of compounds, we generally highlight these lipid-

derived macromolecules with an emphasis on their diverse chemical structures.

4.1. Lipopolymers

Lipopolymers have been widely used as a class of RNA delivery materials for 

decades.769,770 Lipopolymers are usually included in lipid nanoparticle formulations as 

auxiliary lipids or directly complexed with RNA molecules.771–773 They generally have 

the functions of enhancing the stability of lipid nanoparticles, promoting cellular uptake, 

and targeting diseased sites, thereby improving the efficiency of RNA delivery.774 From 

the perspective of chemical structures, lipopolymers are mainly composed of two parts: 

lipid fragments and polymer backbones. In this section, we mainly classify lipopolymers 

according to the types of polymer backbones including PEG-lipids, PEI-lipids, dendrimer-

lipids, and other types of lipopolymers.

4.1.1. PEG-lipids.—PEG-lipids are important components usually incorporated on the 

surface of LNPs.195 PEG-lipids are composed of hydrophilic PEG conjugated to a 

hydrophobic alkyl chain through phosphate, glycerol, or other linkers. The PEG component 

can increase the stability of RNA-loaded LNPs and prolong their circulation time in the 

blood, thereby promoting the distribution and accumulation of nanoparticles in the diseased 

site.775 In this part, PEG-lipids are divided into two major types: general PEG-lipids and 

functionalized PEG-lipids.

4.1.1.1. General PEG-lipids.: PEG-lipids have been commonly applied in the 

construction of LNPs for drug delivery, such as DSPE-PEG2000 as one of the important 

components of Doxil LNPs.776,777 Later on, PEG-lipids are also used as an important 

ingredient of LNPs for RNA delivery.778 PEG2000-C-DMG is used as the PEG-lipid anchor 

in the Onpattro (patisiran) LNP formulation, which is the first FDA approved LNP-based 

siRNA drug for the treatment of hereditary transthyretin (hTTR) amyloidosis.779 Recently, 

DMG-PEG2000 and ALC-0159 are respectively used as one of the components of the 

mRNA-1273 and BNT162b2 vaccines against the COVID-19 pandemic.524 The PEG-lipids 

in the LNPs formulations of these three clinically used RNA drugs/vaccines have similar 

characteristics. These three PEG-lipids possess an mPEG2000 component as the hydrophilic 

chains and two alkyl chains with 14 carbon chains in length.

Since PEG-lipids have a great influence on the properties of LNPs, many studies have been 

conducted to investigate the effects of PEG-lipid on RNA LNPs.780,781 In 2008, Sonoke et 

al. synthesized several PEG-lipids containing acyl chains with 12 to 18 carbon atoms, which 

were used to prepare siRNA LNPs to investigate the influence of the alkyl chains length 

on LNPs.782 Each PEG-lipid/siRNA complex was intravenously injected in mice. Four 

hours post administration, the plasma concentration of 3H-labeled siRNA was over 10-fold 

higher in the group of C18-PEG2000 than that of the PEG-lipid/siRNA complex formed by 

shorter acyl chains (e.g., C-12 to C-16). In 2013, Mui et al. found that PEG-lipids with 

long alkyl chains (e.g., C-18) had a longer time associated with the LNPs than PEG-lipids 

with short alkyl chains (e.g., C-14).783 The dissociation of C-18 PEG-lipids from LNPs is 
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approximately 0.2%/h in mice. Moreover, the molar ratio of PEG-lipid is another important 

factor.

In 2017, Oberli et al. found that the molecular weight of PEG (e.g., Mw: 350, 1000, 2000, 

3000) and the length of the anchoring lipid (e.g., C-14, C-18) affected the particle size of 

LNPs (DMPE-PEG2000: ~67 nm).784 They applied DMPE-PEG2000 to prepare LNPs loaded 

with mRNA encoding various antigens as potential cancer vaccines. In the same year, Zhu 

et al. used the hybrid nanoparticle platform of a lipid-PEG shell and a PLGA/G0-C14 solid 

core to effectively achieve dePEGylation and control the delivery of siRNA.785 They found 

that the length of the PEG-lipids alkyl chains has a great influence on the dissociation 

rate of PEG from LNPs, and the dissociation rate of PEG on long alkyl chain lipids (e.g., 

DSG-PEG and DSPE-PEG) is slower than that on short alkyl chains (e.g., DMG-PEG 

and DMPE-PEG). Meanwhile, the unsaturated alkyl chain accelerates the dissociation of 

PEG (ceramide-PEG vs DPG-PEG), while the neutral and anionic PEG-lipids (DPG-PEG 

vs DPPE-PEG; DSG-PEG vs DSPE-PEG) with the same alkyl chain showed similar 

dissociation kinetics.785 This lipid–polymer hybrid RNA delivery system has also been used 

in delivering phosphatase and tensin homologue (PTEN) mRNA to restore tumor-growth 

suppression in mice.786

The preparation of acid-sensitive PEG-lipids is a method to improve the performance 

of LNPs. In 2012, Kulkarni et al. used the acid-sensitive benzylidene acetal bond to 

make Chol-PVA-PEG (Figure 91).787 The formulated Chol-PVA-PEG/siRNA nanoparticles 

showed a gene silencing activity comparable to bPEI and Lipofectamine 2000.

4.1.1.2. Functionalized PEG-lipids.: PEG can also be functionalized to incorporate 

specific functions such as cell targeting.788,789 In 2008, Li et al. linked anisamide to DSPE-

PEG and prepared DSPE-PEG-anisamide that can target the sigma receptor on the B16F10 

cancer cells.790 Then, DSPE-PEG-anisamide was used as a PEG-lipid to form a targeted 

LNPs-siRNA formulation. Compared to nontargeted LNPs, the targeted LNPs showed a 4-

fold increase in cellular uptake in B16F10 cells. In 2010, Akinc et al. used targeting ligands 

containing multivalent N-acetylgalactosamine (GalNAc) clusters and linked them with DSG-

PEG to prepare DSG-PEG-GalNAc that can be targeted to the liver hepatocytes.791 DSG-

PEG-GalNAc, factor VII-targeting siRNA, and other components were formulated to LNPs, 

which were intravenously administered in mice at the siRNA doses of 0.022, 0.067, and 0.2 

mg/kg. The LNPs-mediated factor VII in mice exhibited dose-dependent silencing. In 2016, 

Zang et al. conjugated anti-EphA10 antibody with Chol-SIB-PEG to prepare tumor-targeting 

Chol-SIB-PEG-Eph.792 In MCF-7/ADR cells, MDR1 siRNA LNPs prepared with Chol-SIB-

PEG-Eph reduced the expression level of MDR1 protein. Furthermore, the LNPs containing 

the fluorescent molecule DIR were injected into the MCF-7/ADR xenograft tumor mouse 

model for fluorescence imaging. After 24 h of injection, the Chol-SIB-PEG-Eph-formulated 

LNPs displayed the highest accumulation in the tumor compared with the control group.792

In 2017, Krzysztoń et al. applied DSPE-PEG-FA as a folate-targeted PEG-lipid to form 

LNPs for siRNA delivery.793 These LNPs could significantly down-regulate luciferase 

activity compared with LNPs without a folate targeting group. In the same year, 

Santiwarangkool et al. synthesized DSG-PEG-GALA containing a polypeptide GALA that 
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could target the lung endothelium for RNA delivery.794 Compared with LNPs composed of 

DSG-PEG, LNPs composed of DSG-PEG-GALA showed higher silencing activity in the 

mouse lungs, with an ED50 value of 0.21 mg/kg. In 2020, Qiao et al. synthesized vitamin 

A-modified PEG-lipid Chol-PEG-VA for RNA delivery (Figure 92).795 The cell uptake of 

Chol-PEG-VA containing LNPs was over 80% in HSC-T6. Compared with cells treated with 

single Col1α1 siRNA LNPs or TIMP-1 siRNA LNPs, double-siRNA nanoparticles Col1α1/

TIMP-1 siRNA LNPs showed a higher inhibitory effect on collagen I accumulation. Among 

the various siRNA LNPs treatment groups, Col1α1/TIMP-1 siRNA LNPs treated mice led 

to the lowest collagen accumulation, which is similar to the level in normal mice.795

4.1.2. PEI-lipids.—PEI is another class of polymers used in RNA delivery.796,797 To 

improve the pharmaceutical properties of PEI, various lipids are conjugated with PEI.798,799 

In 2014, Dahlman et al. synthesized a library of PEI analogs with diverse structures 

by conjugating small polyamines with alkyl tails of different lengths in different molar 

ratios.800 PEI-lipid 386 (Figure 93) was obtained by the epoxy-opening reaction between 

C15 epoxy-terminated lipid chains and PEI600 (14:1 molar ratio) and screened from the in 
vitro cell assays after formulation with PEG-lipid and siRNA. The lead material was able 

to silence multiple endothelial genes in mice.800 In the same year, Navarro et al. combined 

DOPE with PEI to obtain the lipopolymer 387.801 The DOPE-PEI effectively delivered 

GFP siRNA in c166 cells stably expressing GFP.801 In 2020, Fan et al. synthesized the 

Triton X-100-modified PEI (low molecular weight), which was then attached to dopamine 

grafted vitamin E (VEDA) and 4-carboxyphenylboronic acid (PBA) to obtain lipopolymer 

388 (Figure 93).802 388-siEGFR complexes suppressed the protein expression of EGFR in 

A375 cells to 43.1% and reduced its EGFR mRNA level to 34.9% (Figure 93).

4.1.3 Dendrimer-lipids.—Dendrimers consist of three main parts: a central core, a 

growing branch unit (called generation (G)), and a large number of terminal functional 

groups (usually amino groups) on the surface.803 The terminal groups of the dendrimer 

can be lipid-modified to obtain the dendrimer-lipids.804–806 In 2012, Yu et al. synthesized 

a class of dendrimer-lipids with different alkyl chain lengths and dendrimer generations 

through click chemistry.807 The long alkyl chain of 389 (Figure 94) promotes the assembly 

of siRNA/carrier, can form a stable self-assembled complex with siRNA, and increases the 

stability of the complex through hydrophobic interactions. Moreover, the dendrimer-lipid 

389/siRNA complex significantly downregulated Hsp27 and induced in a mouse prostate 

cancer model.807 In 2014, Khan et al. prepared LNPs with dendrimer-lipids 390 and 391 
to deliver siRNA to the liver endothelium in vivo (Figure 94).808 In a hepatocellular 

tumor model, the formulated 390 and 391 showed 51% and 92% knockdown of Alpha-

fetoprotein (AFP), respectively (siRNA dose: 1 mg/kg). In 2015, they used terminal 

epoxides with different alkyl chain lengths to react with free amines in poly(propylenimine) 

and poly(amidoamine) dendrimers to obtain dendrimer-lipids 390–394 (Figure 94).809 The 

nanoparticles of 393 loaded with Cy5.5-labeled siRNA showed greater fluorescence than 

other dendrimer-lipids in mouse lungs.

In 2016, Chahal et al. synthesized the modified dendrimer 395 and formulated it with 

PEG-lipids and self-amplifying RNA to form the nanoparticles (Figure 94).773 These 
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nanoparticles were able to deliver many types of self-amplifying RNAs encoding viral 

antigens such as Ebola virus, Toxoplasma gondii, and H1N1 influenza. After a single-dose 

vaccination, the nanoparticles-treated mice developed effective CD8 T cells and antibody 

responses against specific pathogens.773

In 2020, Xiong et al. synthesized six low-molecular-weight epoxy-derived fluorine-

substituted dendrimers (396–401) by reacting fluorine-containing alkyl propylene oxide 

with PAMAM-G0 (Figure 94).810 The formulation of dendrimer lipid 400 with Luc siRNA 

decreased over 50% of the luminescence signal at a siRNA concentration of 20 nM in 

HeLa-Luc cells. The siRNA targeting PHB1 (PHB1 siRNA) was also complexed with 

dendrimer lipid 400 to prepare the nanoparticles, which resulted in increased cell apoptosis 

rate in A549 lung carcinoma cells after treatment with this formulation.810

4.1.4. Other Types of Lipopolymers.—There are many other types of lipopolymers 

such as lipocationic polyesters, brush-like lipopolymers with poly(glycoamidoamine) 

(PGAAs) as a backbone, and charge-altering releasable transporters (CARTs) 

lipopolymers.811,812 In 2015, Hao et al. synthesized over one hundred lipocationic 

polyesters (404) using amino- or alkyl- valerolactone monomers (Figure 95).813 Six of 

these lipocationic polyester-formulated nanoparticles enabled over 90% silencing at a siRNA 

concentration of 38.4 nM in vitro. One lead material showed effective siRNA delivery in 

a MDA-MB-231-Luc xenograft mouse tumor model.813 In 2016, Dong et al. synthesized 

a series of lipopolymers (e.g., TarN3C10) through the reactions of poly(glycoamidoamine) 

(PGAAs) and epoxides (Figure 95).814 A number of the formulated PGAAs-lipids silenced 

over 50% of the FVII production.814 In 2017, Luo et al. continued to improve the brush 

lipopolymer based on the PGAA backbone and synthesized three additional PGAA lipid 

derivatives.815 The GluN4C10 nanoparticles showed more effective gene silencing of FVII 

compared to the TarN3C10 nanoparticles. In the same year, McKinlay et al. synthesized 

several amphiphilic charge-altering releasable transporters (CARTs) for RNA delivery 

(Figure 95).816 Among the different CARTs, CART-D13:A11 showed effective mRNA 

delivery in BALB/c mice. Later on, Benner et al. further developed Ser-CART 13b and 

evaluated its mRNA delivery via intramuscular or intravenous (iv) injection in mice.811

4.2. Lipopeptides

Lipopeptides possess the properties of both lipids and peptides.817–819 Lipopeptides not only 

have biological functions such as targeting effects but also take advantage of lipid features 

such as hydrophobic interactions.820,821 In 2006, Kim et al. conjugated oligoarginine with 

cholesteryl chloroformate to produce the oligomer Chol-R9 (Figure 96).822 The complex 

of Chol-R9 and siRNA against VEGF inhibited tumor growth after intratumoral injections 

in a CT-26 mouse tumor model. In 2011, Cline et al. conjugated cholic acid, spermidine, 

and lysine to prepare diwalled and tetrawalled umbrella compounds (Figure 96).823 Then, 

these umbrella compounds were reacted with the octaarginine peptide to obtain a variety of 

lipopeptides. Lipopeptide 408/siRNA complex showed similar silencing activity to that of 

Lipofectamine 2000.823 In 2017, Sharma et al. modified CGKRK, a tumor targeting peptide, 

with saturated and unsaturated fatty acids to synthesize the lipopeptides including 409.824 

The oleic acid-CGKRK lipopeptide is a lead material for siRNA delivery found in cell 
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studies. In 2020, Zhao et al. formulated cholesterol peptide (CP, 410, Figure 96), cabazitaxel, 

IKBKE siRNA, and cholesterol-hyaluronic acid (CHA) to assemble siRNA nanocomplex 

(CHA/CP/siRNA/cabazitaxel).817 This formulation could target CD44 overexpressed on 

triple-negative breast cancer (TNBC) cells. Moreover, this nanocomplex could codeliver 

IKBKE siRNA and cabazitaxel to TNBC cells, which significantly inhibited tumor growth 

in an orthotopic MDA-MB-231 TNBC mouse mode.817

4.3. Lipoproteins

Lipoproteins are endogenous nanocomplexes in the human body, which can be divided 

into chylomicrons (CM), very low density lipoproteins (VLDL), low density lipoproteins 

(LDL), and high density lipoproteins (HDL) based on their density.825,826 Lipoproteins 

serve as natural transporters for proteins, vitamins, and hormones. Lipoprotein particles 

are composed of surface components (apolipoproteins, phospholipids, and cholesterol) 

and core components (cholesterol esters and triglycerides).827–829 Researchers have 

applied lipoproteins to deliver small molecular drugs and nucleic acids for therapeutic 

applications.711,830–832 For example, Yang et al. prepared an HDL-mimicking peptide–

phospholipid scaffold (HPPS) by integrating amphipathic α-helical peptides, cholesteryl 

oleate, and phospholipids; HPPS loaded with cholesterol-modified bcl-2 siRNA greatly 

reduced the expression of bcl-2 in KB cells.833 Based on this study, Cruz et al. constructed 

HPPS encapsulating siRNA against spalt-like transcription factor 4 (SALL4).834 The HPPS-

siRNA nanoparticles showed significant inhibition of tumor growth in a hepatocellular 

carcinoma mouse model. In another study, McMahon et al. formulated templated lipoprotein 

particles (TLP) using gold nanoparticle, ApoA-I, two phospholipids, and cholesterol, which 

were then complexed with the DOTAP–RNA mixture to produce siRNA-TLP.835 These 

siRNA-TLP nanoparticles targeting the androgen receptor (AR) significantly inhibited tumor 

growth in a LNCaP xenograft mouse tumor model. In 2017, Huang et al. applied calcium 

phosphate, phospholipids, apolipoprotein E3, and siRNA to formulate siRNA-CaP-rHDL 

nanoparticles.836 These siRNA-CaP-rHDL promote the penetration of the blood–brain 

barrier and deliver siRNA to glioblastoma cells. In a C6 glioblastoma mouse model, the 

nanoparticles loaded with siRNA against activating transcription factor-5 (ATF5) reduced 

the ATF5 protein level and improved the mouse survival time. Recently, Jiang et al. 

developed SLNP, a lipoprotein-like nanoparticle using multiple components including 

calcium phosphate, phospholipids, stromal cell-derived factor 1 (SDF1) mimic peptides, 

and apolipoprotein E (apoE).829 These SLNP nanoparticles effectively delivered miR34a to 

glioma initiating cells (GICs) and extended overall survival in a patient-derived GICs glioma 

mouse model.

5. CONCLUSIONS AND OUTLOOK

Synthetic chemists and material scientists have spent over three decades on developing novel 

structures and formulations of lipids, lipid derivatives, and lipid-derived macromolecules 

for RNA delivery. With a better understanding of structural and biophysical properties 

for effective RNA delivery as well as the underlying mechanisms involved in the cellular 

uptake and endosomal release of the nanoparticles, more and more lipid-based RNA delivery 

systems are in different stages of clinical trials. In particular, MC3, ALC-0315, and SM-102-
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based lipid nanoparticles have been approved by the FDA and EMA for clinical use. 

These significant advances open up numerous opportunities for lipids and lipid derivatives 

and their related RNA-based therapeutics. (i) New chemical structures of lipids and lipid 

derivatives can be conceived and synthesized based on the current knowledge of lipid 

components such as cationic or ionizable head groups, linker groups, and hydrophobic 

tails. Many types of helper lipids and lipopolymers can be incorporated into nanoparticle 

formulations. (ii) A large number of chemical reactions such as Michael addition, epoxide-

ring-opening, reductive amination, click chemistry, or one-pot multicomponent reactions 

permit the rapid synthesis of libraries of lipids with diversified chemical structures, paving 

a way to evaluate the structure–activity relationship. Incorporation of some biocompatible 

or targeting ligands, such as mannose, cell penetrating peptides, aptamers, or vitamins 

into the head group domains of cationic/ionizable lipids can improve RNA delivery 

efficiency with higher biocompatibility and lower immunogenicity. (iii) Detailed studies 

on LNPs properties such as physicochemical properties, enzymatic stability, morphology, 

and shelf life are needed. These studies will expand our understanding of the features of 

LNPs and provide useful design criteria for future LNPs development. (iv) Pharmaceutical 

properties of LNPs such as pharmacokinetics, pharmacodynamics, immunogenicity, and 

safety should also be carefully characterized. Knowledge obtained from these studies will 

not only elucidate the LNPs characteristics and their interactions with the host but also 

benefit the development of a wide variety of LNPs. (v) LNP-formulated RNA therapeutics 

can be broadly applicable to diverse diseases. Current clinical trials are investigating a 

series of LNPs-RNA candidates in cancer immunotherapy, protein replacement therapy, 

and gene editing. Importantly, LNPs-RNA formulations can potentially overcome “non-

druggable” targets to treat diseases that cannot be addressed with current medicines, such as 

neurodegenerative disorders and genetic diseases. In summary, with the increasing chemical 

diversity and formulation number of lipids and lipid derivatives, more and more RNA-based 

therapeutics are translating from bench to bedside and improving the quality of life.
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ABBREVIATIONS

AML acute myeloid leukemia

APC antigen-presenting cell
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ApoB apolipoprotein B

ApoE apolipoprotein E

ASGPR asialoglycoprotein receptor

ASO antisense oligonucleotides

BBB blood–brain barrier

Boc tert-butyloxycarbonyl

BMDC bone marrow-derived dendritic cell

BMDM bone marrow-derived macrophage

CAR-T cell chimeric antigen receptor T cell

Cas9 CRISPR associated protein 9

Cbz benzyloxycarbonyl

CD circular dichroism

CDI N,N′-carbonyldiimidazole

cirRNA circular RNA

CME clathrin-mediated endocytosis

CMC critical micelle concentration

CNE cationic nanoemulsion

COVID-19 coronavirus disease 2019

CRISPR clusters of regularly interspaced short palindromic repeats

CPP cell penetrating peptide

CTL cytotoxic T lymphocyte

CvME caveolae-mediated endocytosis

DC dendritic cell

DCC N,N′-dicyclohexylcarbodiimide

DCM dichloromethane

DIPEA N,N′-diisopropylethylamine

DMAP 4-dimethylaminopyridine

DMF dimethylformamide

DOPE 1,2-dioleoyl-sn-glycerol-3-phosphatidylethanolamine
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DSPC 1,2-distearoyl-sn-glycero-3-phosphocholine

dsRNA double-stranded RNA

EC endothelial cell

EVs extracellular vesicles

ECM extracellular matrix

ED50 median effective dose

EDCI 1-ethyl-3-(3-(dimethylamino)propyl)-carbodiimide

EGFP enhanced green fluorescent protein

ePC ethylphosphatidylcholine

EUA emergency use authorization

FIND Fast Identification of Nanoparticle Delivery

FVII factor VII

FXN frataxin

GalNAc N-acetylgalactosamine

GHS glutathione

HA hemagglutinin

HAI hemagglutination inhibition

HBV hepatitis B virus

HCC hepatocellular carcinoma

hCSF human cerebrospinal fluid

HDL high density lipoprotein

HMPT hexamethylphosphorus triamide

IDL intermediate density lipoproteins

IFN interferon

LDL low density lipoprotein

LNP lipid nanoparticles

LPHNP lipid–polymer hybrid nanoparticle

Luc luciferase

MHC I major histocompatibility complex I
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MHC II major histocompatibility complex II

miRNA micro RNA

MOG monooleoyl glycerol

mRNA mRNA

MTO mitoxantrone

ncRNA noncoding RNA

NHP nonhuman primate

NLE neutral lipid emulsion

OVA ovalbumin

HIV human immunodeficiency virus

Pal palmitoleyl

PBA phenylboronic acid

pBAE poly(β-amino ester)

pDNA plasmid DNA

PEG polyethylene glycol

PEI poly(ethylenimine)

Ka acidity constant

PLGA poly(lactic-co-glycolic acid)

PLL poly-L-lysine

PPTS p-toluenesulfonate

PMP platelet-derived microparticle

RBC red blood cell

RBD receptor binding domain

RISC RNA-induced silencing complex

RNase ribonucleases

RNAi RNA interference

RVG rabies virus glycoprotein

SA sialic acid

SARS-CoV-2 severe acute respiratory syndrome coronavirus 2
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scFv single-chain variable fragment

siRNA small interfering RNA

sgRNA single-guide RNA

SORT selective organ targeting

SR-SAXS small-angle X-ray scattering

STING stimulator of interferon genes

TLP templated lipoprotein particle

TAA tumor associated antigen

TEA triethylamine

TFA trifluoroacetic acid

THF tetrahydrofuran

TTR transthyretin

VLDL very low density lipoprotein
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Figure 1. 
Schematic illustration of the extracellular and intracellular barriers to effective systemic 

delivery of RNAs and the mechanism of RNA-based therapeutics. Figure was created with 

BioRender.com.
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Figure 2. 
Chemical structures of the cationic lipid DOTMA and three segments of lipids.
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Figure 3. 
Schematic illustration of the shape structure concept of lipids.
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Figure 4. 
Chemical structures and synthesis of DOTMA and its analogs.
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Figure 5. 
Chemical modifications of DOTMA and DOTAP by introducing hydroxyethyl groups
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Figure 6. 
Chemical structure and synthetic route of DC-6-14.
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Figure 7. 
Chemical structures and general synthetic route of ethylphosphatidylcholines (ePCs).
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Figure 8. 
Representative chemical structures and synthetic routes of DOPC-based lipids.
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Figure 9. 
Synthesis of gemini diquaternary ammoniums TODMACS3, TODMACS 6, and CCLA.
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Figure 10. 
Chemical structures of piperidinium and morpholinium lipids.
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Figure 11. 
Chemical structures and synthetic routes of nucleoside derived lipids.
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Figure 12. 
Chemical structures and synthetic route of carotenoid-derived lipids
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Figure 13. 
Chemical structure of PBA-BADP.
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Figure 14. 
Chemical structure of vectamidine and the delocalization of the positive charge.
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Figure 15. 
Chemical structures of AtuFECT01 and DSGLA.
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Figure 16. 
Chemical structures of guanidinium lipids and synthetic route of DODAG-9.
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Figure 17. 
Chemical structures of guanidinium DiLA2 compounds and C12ANHC18.
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Figure 18. 
Chemical structures and synthesis of N1,N12-diamidino-N4,N9-diacylated spermines.
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Figure 19. 
Chemical structures of squalene and cholesterol-derived guanidinium lipids.
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Figure 20. 
Chemical structures of arginine- and cysteine-derived guanidinium type lipids.
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Figure 21. 
Chemical structure and synthesis of SAINT.
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Figure 22. 
Synthesis of cholesterol-derived pyridinium lipids.
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Figure 23. 
Chemical structures and synthesis of pyridinium lipids
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Figure 24. 
Design, synthesis, and proposed biodegradation pattern of pyridinium psudogemini 

surfactants.
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Figure 25. 
Chemical structures and synthesis of imidazolium lipids.
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Figure 26. 
Chemical structures of imidazole/imidazolium lipophosphoramidate lipids.
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Figure 27. 
Synthesis of gemini imidazolium lipids 163−165.
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Figure 28. 
Optimization of imidazolium gemini surfactants.
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Figure 29. 
Chemical structures of DOSPA and MVL5 and a synthetic route to lipid MVL5.
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Figure 30. 
Synthesis of spermine-derived lipids.
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Figure 31. 
Structure of the aminoglycoside-derived ionizable lipids.
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Figure 32. 
Chemical structure of lysine-derived lipids.
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Figure 33. 
Chemical structures of multifunctional ionizable lipids.
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Figure 34. 
Chemical structures of dialkyl phosphate–polyamine conjugates and synthesis of Et-CH2F.
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Figure 35. 
Synthesis of MTO-derived ionizable lipids.
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Figure 36. 
Chemical structures of the first generation of two-tailed amino lipids.
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Figure 37. 
Chemical structures of two-tailed amino lipids with asymmetric tails.
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Figure 38. 
Chemical structures of DODAP and DLinDAP.
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Figure 39. 
Chemical structures and synthesis of latently biodegradable two-tailed lipids.
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Figure 40. 
Representative chemical structures and synthetic routes to biodegradable two-tailed lipids.
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Figure 41. 
Synthesis of biodegradable dimethyl amino lipids.
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Figure 42. 
Chemical structures of biodegradable alkyne analogs of DLin-MC3-DMA.
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Figure 43. 
Chemical structures and synthesis of ATX lipids.
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Figure 44. 
Chemical structures of two-tailed lipids with other linkers.
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Figure 45. 
Chemical structures of ionizable lipids used in the development of COVID-19 mRNA 

vaccines.
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Figure 46. 
Chemical structures of constrained lipids with small head groups.
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Figure 47. 
Chemical structures of representative ssPalm and a synthetic route to ssPalmM.
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Figure 48. 
Chemical structures of YSK series lipids and a synthetic route to CL4H6.
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Figure 49. 
Chemical structures of lipid 293, L021, and L101 and a synthetic route to L101.
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Figure 50. 
(a) Chemical structures of ionizable switchable lipids. (b) Synthetic route to CSL3;. (c) 

Protonation-induced conformational change of the ionizable switchable lipids.
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Figure 51. 
Chemical structures of cholesterol-derived ionizable lipids.
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Figure 52. 
Chemical structures of vitamin-derived ionizable lipids.
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Figure 53. 
Chemical structures and synthesis of representative phospholipids and glycolipids.
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Figure 54. 
Representative reactions for the preparation of lipidoids.
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Figure 55. 
Synthesis of lipidoids via Michael addition of amines with acrylamides and acryl ester.
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Figure 56. 
Lipidoids synthesized via Michael addition of alkyl-amines (blue) to alkyl-acrylate or 

methacrylate tails (red).
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Figure 57. 
Chemical synthesis of bioreducible lipids.
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Figure 58. 
Modular strategy for the synthesis of dendrimer-like lipids and chemical structure of 5A2-

SC8.
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Figure 59. 
Synthesis of lipids from ring-opening reaction between amines and epoxides.
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Figure 60. 
Chemical structures of aminoglycosides, epoxides, and acrylic esters and a representative 

schematic reaction between aminoglycoside and epoxide.
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Figure 61. 
Chemical structures of TNT-4 and TNT-b10.
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Figure 62. 
Synthesis of amino acid-derived lipidoids.
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Figure 63. 
Chemical structures and synthesis of OF-XX and OF-Deg-Lin.
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Figure 64. 
Synthesis of lipidoids via epoxide ring-opening of alkyl epoxides with polyamines.
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Figure 65. 
Synthesis of TT and FTT series of ionizable lipids.
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Figure 66. 
Synthetic routes to lipids via thiol–yne click chemistry.
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Figure 67. 
Synthesis of lipidoids via thiolactones ring-opening reaction followed by the thiol–disulfide 

exchange reaction. (a) Structures of amines. (b) Structures of pyridyl disulfide derivatives. 

(c) Structures of thiolactone derivatives. (d) Representative reaction scheme.
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Figure 68. 
Isocyanide-mediated three-component reactions for the synthesis of lipidoids.
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Figure 69. 
Chemical structure of zwitterionic lipid GDOPE.
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Figure 70. 
Chemical structures of zwitterionic lipids.
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Figure 71. 
Chemical structures of lysine-derived zwitterionic lipids.
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Figure 72. 
Chemical structures and the synthesis of zwitterionic lipid ZA3-Ep10.
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Figure 73. 
Chemical structure of DOP-DEDA and schematic illustration of the pH-responsive ability of 

DOP-DEDA.
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Figure 74. 
Chemical structures and synthesis of representative iPhos series lipids.
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Figure 75. 
Schematic illustration of the interactions between Zn/DPA, sulfonic acid 365, and 

phosphate.
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Figure 76. 
Chemical structures of representative coordinative amphiphiles (CAs).
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Figure 77. 
General chemical structure of phospholipids.
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Figure 78. 
Chemical structures of representative phosphatidylcholines.

Zhang et al. Page 180

Chem Rev. Author manuscript; available in PMC 2023 April 11.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 79. 
Synthesis of phosphatidylcholines incorporating adamantyl groups.
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Figure 80. 
Chemical structures of representative phosphatidylethanolamines.
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Figure 81. 
Chemical structures of representative phosphatidylglycerol.
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Figure 82. 
Chemical structures of representative phosphatidylserine.
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Figure 83. 
Chemical structures of cholesterol variants formulated in LNPs.
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Figure 84. 
Chemical structures of sterol variants modified from cholesterol.
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Figure 85. 
Chemical structures of three groups of cholesterol analogs.
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Figure 86. 
Structural features of C-24 alkyl derivatives of cholesterol.
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Figure 87. 
Chemical structures of anionic lipids.
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Figure 88. 
Synthesis procedures of DC.
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Figure 89. 
Chemical structures of fatty acid esters for RNA delivery.
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Figure 90. 
Chemical structures of other helper lipids for RNA delivery.
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Figure 91. 
Chemical structures of PEG-lipids.
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Figure 92. 
Chemical structures of functionalized PEG-lipids.
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Figure 93. 
Chemical structures of PEI-lipids.
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Figure 94. 
Chemical structures of dendrimer-lipids.
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Figure 95. 
Chemical structures of other types of lipopolymers.
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Figure 96. 
Chemical structures of lipopeptides.
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Table 1.

Representative RNA-Based Therapeutics Approved for Clinical Use

RNA-based therapeutic products Approval year Therapeutic Indication

ASO

Mipomersen 2013 Familial hypercholesterolemia

Eteplirsen 2016 Duchenne muscular dystrophy

Nusinersen 2016 Spinal muscular atrophy

Inotersen 2018 Hereditary transthyretin amyloidosis

Golodirsen 2019 Duchenne muscular dystrophy

Volanesorsen 2019 Familial chylomicronaemia syndrome

siRNA

Patisiran 2018 Hereditary transthyretin amyloidosis

Givosiran 2019 Acute hepatic porphyria

Lumasiran 2020 Primary Hyperoxaluria Type 1

Inclisiran 2020 Hypercholesterolemia or mixed dyslipidemia

mRNA

BNT162b2 2020 COVID-19 vaccine

mRNA-1273 2020 COVID-19 vaccine
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Table 2.

RNA Delivery Techniques

RNA Delivery Techniques refs

Physical Methods Microinjection 111–113

Electroporation 114–116

Sonoporation 117–119

Photoporation 120, 121

Magnetofection 122, 123

Hydroporation 124

Microfluidic squeezing 125–129

Biological Carriers Extracellular vesicles (EVs) 146–167

Cell/cell membrane-based vectors 135,168–171

Synthetic Approaches Lipid-based nanocarriers 175–177

Polymer-based delivery systems 206–217

Inorganic nanoparticles 221–232

Nucleic acid nanostructures 236, 238, 243, 246–253

Chemically conjugated RNAs 261–278
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