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Target trial emulation (TTE) applies the principles of randomized controlled trials to the causal analysis of
observational data sets. One challenge that is rarely considered in TTE is the sources of bias that may arise if the
variables involved in the definition of eligibility for the trial are missing. We highlight patterns of bias that might arise
when estimating the causal effect of a point exposure when restricting the target trial to individuals with complete
eligibility data. Simulations consider realistic scenarios where the variables affecting eligibility modify the causal
effect of the exposure and are missing at random or missing not at random. We discuss means to address these
patterns of bias, namely:1) controlling for the collider bias induced by the missing data on eligibility, and 2) imputing
the missing values of the eligibility variables prior to selection into the target trial. Results are compared with the
results when TTE is performed ignoring the impact of missing eligibility. A study of palivizumab, a monoclonal
antibody recommended for the prevention of respiratory hospital admissions due to respiratory syncytial virus in
high-risk infants, is used for illustration.

average causal effect; eligibility; missing data; multiple imputation; target trial emulation

Abbreviations: ACE, average causal effect; CI, confidence interval; HTI, Hospital Treatment Insights database; MAR, missing
at random; MCAR, missing completely at random; MI, multiple imputation; MNAR, missing not at random; RCT, randomized
controlled trial; RSV, respiratory syncytial virus; TT, target trial.

Randomized controlled trials (RCTs) are commonly used
for estimating causal effects of point interventions. However,
in many epidemiologic settings, an RCT may be infeasible or
ethically nonviable. Hence, observational data are also used
to compare effectiveness, with various strategies adopted to
address the lack of randomization and indication bias, for
example, by controlling for measured confounders. Analysis
of observational data suffers from various additional sources
of bias, such as selection bias, indication bias, and immortal
time bias (1).

Target trial emulation aims to avoid some of these biases
by adopting the design principles of RCTs. Individuals in
an observational database, such as administrative health
records, are selected according to a set of eligibility criteria
that mirror those that would be used in an RCT (2). How-
ever, data on variables that determine eligibility are often
incomplete, and as such not all participants of the target

trial (TT) are identifiable from the observational database.
It is typically advised to consider a different target trial with
more complete eligibility criteria (1) or to exclude or censor
individuals with missing data (3, 4). Missing data is often
a source of bias when those excluded are systematically
different from the observed (i.e., if data are missing at
random (MAR) or missing not at random (MNAR)) (5, 6).
Although identified as a potential limitation, there is little
work investigating the extent to which missing eligible data
can impact the analysis of a target trial.

One solution is to impute missing eligibility prior to
selection into a target trial. However, we could find only
one precedent of imputation of eligibility criteria prior to
the creation of a target trial in (7). More generally, multiple
imputation (MI) of exclusion criteria in observational studies
has been considered in a recent work (8) for validating error-
prone confounders, but it remains an infrequently studied
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Figure 1. Directed acyclic graph of the assumed relationships
between exposure, outcome, confounders, and data missingness
indicator. A and Y are the exposure and outcome respectively. L1 are
confounders of the association between A and Y, with E the variable
that determined eligibility for the target trial. L2 and L3 are drivers of
missing data in E.

topic. We intend to bring attention to work of this kind to
the context to target trial emulation.

In this paper we investigate biases in the average causal
effect (ACE) of a point exposure, in a target trial with
missing eligibility data. Our simulations consider realistic
scenarios where the eligibility variables modify the true
causal effect. We consider two strategies of analysis:
1) conditioning on variables that drive missingness eligi-
bility, and 2) recovering the missing eligibility data via
MI. A study of palivizumab, a monoclonal antibody for
prevention of symptoms of severe respiratory syncytial virus
(RSV) infection in high-risk infants, based on administrative
hospital and pharmacy dispensing data is used to illustrate
these alternative approaches.

METHODS

Setup

Consider the setting with a binary treatment A, end of
study outcome Y , and confounding variables L1 and E,
where the latter determines eligibility. Suppose E has infor-
mative missingness, with RE being an indicator of com-
pleteness (1 = complete, 0 = missing). Missingness in E
may be MAR, driven by variables that are not necessarily
confounders, which we denote L2 and L3, or MNAR, if
also driven by E itself (9) (Figure 1). This is a typical set-
ting, whereby L2 and L3 are separate causes of respectively
A and Y .

We emulate a TT where eligibility is defined by E being
greater than or equal to some value e. In practice E may
represent a set of variables, which determine an eligibility
indicator variable IE. The mechanism for inclusion is shown
in Figure 2, represented by the box (indicating conditioning)
surrounding IE = 1. It also shows the selection mechanism
induced by restricting the TT to individuals with complete
E, indicated by the box around RE = 1. We distinguish
between:

• The source population, from which the TTs are derived

Figure 2. Directed acyclic graph of the assumed relationships
between exposure (A), outcome (Y), and confounders (L), and the
eligibility processes represented by the indicator IE plus the missing
mechanism in E represented by RE . The solid and dashed boxes
around these main indicators represent conditioning and the dotted
lines represent spurious associations caused by this conditioning.

• The full eligibility TT (TTtrue), containing all those who
are eligible (IE = 1)

• The complete eligibility TT (TTobs), containing those
who are complete and eligible, (IE = 1 and RE = 1)

Our target estimand is the ACE of A on Y in TTtrue, defined
as,

ACEIE=1 = E (Y(1) − Y(0)|IE = 1) , (1)

where E(Y(a)) is the average value of Y , if the exposure
A were set to take the value of a, for a = 0,1 in the whole
population. In reality, TTtrue is not known, and thus ACEIE=1

is approximated by the equivalent estimand from TTobs,

ACEIE=1,RE=1 = E (Y(1) − Y(0)|IE = 1, RE = 1) . (2)

The ACE of a point exposure can be identified by invoking
assumptions of no interference, counterfactual consistency,
and conditional exchangeability (i.e., no unmeasured con-
founding) (2).

Sources of bias

If we attempt to estimate ACEIE=1 from an estimate of
ACEIE=1,RE=1 we would be prone to 2 sources of bias:
collider bias and selection bias.

Collider bias. The confounders L1 and E are common
causes of exposure and outcome which need to be controlled
for, while L2 and L3, the drivers of missingness, are not.
However, when we condition on RE = 1, we create a
spurious association between L2 and L3, which confounds
the causal effect of A on Y via A → L3 → L2 → Y
(Figure 2). This is a type of collider bias known as Berkson’s
bias (10, 11), which must be removed by conditioning on
either L2 or L3.

Selection bias. When E has informative missing data, the
missing eligible (IE = 1, RE = 0) contain information about
TTtrue that cannot be recovered by TTobs. This can result in
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selection bias when conducting an analysis on TTobs if, for
any reason, the causal effect of A on Y is different in the
missing eligible, compared with the complete eligible.

By controlling for L1, L2, and E we identify the causal
effect,

ACEIE=1,RE=1
(L1,L2,E) = E(Y(1) − Y(0)|L1 = l1, L2 = l2,

E = e, IE = 1, RE = 1) ∀ (l1, l2, e). (3)

To find ACEIE=1,RE=1 we marginalize (average)
ACEIE=1,RE=1

(L1,L2,E) over the distribution of L1, L2 and E in TTobs.
If the effect of A on Y is modified by these confounders,

then the value of ACEIE=1,RE=1 depends on the distribution
of that confounder in TTobs.

Hence, since we cannot recover the distribution of the
confounders in TTtrue, ACEIE=1,RE=1, obtained from TTobs,
is a biased approximation of ACEIE=1. In other words, the
distribution of the confounders in TTobs, does not match that
in TTtrue.

Suppose E was a score capturing standards of hospital
care. We might expect a treatment A to be more effective on
the outcome at higher standards of care. Now if hospitals of a
low standard are more likely to have a missing score, then we
would overrepresent eligible hospitals of higher standards in
TTobs, and lead to a biased ACE.

Dealing with this bias requires recreating the joint distri-
bution of exposure, outcome, and confounders of TTtrue, for
example, using multiple imputation (12–14).

This bias has been discussed in the wider setting of “data-
fusion” of multiple data sources (15), with identification
of targeted causal effects involving knowledge of the dis-
tribution of the confounders in the “fused” population, as
we discuss above. This type of bias has been referred to as
an issue of “transportability” (15) or external validity to a
different population (16). Our setting is created by missing
information that precludes the identification of the target
population. This could be viewed as an issue of internal
validity of TTobs itself, or of its external validity to TTtrue.
The issue also has an impact on the generalizability of results
to other populations.

Strategies

We indicate possible strategies to address the above biases
in the estimation of ACEIE=1.

Strategy 1: ignoring missing eligibility. In the setting of
Figure 2, we fit an outcome regression model for Y on A,
controlling for L1 and E in the model, and then estimate
ACEIE=1,RE=1 by marginalizing over their distribution in
TTobs, as described in Aolin et al. (17).

Strategy 2: dealing with collider bias. With this approach
we fit an outcome regression model for Y on A, controlling
for L1, E, and either L2 or L3 in order to block the
path opened by conditioning on RE, and then estimate
ACEIE=1,RE=1 as in strategy 1.

If the estimand of interest is ACEIE=1,RE=1, then this
strategy is sufficient to remove bias induced by missing
eligibility data.

Strategy 3: dealing with collider and selection bias. We
specify an imputation model to predict the missing eligibility
data in the source population. We impute E in multiple
copies of the source population and, from each, construct
an imputed copy of TTtrue using imputed eligibility criteria.
We then control for L1 and E as in strategy 1 to estimate
ACEIE=1 in each of the copies, which are pooled using
Rubin’s Rules (9).
Implementation. The imputation step is as follows:

1. Specify an imputation model for the missing mechanism
of E.

2. Generate m copies of the source population and impute
E in each copy based on the imputation model.

3. Apply the eligibility criteria to each imputed data set to
obtain m emulated versions of TTtrue.

4. Estimate aceIE=1 in each imputed TTtrue, controlling for
L1 and E to obtain m estimates of the causal effect of A
on Y , ÂCE

IE=1
m .

5. Obtain Rubin’s pooled estimate of the target causal effect
by taking the average over the m imputed sets:

ÂCE
IE=1 = 1

m

m∑
i=1

ÂCE
IE=1
m

To capture any suspected treatment effect heterogeneity,
imputations are carried out separately for each value of A.
Note that this technique requires A be fully observed (18).

Giganti and Shepherd (8) highlight that excluding data
relevant to inclusion in a study after MI leads to biased esti-
mates of Rubin’s pooled estimate of the variance because of
incongeniality between the imputation and outcome model.
We hence consider confidence intervals using a percentile-
based bootstrap.
Combining bootstrap and imputations. We combine boot-
strapping with MI using the “Boot-MI” methodology (19).
This consists of the following steps:

1. Obtain b bootstrap samples of the source population.
2. Apply steps 1–5 of the MI procedure above for each of

the b data sets, and obtain b estimates of ÂCE
IE=1
b .

3. A percentile-based bootstrapped confidence interval (CI)
is then derived as the α × 100th and (1 − α) × 100th

percentiles of the ordered bootstrapped estimates.

We used single imputation (m=1), which has been shown
to have good statistical properties (20), and reduce compu-
tational burden (19, 20), nested within b = 1,000 bootstraps,
which is at or above the typically recommended number
(21).
Sensitivity analyses. Imputation models for E that allow for
different mean values depending on A could be used,

E(E|Y , A = a, L1, L2, L3, RE) = β0 +
3∑

i=1

βiLi + β5Y + δaRE,
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for a = 0,1.We use fully conditional specification (or multi-
ple imputation by chained equations) using the “mice” pack-
age in R (R Foundation for Statistical Computing, Vienna,
Austria) (13, 22) to impute the data. The parameters δa
are MNAR sensitivity parameters. If MNAR is suspected,
setting δa �= 0 shifts the imputed values of E (separately for
each a) by an amount that accounts for the effect of E on its
own missingness (23, 24). In practice, sensible ranges for δa
are chosen, with the data imputed over these ranges.

SIMULATIONS

We investigate strategies 1–3 by simulating data accord-
ing to the structure of Figure 2. Specifically:

• L1, L2, and L3 are independent N(0, 1).
• E is a normal variable dependent on L1 and L2:

E ∼ N(L1 + L2, 1) .

• Eligibility is defined as IE = 1 if E ≥ 0; IE = 0
otherwise. Hence, around 50% of the population is eli-
gible.

• The missing mechanism of E is expressed as a linear
function of L2, L3, and E:

log
(
oddsRE

) = μ + αL2 + αL3 + γE.

• The exposure A is a binary variable, and generated in
terms of the log-odds of exposure, expressed as a linear
function of L1L3, and E:

log(oddsA) = 0.1L1 + 0.5L3 + 0.1E.

• Around 54% of individuals in the source population are
exposed.

• The outcome Y is a normal variable that depends on
exposure A, eligibility E, their interaction, and also on L1
and L2, with L2 exercising a stronger impact than L1:

Y ∼ N (A + E + AE + L1 + 2L2, 1).

The source population is of size n = 1, 000. We investigated
strategies 1–3 at different values of μ, α, and γ, the param-
eters affecting RE. Specifically, μ drives the percentage
of missing completely at random (MCAR) missingness. α
drives the strength of the MAR assumption, and the spurious
association between L2 and L3, and γ drives the strength
of the MNAR mechanism, with positive values leading to
a higher probability of larger values of E being observed.

The parameter μ was set at 0 and 1.5, leading to severe
(50%) and moderate (18%) MCAR missingness. α and γ
were set to range from 0 (no association) up to ±0.4.
For each combination we carried out l = 1, 000 simula-
tions for each of these scenarios using b = 1, 000 boot-
straps, reporting for each the average bias in the estimation(
ACEIE=1,RE=1 − ACEIE=1

)
, its Monte Carlo error (MCE),

root mean squared error (RMSE), and 95% coverage (25).

RESULTS

Observed and true target trial comparisons

Table 1 describes the characteristics of a set of single large
simulations of TTobs for different values of α, γ, and μ. We
set n = 1, 000, 000 to minimize random variation. The 3
missingness scenarios are MCAR (α = γ = 0), MAR (α �=
0 and γ = 0), and MNAR (α �= 0 and γ �= 0). The scenario
when E is not missing (TTtrue) is included for comparison.

When the mechanism is MCAR, the means and cor-
relations of relevant variables are not affected. When the
mechanism is MAR, they depart from those found in TTtrue:
When α > 0, individuals in TTobs have larger mean values
for E, L2, and L3 than in TTtrue. This is because α leads
to individuals with larger values for L2 and L3 being more
likely to be observed, shifting upward their distributions, and
by extension, the distribution of E. When α is negative, the
opposite is true. These biases are more noticeable at μ = 0
due to the greater proportion of missing individuals.

Under MNAR, setting γ > 0 makes higher values of
E more likely to be observed in TTobs, with the opposite
occurring when γ < 0, leading to shifts in the distributions
for E, L2, and L3 similar to what occurs with α.

The combined impact of α and γ varies. When both are
of the same sign, their impacts compound and strengthen
the corresponding shifts in distribution. When they are of
opposite sign, their impacts partially offset one another.

The shifts in distribution for L1 are complicated, shifted
downward when α > 0 but shifted upward when γ > 0. This
is due to a complicated relationship between the spurious
negative L1 −L2 association (caused by conditioning on IE),
driving a downward shift in L1 with higher values of L2, and
the positive L1 −E association, driving an upward shift with
higher values of E.

Strategies

For strategies 1 and 2, bias in estimation of ACE increased
with higher values of α and γ, and was worse when μ = 0
(Tables 2 and 3). This is due to having to average over the
distribution of the confounders to estimate ACEIE=1. The
size and direction of this bias is nearly identical to the shift
in the distribution of E observed in Table 1. This is because
effect modification by E has effect size equal to 1.

The impact of collider bias induced by α is negligible, as
shown by the small differences in bias for strategies 1 and 2.
The root mean squared error is smaller for strategy 2 but has
more undercoverage, possibly because it involves averaging
L2, which also has a shifted distribution.

Table 1 implies that had L2 been the effect modifier rather
than E, strategies 1 and 2 would have shown more bias under
the MAR assumption. This is investigated in Web Appendix
1 and Web Table 1 (available at https://doi.org/10.1093/aje/
kwac202; additional supporting information can be found in
Web Tables 2–4).

Strategy 3 shows unbiased estimates (within Monte
Carlo error) in all cases, indicating a successful recovery
of the causal effect in TTtrue. The CIs, however, display
overcoverage, particularly when a large fraction of the
eligible are missing.
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Table 1. Summary Statistics of Simulated Variables in the Observed Target Trial for n = 1,000,000 for Selected Values of μ, α, and γ

μ α γ PRE|IE=1
a E L1 L2 L3 ρ(1,2)

b ρ(2,3)

No Missingness

0 0 0 1.00 1.38 0.46 0.46 0.0 −0.27 0.0

MCAR

1.5 0 0 0.82 1.38 0.46 0.46 0.0 −0.27 0.0

0 0 0 0.50 1.38 0.46 0.46 0.0 −0.27 0.0

MAR

1.5 0.4 0 0.83 1.40 0.45 0.51 0.07 −0.27 −0.02

1.5 0.2 0 0.83 1.39 0.45 0.49 0.04 −0.27 −0.01

1.5 −0.2 0 0.80 1.37 0.47 0.43 −0.04 −0.27 −0.01

1.5 −0.4 0 0.78 1.35 0.48 0.39 −0.08 −0.27 −0.02

0 0.4 0 0.54 1.44 0.42 0.60 0.17 −0.25 −0.03

0 0.2 0 0.52 1.41 0.44 0.53 0.09 −0.26 −0.01

0 −0.2 0 0.48 1.34 0.48 0.38 −0.10 −0.28 −0.01

0 −0.4 0 0.46 1.31 0.50 0.30 −0.20 −0.28 −0.03

MNAR

1.5 0.4 0.4 0.88 1.43 0.46 0.51 0.05 −0.26 −0.02

1.5 0.2 0.2 0.86 1.42 0.46 0.49 0.03 −0.26 −0.01

1.5 −0.2 −0.2 0.75 1.31 0.45 0.40 −0.05 −0.29 −0.01

1.5 −0.4 −0.4 0.67 1.20 0.44 0.32 −0.12 −0.31 −0.04

1.5 0 −0.4 0.71 1.25 0.42 0.42 0.00 −0.30 0.00

1.5 0.4 −0.4 0.42 1.23 0.34 0.55 0.22 −0.29 −0.02

1.5 −0.4 0.4 0.58 1.49 0.55 0.39 −0.16 −0.24 −0.02

1.5 0.2 −0.2 0.46 1.31 0.40 0.50 0.11 −0.28 −0.01

1.5 −0.2 0.2 0.55 1.45 0.51 0.42 −0.09 −0.26 −0.00

0 0.4 −0.4 0.74 1.31 0.40 0.50 0.10 −0.28 −0.01

0 −0.4 0.4 0.85 1.42 0.49 0.43 −0.06 −0.26 0.00

0 0.2 −0.2 0.78 1.35 0.44 0.48 0.04 −0.27 0.00

0 −0.2 0.2 0.84 1.40 0.48 0.44 −0.03 −0.26 0.00

0 0.4 0.4 0.66 1.54 0.48 0.60 0.13 −0.25 −0.04

0 0.2 0.2 0.59 1.49 0.47 0.55 0.08 −0.25 −0.01

0 −0.2 −0.2 0.41 1.22 0.45 0.33 −0.11 −0.31 −0.01

0 −0.4 −0.4 0.34 1.07 0.44 0.19 −0.24 −0.34 −0.04

0 0 −0.4 0.37 1.13 0.38 0.38 0.00 −0.32 0.00

Abbreviations: MAR, missing at random; MCAR, missing completely at random; MNAR, missing not at random.
a Note that PRE |IE=1 = Pr(RE = 1|IE = 1) is a measure of the number of missing eligible participants.
b ρ1,2 = Corr(L1, L2); ρ2,3 = Corr(L2, L3).

Selection bias appears to increase under the following
conditions:
• Larger numbers of missing eligible individuals
• Larger values of α and γ, the drivers of missingness
• A stronger effect modification of the causal effect of A on

Y by E (or any variables related to E)

With fewer eligible participants lost to missingness,
there is less missing data to drive a differentiation in the
distributions of E in TTobs and TTtrue, which is why bias
decreased when μ was larger, and the number of missing

eligible participants decreased. None of these features are
likely to be known in advance.

When E was MNAR, imputation was carried out with
the correct values of the sensitivity parameters δ0, δ1. This
was to demonstrate that, all other biases (including a
misspecified imputation model) accounted for, strategy 3
can eliminate the biases described above in Sources of Bias
when E is MNAR. This is unlikely to be possible in reality;
hence, in Web Appendix 2 we repeat specific MNAR simula-
tions of Table 3 assuming a MAR imputation model (δ0, δ1)=
(0, 0), which shows notable bias. This highlights that, in
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Table 2. Results of Applying the 3 Strategies to Data Generated Under Different Scenarios, With μ = 1.5 and n = 1, 000

Strategy αa γ Bias Coverage RMSE MCE

No Missingness

1 0 0 0.00 95.0 0.00 0.01

MCAR

1 0 0 0.01 94.4 0.17 0.01

2 0.01 93.9 0.1 0.00

3 −0.01 95.4 0.17 0.01

MAR

1 −0.4 0 −0.04 94.8 0.20 0.01

2 −0.03 93.4 0.14 0.00

3 0.00 95.9 0.17 0.01

1 0.4 0 0.02 94.2 0.17 0.01

2 0.03 93.1 0.10 0.00

3 −0.01 95.3 0.17 0.01

MNAR

1 0.4 0.4 0.05 93.9 0.17 0.01

2 0.06 91.6 0.14 0.00

3 −0.01 95.2 0.05 0.01

1 0.2 0.2 0.04 94.6 0.17 0.01

2 0.04 92.2 0.10 0.00

3 −0.01 95.4 0.17 0.01

1 −0.2 −0.2 −0.07 93.1 0.20 0.01

2 −0.07 89.9 0.14 0.00

3 0.01 95.7 0.05 0.01

1 −0.4 −0.4 −0.19 82.4 0.26 0.01

2 −0.17 70.4 0.22 0.00

3 0.00 96.9 0.20 0.01

Abbreviations: MAR, missing at random; MCAR, missing completely at random; MCE, Monte Carlo error; MNAR, missing not at random;
RMSE, root mean square error; TTobs, target trial emulated from observed data; TTtrue, the full eligibility target trial, containing all those who
are eligible.

a Average size of TTobs for the 7 settings of α and γ are n = 410, 387, 415, 442, 430, 374, and 332 respectively. Average size of TTtrue is 500.
Note that the average causal effect ACEIE=1 was calculated from a single simulation with n = 1, 000, 000 and was estimated at 2.386.

practice, MNAR imputation is an exploratory technique, and
careful considerations must be made to choose informative
values of ranges for δ0 and δ1 to investigate (23, 24). A
realistic application of strategy 3 is shown in the case study.

In summary, strategy 3 is necessary in the case that
missing data are noticeably MAR or MNAR. If that is not
the case, a user may prefer the simpler strategies 1 and 2.
Strategy 2 is the most precise, if this is preferred by the user,
but one must account for the possibility of undercoverage if
a CI is sought.

CASE STUDY: EFFECT OF PALIVIZUMAB ON INFANT
HOSPITAL ADMISSION

RSV is a major cause of acute lower respiratory tract
infection in infants, with RSV bronchiolitis responsible
for 40,000 hospital admissions annually in England (26).

Palivizumab is licensed for passive immunization to prevent
RSV in premature infants with congenital heart disease or
chronic lung disease. Due to its high cost, palivizumab is
typically recommended to more select groups of high-risk
infants than those in clinical trials, with limited data on
real-world effectiveness (27). Hence, analysis by a selective
emulated trial is of interest.

An observational cohort of infants potentially eligible for
palivizumab treatment in England has been developed (27),
using the Hospital Treatment Insights database (HTI), which
links pharmacy dispensing records from 43 acute hospitals
in England, and hospital records from Hospital Episode
Statistics (HES). This cohort details infants born between
January 1, 2010, and December 31, 2016, with follow-up
data on palivizumab prescriptions and hospital admission
up to their first year of life. HTI is maintained by IQVIA
(https://www.iqvia.com/).
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Table 3. Results of Applying the 3 Strategies to Data Generated Under Different Scenarios, With μ = 0 and n = 1, 000

Strategy αa γ Bias Coverage RMSE MCE

No Missingness

1 0 0 0.00 95.0 0.00 0.01

MCAR

1 0 0 0.01 95.0 0.24 0.01

2 0.01 94.6 0.14 0.00

3 0.00 97.9 0.22 0.01

MAR

1 −0.4 0 −0.09 93.2 0.26 0.01

2 −0.07 91.7 0.17 0.00

3 −0.01 97.9 0.24 0.01

1 0.4 0 0.05 94.3 0.22 0.01

2 0.07 92.8 0.14 0.00

3 0.00 97.6 0.22 0.01

MNAR

1 0.4 0.4 0.16 86.3 0.26 0.01

2 0.17 73.0 0.22 0.00

3 −0.00 97.3 0.20 0.01

1 0.2 0.2 0.12 90.4 0.24 0.01

2 0.12 85.3 0.17 0.00

3 0.00 97.6 0.22 0.01

1 −0.2 −0.2 −0.17 90.0 0.30 0.01

2 −0.15 83.3 0.22 0.00

3 0.00 98.2 0.07 0.01

1 −0.4 −0.4 −0.33 75.3 0.42 0.01

2 −0.31 53.4 0.34 0.01

3 0.01 98.7 0.17 0.01

Abbreviations: MAR, missing at random; MCAR, missing completely at random; MCE, Monte Carlo error; MNAR, missing not at random;
RMSE, root mean square error; TTobs, target trial emulated from observed data; TTtrue, the full eligibility target trial, containing all those who
are eligible.

a Average size of TTobs for the 7 settings of α and γ are n = 250, 228, 271, 328, 294, 206, and 172 respectively. Average size of TTtrue is 500.
Note that the average causal effect ACEIE=1 was calculated from a single simulation with n = 1, 000, 000 and was estimated at 2.386.

This cohort identifies a source population of 8,294 high-
risk infants, defined as having congenital heart disease or
chronic lung disease, under care of an HTI-reporting hos-
pital, alive at the start of their first RSV season (October 1
to March 31), with a full linked hospital admission history.
This is shown in the cohort flow charts of Figures 3 and 4.

Infants in the source population were considered eligible
for the TT if they had a diagnosis of congenital heart disease
or chronic lung disease and met additional eligibility criteria
based on gestational age and chronological age at start of
RSV season and, specifically, those who met 1a or 2a criteria
for recommendation of treatment by palivizumab in Chapter
27a in the Green Book (28) (Web Table 3). Gestational age,
however, is missing for 2,814 (34%) infants in the source
population. As a result, the eligibility of many children
cannot be identified.

Target trial emulation
The emulated target trial protocol is detailed in Web

Appendix 3 and Web Table 2. We define TTobs to include all
eligible individuals with complete eligibility data on gesta-
tional age, birth weight, Index of Multiple Deprivation score,
and ethnicity. This led to a trial of 1,560 infants. We also
aimed to recover TTtrue by imputing missing gestational age
in the high-risk cohort. This corresponds to using strategies
2 and 3, respectively.

We are interested in the effect of any palivizumab pre-
scription on RSV-related hospital admission in infants dur-
ing their first RSV season of life. A full course of treatment
by palivizumab requires up to 5 monthly doses during RSV
season. As we could not determine adherence to treatment
from the HTI data, we define a simplified exposure as a
binary indicator of having been prescribed at least 1 dose
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Births in HTI Database  (n = 1,395,579) 

Children With Diagnoses of SCID, CHD, or CLD at Age <1 Year (n = 20,467) 

Alive at Start of RSV Season (n = 19,830) 

Linked to a Full Hospitalization History (n = 14,718) 

Children With Palivizumab Prescriptions (t = 14,757) 

 ≥1 Palivizumab Prescription per Child per RSV Season (t = 4,583) 

Exclusions (t = 1,453) 
 

No link to a birth record (t = 297) 
Not the first RSV season of life (t = 538) 
Not linked to full hospitalization history/died 

before start of RSV season (t = 618) 

≥1 Palivizumab Prescription in First Season of Life  (t = 3,528) 

Under the Care of HTI-Reporting Hospital With Linked Pharmacy Dispensing Record  
(n = 8,547) 

Source Population  (n = 8,294) 

One Infant per Multiple Births (n = 243) 

Figure 3. Derivation of the source population for the IQVIA (https://www.iqvia.com/) cohort; infants born in England between January 1, 2010,
and December 31, 2016, with linked Hospital Episodes Statistics and prescription data.Note that the palivizumab prescriptions database contains
a separate but overlapping population from those in the Hospital Treatment Insights database (HTI). Thus, this population is denoted by t until
linked to individuals in the HTI population (n). CHD, congenital heart disease; CLD, chronic lung disease; RSV, respiratory syncytial virus; SCID,
severe combined immunodeficiency.

of palivizumab in their first RSV season of life. Infants
are identified in the first month of life for treatment, and
it is typically administered in outpatient clinics, not when
hospitalized for RSV. Our outcome is a binary indicator
of having been hospitalized for an RSV-related condition
during their first RSV season of life.

Our target estimand is the ACE of palivizumab prescrip-
tion on RSV-related hospital admission in TTtrue, expressed
as the average difference in absolute risk of hospital admis-
sion (the intent to treat (ITT) effect).

To balance the confounders in the treated and untreated,
we fitted a model for the propensity of receiving palivizumab,
including gestational age, age at start of RSV season, Index

of Multiple Deprivation quintiles, sex, ethnicity, year of
birth, diagnosis of congenital heart disease or chronic lung
disease (or both), and other comorbidities. The resultant
propensity scores showed reasonable overlap in the treated
and untreated (Web Figure 1). Mean differences between
treated and untreated, adjusted for inverse probability of
weighting by propensity score, were within 0.1, indicating
good confounder balance.

We fitted 2 different outcome models, a logistic regression
model of hospital admission against treatment with inverse
probability weight of being treated (IPTW), corresponding
to a marginal structural model (MSM) (29), and a second
where we controlled for the propensity score and all con-
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Source Population (n = 8,294) 

Eligible for Treatment Under 1a or 2a Criteria (n = 4,567) 

Not Eligible (n = 3,727) 

Eligible for Treatment Under 1a or 2a Criteria With Complete 
Gestational Age (n = 1,753) 

Missing Gestational Age (n = 2,814) 

Observed Target Trial: Eligible for Treatment Under 1a or 2a 
Criteria With Complete Covariates (n = 1,560) 

Missing Birth Weight, IMD Score, or 
Ethnicity (n = 193) 

Imputed Target Trial: Eligible for Treatment Under 1a or 2a Criteria 
Based on Complete or Imputed Gestational Age (n ≥ 1,753)  

Figure 4. Derivation of the complete records target trial and of the imputed target trials of palivizumab treatment; infants born in England
between January 1, 2010, and December 31, 2016, with linked Hospital Episodes Statistics and prescription data who were eligible to receive
treatment under 1a and 2a criteria. Note that the exact size of the imputed target trial is unknown, and depends on the imputed data, but must
be at least of size 1,753 (those with complete eligible data who qualify).

founders directly in the outcome model, similar to those
in 2-stage g-estimation of structural nested mean models
(SNMMs) (30). The ACE is calculated by estimating poten-
tial outcomes via the “data stacking” method of (17).

Continuous gestational age is imputed in the treated and
untreated arms separately (to account for any interaction
between gestational age and palivizumab) using a MNAR
imputation model that includes all the variables of the
propensity score model, plus the outcome and birth weight.
Birth weight is not included in the outcome model due to
collinearity with gestational age. There are thus 2 sensitivity
parameters: δ1 for exposed and δ0 for unexposed. We assert
that infants with missing gestational age may have higher
mortality, implying a shorter gestation (31). Hence we
performed the analysis setting δ1 and δ0 to either 0 (MAR),
or −4 (MNAR).

Based on recommendations in Tompsett et al. (23), rather
than compare the ACE directly with δ0 and δ1, which are dif-
ficult to interpret physically, we estimated from the imputed
data the mean gestational age in treated and untreated infants
to contrast against the results.

Missing birth weight, Index of Multiple Deprivation
score, and ethnicity were imputed alongside gestational
age using MICE. We report the results in Tables 4 and 5
below.

Results

Analysis of TTobs suggests that treatment by at least 1
dose of palivizumab has little effect on the risk of being
hospitalized, indicated by an ACE of −0.003 using a propen-
sity score–conditioned outcome model, and −0.01 under
inverse probability weighting (a 0.3% or 1.0% lower risk of
hospital admission). When imputing the TT under MAR we
observed a 0.1% and 0.2% lower risk of hospital admission,
respectively. Under MNAR there is a more noted effect of
palivizumab, ranging from −1.0% to 1.3% using an outcome
model controlled for the propensity score, and −3.1% to
2.3% using inverse probability weighting.

The imputation model implies a high number of missing
eligible participants, with over 1,000 more individuals under
the MAR imputed trial, and up to nearly 2,500 more under
MNAR.

When δ0 was set to −4, this led to a reduction in average
gestational age in the untreated by 2.2 weeks. In this case
there was stronger reduction in risk of hospital admission
when treated. When δ1 was set to −4, the average gestational
age in the treated was reduced by 2.7 weeks and there was
an increasing risk of hospital admission under treatment.

No estimate was found to be significant based on a 95%
CI. Despite there being a clear change in the distribution
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Table 4. Estimate of the Average Causal Effect for the Palivizumab Case Study Obtained Using Strategies 2 and 3, Using an Outcome Model
Controlled for Confounders and Propensity Score

Sensitivity
Parameters

Trial Size ̂ACEa ̂ACE, % 95% CI
Mean Gestational

Age, Treated
Mean Gestational

Age, Untreated

TTobs

N/A 1,560 −0.003 −0.3% −0.05, 0.05 26.5 27.2

TTimp

(0,0) 2,643 −0.002 −0.2% −0.04, 0.04 26.9 27.7

(−4,0) 3,659 −0.010 −1.0% −0.04, 0.03 26.9 25.5

(0,−4) 2,985 0.013 1.3% −0.03, 0.05 24.2 27.7

(−4,-4) 3,964 0.006 0.6% −0.02, 0.04 24.2 25.5

Abbreviations: ACE, average causal effect; CI, confidence interval; N/A, not applicable; TTimp, target trial emulated from observed and imputed
data; TTobs, target trial emulated from observed data.

a The ACE is expressed as a risk difference both in absolute value and in percentage risk difference The sensitivity parameters are listed in
order (δ0, δ1). With sensitivity parameter TTimp(0,0), the data are assumed missing at random. In all other cases for TTimpit is assumed missing
not at random. This is not applicable for TTobs, which has complete data.

of gestational age under MNAR conditions, and a large
number of missing eligible, there is only weak evidence of
selection bias in this study. This implies that gestational age
only weakly modifies the effect of palivizumab on hospital
admission.

The implication is that receiving at least 1 dose of pali-
vizumab appears to have little effect on hospital admission,
and the results are robust to changes in the missing data
assumption.

DISCUSSION

In this paper we bring to light notable sources of bias
in target trial emulation, emanating from ignoring missing
eligible data. We explored one means to analyze a TT

combined with multiple imputation of eligibility criteria
prior to selection. We demonstrated via simulation that an
imputed TT can eliminate sources of selection and collider
bias, improve the sample size of a TT, and allow users to
investigate sensitivity to changes in the assumptions of the
missing eligible data on effect size.

An imputed TT of the effect of receiving at least 1 dose
of palivizumab on RSV-related hospital admission indicated
that a significant number of infants with missing gestational
age were eligible, although any selection bias in this case
was small.

We identified characteristics of the data that determine the
size of selection bias, namely the strength of the MAR or
MNAR mechanism, the number of missing eligible individ-
uals and the size of the effect modification. None of these

Table 5. Estimated Average Causal Effect for the Palivizumab Case Study Obtained Using Strategies 2 and 3, Using an Inverse Probability
Weighted Outcome Model

Sensitivity
Parameter

Trial Size ̂ACEa ̂ACE, % 95% CI
Mean Gestational

Age, Treated
Mean Gestational

Age, Untreated

TTobs

N/A 1,560 −0.010 −1.0% −0.06,0.04 26.5 27.2

TTimp

(0,0) 2,643 −0.001 −0.1% −0.04,0.04 26.9 27.7

(−4,0) 3,659 −0.031 −3.1% −0.08,0.01 26.9 25.5

(0,−4) 2,985 0.023 2.3% −0.03,0.07 24.2 27.7

(−4,-4) 3,964 0.011 (1.1%) −0.03,0.05 24.2 25.5

Abbreviations: ACE, average causal effect of treatment; CI, confidence interval; N/A, not applicable; TTimp, target trial emulated from observed
and imputed data; TTobs, target trial emulated from observed data.

a The ACE is expressed as a risk difference both in absolute value and in percentage risk difference The sensitivity parameters are listed in
order (δ0, δ1). With sensitivity parameter TTimp(0,0), the data are assumed missing at random. In all other cases for TTimp it is assumed missing
not at random. This is not applicable for TTobs, which has complete data.
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characteristics can be calculated from the source population
but could be inferred using external linked data sets. This
selection bias can occur if any variable related to eligibility
is an effect modifier. We showed in Web Appendix 1 that
when L2 was the effect modifier, strong selection bias was
identified when E was MAR.

A limitation of this method is the tendency of CIs to
overcover. The Boot-MI method (19) is computationally
intensive, and thus one should expect an analysis to take
several hours even with cluster computing methods. Hence
we constructed CIs using a percentile bootstrap with just
single imputation. However, single imputation lends itself to
overcoverage (19). In Web Appendix 2, we applied strategy
3 using MI with m = 5, which demonstrates improved cov-
erage. One alternative would be to investigate the corrected
Rubin’s pooled variance of ACEIE=1 suggested in Giganti
and Shepherd (8). However, obtaining accurate confidence
interval estimates in this way for the ACE using MI requires
complex methods (32–34).

Instead of MI, we could consider using inverse probability
weighting to address the bias caused by missingness in E
(35). We investigated this method in Web Appendix 2 and
found that it did not correct the bias. Another possible alter-
native is to utilize the work in Bareinboim and Pearl (15), by
inferring or presuming the distribution of the confounders in
TTtrue and standardizing the conditional ACE estimated in
TTobs, but it would be a considerable challenge.

It is also worth noting that using strategy 2, and targeting
the causal effect in those with complete records, may be a
pragmatic choice if the expected selection bias is limited and
the source population is cumbersome.

Data on palivizumab prescriptions and adherence were
limited, and this had an impact on the quality of conclu-
sions that could be made. Clinical colleagues reassure us
that children hospitalized with RSV would not be issued
palivizumab, protecting from reverse causation. However,
other issues, such as confounding by indication, cannot be
discounted. Limitations of the diagnostic data also meant a
slight inflation of our definition of the eligible population
because some of the diagnoses may include less severe
diseases than those listed in the Green Book (28).
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