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Abstract

Type II Diabetes (T2D) is a major risk factor for Alzheimer’s Disease (AD). These two diseases 

share several pathological features, including amyloid accumulation, inflammation, oxidative 

stress, cell death and cognitive decline. The metabolic hormone amylin and amyloid-beta are 

both amyloids known to self-aggregate in T2D and AD, respectively, and are thought to be the 

main pathogenic entities in their respective diseases. Furthermore, studies suggest amylin’s ability 

to seed amyloid-beta aggregation, the activation of common signaling cascades in the pancreas and 

the brain, and the ability of amyloid beta to signal through amylin receptors (AMYR), at least in 
vitro. However, paradoxically, non-aggregating forms of amylin such as pramlintide are given to 

treat T2D and functional and neuroprotective benefits of amylin and pramlintide administration 

have been reported in AD transgenic mice. These paradoxical results beget a deeper study of the 

complex nature of amylin’s signaling through the several AMYR subtypes and other receptors 

associated with amylin effects to be able to fully understand its potential role in mediating AD 

development and/or prevention. The goal of this review is to provide such critical insight to begin 

to elucidate how the complex nature of this hormone’s signaling may explain its equally complex 

relationship with T2D and mechanisms of AD pathogenesis.
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1. INTRODUCTION

As the life expectancy of people around the world continues to increase with advances in 

science and medicine, the prevalence of age-related disorders also increases. Alzheimer’s 
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Disease (AD) is the leading cause of dementia and the sixth leading cause of death in 

the United States that primarily impacts the elderly population, with the majority of those 

diagnosed above the age of 65. After 65, the risk of AD development doubles every five 

years, and reaches nearly 1/3 by the age of 85 (1). While the incidence of the leading cause 

of death; heart disease, decreased 11% from 2000 to 2015, AD increased 123% over the 

same time period speaking to the critical relevance to find a therapeutic [1] as this rate is 

only predicted to keep rising with 13.8 million Americans to be diagnosed by 2050 [2].

AD is a progressive neurodegenerative disease that impairs memory, problem-solving, 

language and other cognitive abilities [1]. The initial symptoms of AD typically involve 

episodic memory loss, which eventually progresses to an inability to perform simple tasks. 

AD patients also undergo a number of behavioral changes, which can include depression, 

psychosis, executive dysfunction, irritability, sleep disorders and even personality changes 

[2]. The average duration of the illness is 8–10 years, but the preclinical and prodromal 

stages that precede the clinical symptomatic stages typically extend over 20 years [3].

There are two classifications of AD - sporadic and familial. Early-onset familial AD occurs 

in younger subjects, with a mean age of 45, due to an inherited genetic mutation, but 

accounts for less than 1% of all AD cases [3]. While many genetic mutations are linked to 

familial AD, the majority of cases stem from amyloid precursor protein (APP), presenilin 

(PSEN1 or PSEN2) and Apolipoprotein E 4 (APOE4) mutations [4, 5]. These mutations lead 

to alterations in APP metabolism; and increased production and aggregation of the amyloid 

beta-peptide (Aß), a hallmark pathological feature of AD [6]. The overwhelming majority 

of AD cases are sporadic, with a late onset over the age of 65. The cause of late-onset AD 

is not known, and the pathogenesis involves multiple environmental and genetic factors [1], 

making prevention and treatment increasingly difficult to pinpoint.

AD is commonly characterized by many features including neurodegeneration, oxidative 

stress (OS), neuroinflammation, decreased brain metabolism, impaired synaptic transmission 

and neuronal cell death, as well as two hallmark lesions; extracellular amyloid 

plaques composed of Aß and intracellular neurofibrillary tangles (NFTs) composed of 

hyperphosphorylated tau [3, 7–11]. Tau is a microtubule-associated protein that becomes 

hyperphosphorylated and self-aggregates in AD brains, levels of which correlate with 

cognitive impairment and cell death [7, 12–14].

Aß is a 37–43 amino acid (AA) peptide that is the cleavage product of APP, orchestrated by 

ß-secretase (BACE1) and subsequent γ-secretase cleavage [7, 15]. While 90% of basal Aß 

production is cleaved at AA 40 (Aß1–40), cleavage at AA site 42 (Aß1–42) levels are elevated 

in AD patient brains [16–18]. Mutations to γ-secretase catalytic subunits PSEN1 & PSEN2, 

as well as APP, lead to the overproduction of Aß1–42 [18–22]. Aß1–42 is more prone to 

aggregation and is believed to be the building block for the toxic Aß oligomers, which affect 

memory and cell survival [23]. While there is much debate as to whether Aß oligomers 

or amyloid plaques are the more toxic species of Aß, it is clear that there is a positive 

feedback loop established between Aß accumulation and OS, neuroinflammation and cell 

death mechanisms, contributing to the pathological cascade observed in AD [23–26]. This 
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destructive feed-forward mechanism due to amyloidosis is not restricted to AD but involves 

other diseases as well, namely Type 2 Diabetes Mellitus (T2D).

2. RELATIONSHIP BETWEEN AD & T2D

Sporadic AD, is the result of numerous genetic and environmental factors [27]. Lifestyle 

choices such as diet and exercise that can lead to obesity, metabolic syndrome and the 

development of T2D are associated with sporadic AD development [28–30]. Diabetics who 

have T2D for more than five years have significantly increased risk for AD development 

[31]. AD has even been referred to as ‘Type 3 Diabetes’ by some, indicating the strikingly 

similar pathological features between Diabetes and AD [26, 30, 32], particularly in the brain.

Diabetes is the seventh leading cause of death in the United States, just behind AD. 

According to the CDC, in 2015, 30.3 million people; 9.4% of the US population, had 

diabetes and a staggering 84.1 million had prediabetes; 33.9% of the US population. The 

prevalence of T2D is expected to increase to almost 600 million cases worldwide by the 

year 2045. While men develop T2D more frequently than women, women develop T2D-

associated cognitive decline more commonly than men [33]. Women are also more prone to 

develop dementia and AD [1], suggesting a unique sex difference in pathogenesis in both 

diseases.

T2D is a metabolic disease derived from chronic hyperglycemia, typically due to 

poor diet and a sedentary lifestyle [34], which leads to chronic hyperinsulinemia and 

hyperamylinemia as the body tries to regulate blood glucose levels [35]. This leads to 

insulin resistance, impaired insulin signaling in the brain, impaired glucose utilization, and 

the eventual decrease in insulin and amylin production with the pancreatic ß-cell loss [36].

AD & T2D share many pathological characteristics, which include inflammation, 

mitochondrial dysfunction, OS and importantly, to this review: decreased brain metabolism, 

impaired metabolic hormone signaling and resistance, amyloid accumulation and cognitive 

decline [32, 37, 38]. Overproduction of insulin due to chronic high blood glucose levels 

causes the downregulation of insulin receptors, impaired transport of insulin across the 

blood-brain barrier (BBB) and reduced insulin signaling in the brain [10, 39–41]. As 

insulin’s primary function is to modulate blood glucose levels [42], this leads to impaired 

cerebral glucose uptake and utilization, which is one of the first signs of cognitive 

impairment that continues to worsen with cognitive decline [10, 43, 44]. Impaired cerebral 

glucose utilization leads to neuronal starvation, impaired energy production, mitochondrial 

dysfunction, OS, DNA damage and increased cell death, all of which drive pro-apoptotic, 

pro-inflammatory and pro-Aß cascades [45, 46].

Insulin receptors (IR) are widely distributed throughout the brain and are highly expressed 

in the hippocampus and cerebral cortex, downregulation of which correlates with deficits 

in synaptic transmission and impaired learning [42, 47]. This is likely due to the various 

cascades IRs are associated with, including neuronal plasticity, learning and memory, 

which insulin and insulin-like growth factor (IGF) agonism activate; dysregulation of which 

contributes to cognitive decline [32, 48, 49]. This is supported by the finding that acute 

insulin administration was shown to improve performance on memory and cognition tests 
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[50]. Conversely, chronic hyperinsulinemia induced the opposite effect [51], likely due to the 

development of insulin resistance and impaired insulin signaling.

Impaired insulin signaling also induces increased tau hyperphosphorylation via impaired 

downstream PI3K-Akt signaling and subsequent dephosphorylation and activation of 

glycogen synthase kinase 3ß (GSK3ß), which is normally responsible for binding tau 

to microtubules [52]. The inability to properly inhibit GSK3ß activity leads to the 

hyperphosphorylation and subsequent aggregation of tau. IR dysfunction has also been 

shown to impair Aß clearance and contribute to Aß aggregation [53]. This seems to establish 

a positive feedback loop as Aß has been shown to impair insulin signaling and induce insulin 

resistance [54, 55]. Dysregulated insulin signaling also leads to impaired Aß clearance via 
changes in the insulin-degrading enzyme (IDE), as IDE degrades not only insulin but Aß as 

well [56–58]. Furthermore, IDE activity decreases in both T2D and AD brains, which may 

also lead to amyloid aggregation [59]. As mentioned above, both AD and T2D pathology 

include an aggregation of amyloid protein that leads to toxic effects. To be discussed further 

in this review, amylin has also been implicated in AD and may be an important player in 

both diseases.

3. AMYLIN & THE AMYLIN RECEPTOR

Amylin is a 37-AA peptide hormone that is produced in the ß-cells of the pancreatic islets 

of Langerhans. Amylin is co-produced and co-secreted from the pancreas with insulin after 

eating [60]. Amylin works in conjunction with insulin to reduce blood glucose by slowing 

gastric and intestinal emptying, inhibiting glucagon secretion and reducing food intake [61]. 

Amylin has both paracrine and endocrine function. It is important to note that this hormone 

is readily BBB permeable and amylin receptor (AMYR) function has been found throughout 

the CNS, suggesting the potential relevance and importance of amylin signaling in the 

healthy brain within multiple systems.

The AMYR is composed of two major components; the calcitonin receptor (CalcR) and 

receptor activity modifying protein (RAMP). The CalcR is a G-protein coupled receptor 

(GPCR) that localizes to the cell surface [62, 63]. The bone-dwelling osteoclast is the 

primary target of calcitonin (CT), but receptors have been reported throughout the periphery 

in organs such as the kidney, lung, testes, placenta and skeletal muscle [64, 65]. It has also 

been reported to be widely distributed in the CNS. Huang et al., detected CalcR mRNA in 

the spinal cord and various regions of the mouse brain, including the nucleus accumbens 

(NAc), cortex, hippocampus and hypothalamus. Immunohistochemical analysis has located 

CalcR protein expression in the area postrema (AP), the NAc, a number of hypothalamic 

nuclei, the substantia nigra, stria terminalis, locus coeruleus, nucleus of the solitary tract 

(NTS) and some nuclei of the reticular formation [66]. Many of these findings were found to 

be consistent in human brains, as well [67].

Several splice variants of the CalcR have been discovered, which is further complicated by 

variation across species [68]. The CalcRα isoform is the most abundant and widely studied 

CalcR isoform. CalcRß is the next most common isoform of the CalcR, which is identical 

to CalcRα, except for the addition of a 16-amino-acid insert in the first intracellular domain. 
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[69]. There has been little difference observed between the two receptor isoforms in the 

peptide ligands they respond to, although the affinity to each ligand and ability to activate 

downstream pathways varies depending on the splice variant and cellular background. Two 

other splice variants of the CalcR have been implicated, but these transcripts correspond to 

uncommon or non-functional proteins [69].

The CalcR signals primarily for CT, which has many functions, but is most widely known 

for blood calcium level regulation by osteoclast-mediated bone resorption inhibition and 

renal calcium clearance stimulation [68]. In addition to CT, the CalcR interacts with the 

Calcitonin Gene-Related Peptide (CGRP) and adrenomedullin (AM), resulting primarily in 

vasodilation [62]. The CalcR has also been shown to respond to amylin in several different 

cell lines, but its affinity for each of the latter three ligands is greatly decreased when 

compared to CT. The affinity of the CalcR for amylin is greatly increased when complexed 

to a RAMP [61, 62, 70].

To date, three separate RAMPs have been identified; RAMP1, RAMP2 and RAMP3. 

Despite sharing a common structure and similar functions, RAMP proteins only have 30% 

sequence homology. RAMP2 is the longest isoform at 174 amino acids, while RAMPs 1 and 

3 are 148 amino acids long [71]. Similar to the CalcR, mRNA and protein expression of 

all RAMP subtypes has been reported to be widely distributed throughout a wide variety of 

human and rodent peripheral tissues. As seen in the NCBI protein atlas, there is pronounced 

expression of RAMP1 mRNA as well as protein in the endometrium, prostate, pancreas and 

muscle tissue, RAMP2 in the lung, placenta, adipose tissue and muscle tissue, and RAMP3 

in the lung, lymph nodes and thyroid gland observed in humans [72]. The expression of 

mRNA of all three RAMPs is widely distributed among peripheral organs in rodents as well 

[72]. To date, there has only been RAMP protein expression observed in the human cortex, 

as described in the NCIB protein atlas. More extensive studies have been conducted on 

RAMP expression in the rodent brain, indicating that each of the three RAMP subtypes are 

widely distributed throughout the brain, including expression in the AP, subfornical organ 

(SFO), hypothalamus, ventral tagmental area (VTA), hippocampus, cerebellum and a wide 

variety of hypothalamic nuclei. Additionally, RAMP1 expression has been observed in the 

cerebral cortex, caudate putamen, amygdaloid complex and NAc, RAMP2 in the NTS, pia 

mater and blood vessels, and RAMP3 in the cerebral cortex [73–76].

While one, two or all three RAMP proteins have been shown to interact with eleven different 

GPCRs, it is only their interaction with the CalcR that results in amylin signaling [77]. 

The interaction of RAMP1, RAMP2 and RAMP3 with the two CalcR isoforms, CalcRα 
and CalcRß, result in the six separate AMYRs: AMYR1α, AMYR2α, AMYR3α, AMYR1ß, 

AMYR2ß and AMYR3ß, respectively. AMYR1α, & AMYR3α have received the brunt of the 

experimental attention. While the stoichiometry and biochemistry of this interaction have 

not yet been investigated, numerous studies have generated functional results using a 1:1 

CalcR:RAMP ratio.

Interestingly, multiple studies have shown all AMYR subtypes in addition to each splice 

variant of the CalcR to have the highest affinity for salmon CT (sCT) in multiple cell lines. 

When RAMPs 1 & 3 interact with either CalcR splice variant, in COS-7, CHO-P, and RAEC 

Servizi et al. Page 5

Curr Pharm Des. Author manuscript; available in PMC 2023 April 11.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



cells, the affinity for amylin increases while simultaneously decreasing CT affinity [62, 70, 

78]. Christopoulos, et al. demonstrated that transfection of increasing levels of RAMPs 1 

and 3 into CHO-K1 cells, which endogenously express CalcR, increased amylin binding 

as well. Generally speaking, these studies indicate that AMYR1 receptors have the highest 

affinity for sCT, followed by amylin, CGRP, CT, and then AM. The AMYR3 receptor shares 

similar affinities for these ligands, although the affinity for CGRP is markedly reduced when 

compared to AMYR1.

There are mixed results, however, on the impact of RAMP2 co-expression with the CalcR 

on amylin binding, Muff, et al., and Lee et al., indicate an increase in amylin potency 

in RAEC cells [78] and HEK cells [79], respectively. Hay et al., indicate no increase in 

amylin affinity in response to AMYR2 expression in COS7 cells [61], which agrees with 

the results indicated by Christopoulos et al., [62]. Morfis et al., on the other hand, indicate 

that AMYR2-transfected COS7 cells exhibit an increased amylin potency, roughly equal 

to that of the AMYR1 and AMYR3 receptors [80]. Christopoulos et al. also indicated 

that RAMP2 did not influence amylin binding in CHO-K1 cells, and that only RAMP1 

co-transfection with the CalcR was able to alter amylin signaling in HEK cells. These 

results further indicate the importance of cellular background on AMYR function, along 

with the importance of experimental consistency across studies – particularly in regard to 

transfection and binding assay procedures. While it has become generally accepted that 

AMYR1 and AMYR3 are the more prominent receptors involved in amylin signaling, these 

results indicate that further study is necessary to fully understand the role of RAMP2 and 

AMYR2 in amylin binding and signaling.

Amylin has also been shown to signal through the calcitonin receptor-like receptor (CRLR) 

when it is complexed to a RAMP, but at much lower affinities. When the CRLR is 

complexed with RAMP1, it acts primarily as a CGRP receptor, but it has also been shown 

to respond to AM, Adrenomedullin 2/Intermedin (AM2), amylin and CT, in that order 

of potency. The AM receptor is composed of the CRLR and either RAMP2 or RAMP3, 

resulting in the AM1 and AM2 receptors, respectively. AM1 responds to AM, amylin, 

CGRP, AM2 and CT, in that order. The AM2 responds to each peptide with similar affinities, 

but amylin and AM2 are switched in the list of affinities when compared to AM1 [63, 69, 

81].

Another receptor has recently been implicated in amylin signaling in addition to the 

traditional RAMP/CalcR complex; the transient receptor potential cation channel subfamily 

V member 4 (TRPV4) receptor. The NIH Genetics Home reference shows that TRPV4 

receptor is a versatile nonselective cation channel activated by osmotic, mechanical and 

chemical cues that plays a role in a wide array of physiological functions. More recently, 

it has been suggested to play a role in amylin signaling, particularly at toxically high 

concentrations of amylin; concentrations at which amylin has been shown to aggregate 

[82, 83]. The affinity of amylin to the TRPV4 receptor has not yet been investigated. The 

TRPV4 receptor exhibits high levels of protein expression throughout the human periphery, 

with enhanced expression in the adrenal gland, pancreas, gastrointestinal tract and genitalia 

(protein atlas). The NCIB protein atlas, Kauer, 2009 and Zhang, 2017 describe that TRPV4 
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receptor is likewise widely expressed throughout the brain in humans and rodents, including 

the hippocampus, cortex, cerebellum and caudate putamen [83, 84].

Specific peripheral amylin binding has been reported in the rodent lung, stomach fundus, 

spleen, and liver [85]. Moderate to high amylin binding in the rodent brain has been 

observed in the mid-caudal NAc, the fundus striati, the bed nucleus of the stria terminalis, 

the substantia inominata, the amygdalostriatal transition zone, the central and medial 

amygdalostriatal nuclei, a number of hypothalamic nuclei, locus coeruleus, dorsal raphe 

and caudal parts of the NST. The highest amount of amylin binding was observed in the 

SFO, lamina terminalis and the AP [86]. More recent studies have suggested amylin binding 

in the hippocampus [83, 87–89].

In addition to what is known about amylin’s signaling, there have been scattered reports 

suggesting amylin production in the brain. Two reports covered later in this review 

found increased levels of amylin mRNA and protein in the preoptic area, medial preoptic 

nucleus and bed nucleus of the stria terminalis of postpartum rat dams [90, 91]. Amylin 

immunoreactive cell bodies were found in various regions of the rat brainstem [92] and 

various monkey hypothalamic nuclei [93]. mRNA levels of proislet amyloid polypeptide 

(proIAPP), the precursor to amylin, were also located in various nuclei in the mouse 

hypothalamus. However, the relevance of central amylin production has not yet been 

investigated.

4. AMYLIN & ITS RELATIONSHIP TO AD & COGNITION

In normal conditions, hAmy exists as a soluble monomer, but undergoes conformational and 

biochemical changes in T2D, leading to aggregation and fibril formation [94]. These amylin 

fibrils, which are found in the brain and pancreas of over 90% of T2D patients, are closely 

linked with pancreatic ß-cell death, and the consequential decrease in amylin and insulin 

production during late-stage T2D [36, 95, 96]).

Amylin not only aggregates in the pancreas and causes ß-cell death, but it also readily 

crosses the BBB and aggregates in the brain, leading to cognitive impairment [97, 98]. 

While amylin and AMYR expression in the healthy brain has been mentioned throughout 

the article thus far, unfortunately, studies searching for amylin and AMYR distribution in 

AD brains have yet to be done. To this end, Aß and amylin aggregates, as well as mixed 

plaques consisting of both amyloid proteins, have all been found in AD brains. Fibrillar 

amylin has been suggested to seed Aß aggregation and plaque formation, while monomeric 

amylin may inhibit Aß aggregation [99, 100]. Whether amylin in itself is a toxic insult, 

or whether its functional loss via aggregation and ß-cell loss in T2D participates in AD 

development is still a topic of debate. This is highlighted by several conflicting articles 

supporting benefits of both AMYR agonists and antagonists [37].

Due to its multifactorial nature, drug development for AD therapy has proven to be a 

challenge, with no new treatment approvals since 2003. Currently, the six drugs approved 

by the FDA for AD and dementia treatment only beginning to address symptomatic effects 

of the disease rather than begin to be preventative in nature [101, 102]. As mentioned 
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early in this review, dysfunction in brain metabolism, inflammation and the production of 

reactive oxidative species is known to be present in the brain years before the first behavioral 

signs of memory loss are present. Therefore, there is a critical need to find biomarkers 

that elucidate the time-point when therapeutic intervention needs to be administered, most 

likely before the point of Aß aggregation. Recent evidence, however, has shown promise 

in the use of pramlintide acetate (PRAM) as a therapeutic for AD in AD model mice. 

PRAM, a synthetic analogue of amylin, was synthesized to mimic non-aggregating rat 

amylin (rAmy), which differs from hAmy by three proline substitutions at positions 25, 

28 and 29, the AAs responsible for amyloid formation [103]. Studies have also indicated 

PRAM’s ability to slow hAmy aggregation in vitro [104]. Restoring amylin levels in the 

form of non-aggregating PRAM, in diabetic patients has shown promising evidence that 

it may be the loss of functional amylin in the brain, along with insulin, that may be the 

underlying cause of cognitive dysfunction in T2D. This theory is further supported by 

findings indicating a positive association between levels of plasma amylin and cognition in 

healthy elderly subjects, T2D patients and AD patients [105–107]. This serum relationship 

alone, paired with the fact that AMYR mRNA is expressed in areas related to AD pathology 

and higher-order cognition, i.e., the hippocampus and cortices, gives sufficient rationale to 

look at the role of amylin in healthy cognition, memory and its potential relation to the 

dysfunction of those processes in AD pathogenesis. As hypometabolism in the brain of T2D 

and AD patients has already been mentioned many times in this review, it should not be 

a surprise that hypothesizing hyperamylinemia along with hyperinsulinemia due to insulin 

resistance, and possibly amylin resistance even though those studies are yet to be done, 

during late-stage T2D can leading to aggregates of both amylin and Aß that downstream 

cause cognitive decline is a loss-of-function theory that could be addressed by hormone 

replacement.

The results of numerous animal studies also support the theory of therapeutic amylin 

replacement. To this end, several studies have demonstrated the benefits of centrally and 

peripherally administered PRAM on memory and cognition in various animal models of 

AD. Subcutaneously PRAM treated senescence-accelerated prone (SAMP8) mice performed 

significantly better at the hippocampal-dependent novel object recognition task than saline-

treated mice [107]. This was in conjunction with increases in both synapsin I and CDK5, 

two proteins implicated in synapse growth and formation. This same study indicated that 

PRAM also exhibited antioxidant and anti-inflammatory effects as PRAM treated mice 

showed a significant decrease in the oxidative stress marker HO-1, and the inflammation 

marker, COX-2 [107]. More recently, Patrick et al. indicated that chronic peripheral 

treatment of PRAM in APP/PS1 mice increased OS handling machinery. In addition, PRAM 

was able to dose-dependently reduce ROS induced by an H2O2 insult to neuroblastomas, 

in vitro [108]. These findings suggest non-aggregating amylin may act as an antioxidant or 

activate down-stream defensive antioxidants.

Intraperitoneal (IP) treatment of PRAM and hAmy improved both Y maze and Morris 

water maze performance, and both IP and intracerebroventricular (ICV) treatment reduced 

pathology and increased Aß1–42 in the CSF of 5XFAD AD model mice; suggesting that 

amylin may function to shuttle Aß out of the brain [109]. IP injections of hAmy were also 

shown to reduce tau pathology in 3xTg AD mice and neuroinflammation markers Iba-1 
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and CD68, while simultaneously improving cognition [110]. Importantly, this study also 

indicated that IP injection of the AMYR inhibitor, AC253, attenuated the beneficial effects 

observed on cognition and pathology, indicating the importance of amylin interaction with 

its cognate receptor to mediate these therapeutic effects.

Other studies, however, have indicated the therapeutic potential of AMYR inhibition in vivo 
and in vitro. Treatment of TgCRND8 mice with AC253 and a cyclic form of AC253, 

(cAC253), decreased plaque burden and neuroinflammation while improving cognition 

[87]. The same study indicated that both AC253 and cAC253 attenuated cell death 

induced by hAmy and Aß1–42 in HEK cells overexpressing AMYR3 [87]. In vitro, both 

hAmy and Aß exerted dose-dependent neurotoxic effects when administered to primary 

hippocampal, cortical and forebrain cholinergic neurons [111, 112]. Similar studies also 

indicated impaired cell and neuronal viability [74, 113], as well as increases in apoptotic 

markers caspases 3, 6, 9, BID and XIAP, by both Aß and hAmy [114]. Soluble Aß1–42 

oligomers and hAmy also induced impairments in LTP in hippocampal slices of TgCRND8 

AD mice. These effects were blocked by AC253, but interestingly, by PRAM as well 

[88, 89]. Given that PRAM did not exert an effect on LTP when administered alone, the 

authors postulated that PRAM exerts its therapeutic effects by way of blocking the toxic 

actions of amylin and Aß [88]. Together, the studies summarized above seem to highlight 

a discrepancy between the results of in vivo and ex vivo/in vitro studies and potentially in 

the nature of how different agonists and antagonists bind and signal through the AMYR. It is 

a possibility that amylin signaling via AMYR elicits different signaling cascades dependent 

on cellular subtype, AMYR complex present, the genetic background of a mouse model 

and dose of hAMY/PRAM/AMYR antagonist used in each experiment. More work in this 

area of amylin functionality is warranted in order to truly understand the pharmokinetics of 

activation versus inhibition of the AMYR.

4.1. AMYR3 Prevalence in Cognition & Aß Signaling

Morfis et al. conducted an in-depth analysis of signaling pathways activated by amylin. 

HEK cells and COS7 cells were transfected with the CalcRα and either RAMP1, RAMP2 

or RAMP3 and subsequently treated with rAmy. The cellular response results compared 

to that of human CT. They observed a 20 – 40-fold increase in cAMP signaling, a 2 

– 5-fold increase in ERK phosphorylation, both of which are known to be important 

signaling pathways involved in cognition. Morfis et al. also indicated a 2 – 4-fold increase 

in intracellular calcium depending upon the RAMP isoform and cell type [80]. With the 

exception of the cAMP response in COS7 cells, which showed a more potent response in 

cells transfected with RAMP1, all dose-response assays indicated a more potent response in 

cells transfected with RAMP3 [80].

Based on the results of the experiments conducted by Morfis et al. indicating a prominent 

role for AMYR3, Fu et al. investigated the signaling cascades mediated by that particular 

receptor. HEK cells transfected with AMYR3 displayed an increase in cytosolic cAMP 

and calcium, as well as an increase in Akt, ERK and PKA activity; as indicated by 

phosphorylation, upon receptor activation [113]. The role of AMYR3 was confirmed when 

AC253 was shown to block the increase in intracellular calcium, as well as activation of 
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PKA, Akt and ERK. The importance of AMYR3 in mediating amylin (and Aß) effects was 

supported by findings indicating that knockdown of the CalcR and RAMP3 rendered human 

fetal neurons more resistant to hAmy and Aß induced cell death [74].

Several studies have indicated that amylin and Aß signal through the same receptor. Studies 

mentioned above indicated that specific AMYR inhibition attenuated increased cell death 

[74, 87, 112, 113], decreased levels of pro-apoptotic mediators, and rescued impaired LTP 

[88, 89] induced by both hAmy and Aß. Aß1–42 was also shown to induce increases in 

intracellular cAMP and calcium as well as activation of Akt, ERK and PKA in AMYR3 

expressing HEK cells, similar to hAmy [113]. Co-application of hAmy and Aß1–42 did not 

increase the neuronal toxicity [111] or the rise of cytosolic calcium [113] observed when 

compared to incubation of a single peptide, indicating a common receptor and/or signaling 

pathway. Gingell et al., however, indicated that Aß1–42 was unable to evoke a cAMP 

response through HEK and COS7 cells overexpressing the AMYR1 or AMYR3 receptors at 

a wide variety of concentrations, when hAmy, rAmy and PRAM all induced a significant 

increase of cytosolic cAMP through both receptor subtypes [115]. As the same receptor 

subtype, cellular background and Aß isoform were used for both studies, the cause of the 

discrepancy of results regarding the ability of Aß to stimulate cAMP production is unclear 

[113, 115].

4.2. TRPV4 & Calcium Signaling: Relevance to Excitotoxicity in AD

As the TPRV4 receptor is a nonselective cation channel expressed widely throughout 

the periphery and the brain, its functions are numerous. These functions include that of 

amylin signaling, although this signaling cascade has not been studied as extensively. Low 

concentrations of hAmy, rAmy and PRAM were shown to induce small but significant 

increases in intracellular calcium in primary hippocampal neurons, which was blocked by 

specific AMYR inhibition [83]. At high concentrations of hAmy; where amylin was shown 

to aggregate, a much larger calcium response was shown to be mediated through the TRPV4 

receptor; as TRPV4 receptor knockdown (but not AMYR inhibition) decreased the rise in 

intracellular calcium [83].

RAMP1 was detected in the hippocampal neurons studied via immunohistochemistry, 

inspiring writers to suggest that RAMP1 is the prominent receptor component responsible 

for this function [83]. This, however, is not in agreement with previous findings indicating 

that AMYR3 overexpressing COS7 cells exhibited 2-fold greater calcium mobilization 

than COS7 cells over-expressing AMYR1 [80]. The same study also evaluated calcium 

mobilization in HEK cells overexpressing either AMYR1 or AMYR3 and found no 

significant difference between the two [80]. Due to these inconclusive results, future studies 

investigating the particular AMYR responsible for recruitment of the TRPV4 receptor in 

primary hippocampal neurons and its relevance to cognition is warranted.

The findings of Zhang et al. regarding the role of TRPV4 in amylin signaling are supported 

by prior findings indicating hAmy’s ability to induce increases in intracellular calcium in 

murine pancreatic ß-cells [82]. TRP channel inhibition and TRPV4 receptor knockdown 

via siRNA prevented hAmy-induced calcium increases and reduced hAmy-triggered cell 

death [82]. Amylin aggregates were found on the plasma membrane adjacent to abnormal 
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invaginations, suggesting that the TRPV4 receptor may be able to sense changes to the cell 

membrane induced by extracellular amylin aggregates [82].

Excitotoxicity; the result of excessive glutamate release, and subsequent NMDA and AMPA 

receptor activation increase intracellular calcium levels. While low doses of calcium govern 

a wide array of cellular processes, too much calcium can overwhelm calcium regulatory 

mechanisms and eventually cause cell death [116]. Aberrant calcium influx plays a role 

in neuronal dysfunction, inflammation, mitochondrial dysfunction, OS and apoptosis, all 

of which are closely associated with AD and T2D [117–119]. As hAmy and Aß have 

also been shown to play a role in each of the pathological features mentioned above, it is 

possible that their toxicity is mediated through the TRPV4 receptor via aberrant calcium 

influx and excitotoxicity. This theory is supported by the detection of hAmy oligomers and 

plaques in the high hAmy dose solution; but not the low hAmy dose solution, suggesting 

that the AMYR and TRPV4 receptors mediate some of the cellular dysfunction and AD-like 

pathological development driven by toxic amyloid signaling. It is likely that Aß may activate 

a similar calcium signaling cascade, but these experiments have not been done.

5. INFLAMMATION

As mentioned previously, amylin has been shown to aggregate, forming oligomers and 

plaques when it reaches higher concentrations, such as those observed in T2D. Amylin 

aggregates have been shown to induce inflammation in the pancreatic islets, contributing to 

T2D pathogenesis [120]. Amylin, along with Aß, is also thought to play a modulating role in 

inflammation associated with Alzheimer’s Disease (AD) [121, 122].

Amylin oligomers have been consistently shown to exert a proinflammatory effect. Human 

amylin (hAmy) aggregates stimulated secretion of numerous proinflammatory cytokines 

from mouse bone marrow-derived macrophages [120]. Rats overexpressing hAmy in the 

pancreas exhibited elevated levels of proinflammatory cytokines TNF-α and IL-6 in brain 

homogenates, along with a simultaneous downregulation in anti-inflammatory cytokine, 

IL-10, when compared to wild type rats [98]. Importantly, this increase in inflammatory 

response corresponded with an increase in oligomerized amylin brain levels. Amylin 

oligomers have also been shown to trigger the NLRP3 inflammasome, which is known 

to trigger immune responses, and generate mature IL-1ß in vitro [123]. The activation of 

the NLRP3 inflammasome is mediated via CD36, which plays a role in the conversion of 

prefibrillar hAmy and Aß into amyloids, leading to lysosomal disruption, activation of the 

NLRP3 inflammasome and IL-1ß production [124]. Aß and amylin fibril administration to 

murine microglia and THP-1 human monocytes increased IL-1ß, tumor necrosis factor-alpha 

(TNFα), IL-6, IL-8, and macrophage inflammatory protein1-α and 1-ß secretion [125].

It is important to note that rat amylin has produced no proinflammatory effect where hAmy 

aggregates did [98, 120, 124, 125]. Similarly, PRAM exerted anti-inflammatory effects 

by way of decreased hippocampal expression of the inflammatory marker COX-2 when 

administered peripherally to SAMP8 mice [107].
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The role that monomeric hAmy plays in inflammation modulation, however, is less clear 

as there is a discrepancy in results. Peripheral administration of hAmy to 5xFAD mice has 

been shown to rescue changes in Cd68 genetic expression along with a module of genes 

related to inflammation, bringing expression levels back to normal [121]. Peripheral hAmy 

treatment was also shown to decrease Iba1 in the cortex, thalamus and the hippocampus, and 

decreased CD68 in the cortex; all of which were attenuated by AC253 administration [110]. 

Treatment of both hAmy and CGRP was shown to be effective against mouse ear oedema 

induced by croton oil and acetic acid-induced peritonitis [130]. As this effect was shown 

to be blocked by CGRP [8–37], which has a higher affinity to the CGRP receptor than the 

AMYR, it is possible that this effect was mediated more through the CGRP receptor than the 

AMYR.

On the other hand, studies have suggested a pro-inflammatory response induced by amylin. 

Plasma amylin levels were shown to positively correlate with C-reactive protein (CRP) 

and IL-6 inflammatory markers in healthy subjects [126]. Amylin and CGRP were shown 

to be upregulated in lumbar dorsal root ganglia following adjuvant-induced inflammation, 

suggesting a pro-inflammatory response [127]. Treatment of monomeric hAmy, along with 

oligomeric Aß, induced activation of the NLRP3 inflammasome and increased subsequent 

release of cytokines TNFα and IL-1ß, as well as caspase-1 in human fetal microglia 

(HFMs) & BV2 cells, all of which was diminished by AC253 administration [124]. The 

study also indicated that five weeks of peripheral AC253 administration to 5xFAD mice 

decreased brain levels of Iba-1, CD68, NLRP3, caspase-1, TNFα and IL-1ß [122]. AC253 

administration was also shown to decrease Iba1 brain levels in TgCRND8 mice. These 

findings highlight the discrepancy in the field regarding the beneficial effects reported from 

both AMYR activation as well as AMYR inhibition, as discussed above and further reviewed 

in Grizzanti et al. [37].

It is highly possible that the discrepancy in results regarding monomeric hAmy is due to 

the concentration of amylin administered. Sources have reported that amylin, as well as Aß, 

exert a proinflammatory response at concentrations greater than 4uM [128]. It is difficult 

to compare and specify molarity in the previously mentioned in vivo studies as several 

pharmacological factors impact drug administration, uptake, half-life and signaling. It is 

also possible that these discrepancies are products of a more complex relationship between 

amylin signaling and the observed therapeutic effects that have yet to be discovered.

RAMP1 appears to be necessary for anti-inflammatory effects, as RAMP1 deficient mice 

exhibited higher proinflammatory cytokine serum levels [129]. It is difficult to determine 

the role of amylin signaling in this regard, however, as CGRP signaling is known to exert 

anti-inflammatory effects, and the CGRP receptor is composed of the CalcR and RAMP1. 

Alternatively, RAMP3 knockdown via siRNA in microglial BV-2 cells abolished the amylin-

mediated reduction in the inflammation marker, Cd68 [121]. This suggests that the observed 

decrease in 5xFAD AD mouse model cortical Cd68 in response to IP treatment of hAmy is 

mediated through the AMYR3 receptor [121]. Further studies are necessary to elucidate the 

role of specific AMYR subtypes responsible for mediating amylin’s role in inflammation.
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CONCLUSION

T2D is a well-known risk factor for the development of AD, but the specific mechanism 

responsible for AD development remains to be determined. Both diseases share common 

pathological features include inflammation, mitochondrial dysfunction, OS, decreased brain 

metabolism, impaired metabolic hormone signaling & resistance, amyloid accumulation and 

cognitive decline, thus determining primary components linking the two diseases has been 

challenging.

Amylin is a metabolic hormone that is affected in both diseases and that by its biochemical 

nature, amyloid, sits at the nexus of the relationship between these two diseases. However, 

as described in this review, the signaling mechanisms of this hormone, as well as evidence 

of both pathogenic and neuroprotective effects of amylin replacement, make deciphering the 

role of this hormone difficult at best. The hypothesized amylin signaling mechanisms that 

can lead to neuroprotective and pathogenic outcomes are summarized in Fig. 1. Amylin 

replacement therapy has shown effectiveness in the treatment of T2D and promise in 

improving function and reducing AD pathology in AD rodent models. However, whether 

this benefit is mediated directly through the restoration of lost amylin signaling, or indirectly 

by way of inhibiting AMYR-mediated Aß signaling or by way of enhancing leptin or insulin 

signaling remains to be clarified. Similarly, a clear dissection of which receptor complex or 

receptor system is involved in both pathogenic and neuroprotective effects of this hormone 

is necessary. This is critical for our ability to understand how amylin signaling regulated 

AD development and/or prevention but also to understand several other functions in which 

amylin is involved. Taken together, the exploration of this little-understood amyloid peptide, 

amylin, within the CNS in both healthy and pathological states is likely to lead to not only 

potential novel therapies for AD but a better understanding of other systems and functions 

that go beyond this devastating disease.
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Fig. 1. 
The proposed signaling relationships between amylin, pramlintide (PRAM), and amyloid 

beta (Aβ) as they exist in monomer, oligomer and aggregate states when signaling through 

the amylin receptor (CALCR + RAMP1–3). Left: Proposed healthy state signaling of 

amylin, PRAM and possibly Aβ as monomers activating AMYR in the brain leads to 

downstream adenylate cyclase activation to increase ERK signaling that leads to increased 

neuroprotective effects. Right: Loss of Function Hypothesis: amylin and Aβ aggregates (also 

mimicked by AMYR antagonist) may serve as a “loss of function” of normal AMYR 

downstream signaling during Alzheimer’s disease (AD) or metabolic dysregulation by 

blocking the receptor. It is proposed that due to this loss of amylin, and possibly Aβ, 

there will be toxic consequences such as increased Aβ pathology, Tau phosphorylation 

and apoptosis. Gain of Toxic Function Hypothesis: Higher concentrations or amylin/ Aβ 
oligomers activating AMYR may cause the recruitment of another receptor, TRPV4, in 

state of disease or pathology such as AD or Type II Diabetes. This activation of TRPV4, a 

non-selective cation channel, allows cation influx which then further induces voltage-gated 

Ca2+ ion channels to open leading to an excitotoxicity state due to chronic intracellular 

Ca2+. Created with BioRender.com.
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