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Significance

Although anesthetic drugs are 
known to lower arousal, it is 
unclear how anesthesia impacts 
perceptual and cognitive 
processing. Diminished arousal 
has been associated with 
prominent brain oscillations such 
as the slow wave, but functional 
roles for other anesthesia-
induced rhythmic changes have 
not been proposed. During 
waking states, brain oscillations 
are understood to be involved in 
a variety of sensory and cognitive 
processes mediated by circuits 
connecting posterior or 
prefrontal cortices with the 
thalamus. This study shows that 
propofol disrupts alpha 
oscillations (~10 cycles/s) in 
posterior circuits that mediate 
sensory processing and induces 
an alpha oscillation in prefrontal 
cognitive circuits that normally 
operate at higher frequencies.
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During propofol-induced general anesthesia, alpha rhythms measured using electroen-
cephalography undergo a striking shift from posterior to anterior, termed anteriorization, 
where the ubiquitous waking alpha is lost and a frontal alpha emerges. The functional 
significance of alpha anteriorization and the precise brain regions contributing to the 
phenomenon are a mystery. While posterior alpha is thought to be generated by thalam-
ocortical circuits connecting nuclei of the sensory thalamus with their cortical partners, 
the thalamic origins of the propofol-induced alpha remain poorly understood. Here, we 
used human intracranial recordings to identify regions in sensory cortices where propofol 
attenuates a coherent alpha network, distinct from those in the frontal cortex where it 
amplifies coherent alpha and beta activities. We then performed diffusion tractography 
between these identified regions and individual thalamic nuclei to show that the oppos-
ing dynamics of anteriorization occur within two distinct thalamocortical networks. We 
found that propofol disrupted a posterior alpha network structurally connected with 
nuclei in the sensory and sensory associational regions of the thalamus. At the same time, 
propofol induced a coherent alpha oscillation within prefrontal cortical areas that were 
connected with thalamic nuclei involved in cognition, such as the mediodorsal nucleus. 
The cortical and thalamic anatomy involved, as well as their known functional roles, 
suggests multiple means by which propofol dismantles sensory and cognitive processes 
to achieve loss of consciousness.

propofol | alpha | synchrony | thalamocortical | intracranial EEG

Propofol-induced general anesthesia alters arousal, but it is unclear how it disrupts sensory 
or cognitive processing in humans. Like other gamma-aminobutyric acid (GABA)-ergic 
anesthetic drugs, propofol causes widespread slow oscillations (0.1 to 1 Hz), while frontal 
alpha (8 to 12 Hz) rhythms emerge and the ubiquitous posterior alpha rhythm disappears 
(1–5). Slow oscillations are thought to reflect decreased arousal and disrupt cortical func-
tion broadly (6). However, the functional significance of the dual frontal and posterior 
alpha-band phenomena [termed anteriorization in clinical anesthesiology and neurophys-
iology (7)] and their circuit architectures within the human brain are not fully understood 
(8). Unlike the slow oscillation, alpha dynamics may underlie propofol’s disruptions of 
sensory and cognitive functions, reframing alpha’s ubiquitous role during wakefulness as 
a sensory processing rhythm. Because the alpha rhythm is generated by thalamocortical 
mechanisms, anatomical mapping at the cortical and thalamic levels may shed light on 
the circuitry involved in anteriorization.

We took advantage of two key features of alpha thalamocortical networks to study their 
brain-wide functional and structural attributes in humans. First, alpha oscillations are 
coherent within thalamocortical networks, linking thalamic populations with large areas 
of cortex (9, 10). Therefore, coherence analysis of intracranial recordings offers a way to 
map the cortical distribution of these oscillatory networks. Second, the connected thalamic 
and cortical regions form system-specific clusters within the thalamocortical network (11), 
which have been imaged in vivo using probabilistic tractography analysis of diffu-
sion-weighted magnetic resonance images (MRI) (12, 13).

We collected recordings from hundreds of intracranial channels in surface and depth 
electrodes implanted in 11  epilepsy patients undergoing propofol anesthesia for surgical 
explantation (Fig. 1 A–C). In these multivariate time series, we applied global coherence 
analysis, a cross-spectral dimensionality reduction technique (3, 14), to analyze how 
the spatial structure of coherent alpha rhythms changed during propofol-induced loss 
of consciousness (LOC). We used global coherence analysis as a whole-network estima-
tion tool to capture intracranial channels participating in coherent oscillations.

Several sites in the thalamus have been previously studied during propofol anesthesia, 
but recent evidence for whether propofol increases or decreases alpha synchrony between 
the cortex and thalamus remains conflicted (5, 15–17). Varying choices of thalamic 
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regions recorded in these studies may explain the inconsistency 
among their findings regarding propofol’s effects on alpha-band 
thalamocortical synchrony. To address this controversy, we 
traced fiber connections between each thalamic nucleus and the 
cortical regions that exhibited changes in alpha-band coherent 
activity.

Results

We found that prior to loss of consciousness (LOC), alpha rhythms 
can be observed in intracranial recordings from visual, motor, and 
auditory cortices (Fig. 1D), consistent with reports of occipital, pari-
etal, and temporal sensory alpha rhythms. After LOC, two rhythms 
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Fig.  1. Intracranial electrode coverage and spectral dynamics during propofol-induced general anesthesia. (A–C) Intracranial recordings’ (n = 897) spatial 
coverage. Six intracranial channel locations from one subject are labeled. (D and E) Multitaper spectrograms in selected intracranial and scalp channels of a 
single subject (S7) aligned to LOC time. After LOC, a waking alpha rhythm in posterior regions (odd-numbered plots) dissipates, while a broader anesthesia-
induced alpha rhythm emerges frontally (even-numbered plots). (F and G) Pre- and post-LOC multitaper spectra in selected frontal (F) and posterior (G) regions.
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emerge: Alpha rhythms appear in cingulate, frontal, and medial 
temporal cortices, and slow wave oscillations appear at all locations, 
as visualized in channel-specific spectrograms. Intracranially recorded 
alpha rhythms match what occurs in nearby scalp EEG channels 
recorded concurrently (Fig. 1 D and E). We identified spatially 
coherent anterior and posterior alpha rhythms by computing the 
coherent power spectral density (cPSD) and network-weighted time–
frequency signatures from eigendecompositions of the cross-spectral 
matrix at 10 Hz. (Materials and Methods). By comparing cPSD in 
pre-LOC versus post-LOC epochs across all recording sites, we iden-
tified brain regions where propofol increased or decreased the coher-
ent alpha activity (Fig. 2 A–C). Propofol achieved its greatest alpha 
cPSD increases in the cingulate cortices and regions of the frontal 
lobe, as well as the medial temporal lobe and temporal pole (Fig. 2F). 
Alpha cPSD was attenuated across the inferior, middle, and superior 
temporal cortices, as well as in the parietal and occipital cortices. 
Changes in cPSD magnified regional effects typically seen in shifts 
of 10-Hz spectral power across the combined channel data, improv-
ing the spatial resolution of these cortical maps (SI Appendix, Fig. S3). 
These coherent alpha dynamics were sharply linked to loss of con-
sciousness in all recordings, as demonstrated by the network-weighted 
signatures (Fig. 2 D and E) of channels coherent at 10 Hz before 
and after LOC. The post-LOC signature (Fig. 2E) also indicates that 
propofol’s frontal signature is more broadband than previously 
thought, spanning both alpha and beta frequencies.

We used probabilistic tractography to determine whether the 
alpha networks underlying anteriorization might be structurally 
connected to distinct nuclei within the human thalamus according 

to their known functional roles. (Materials and Methods). To do 
so, we matched our data’s intracranial electrode coordinates with 
diffusion-weighted MRI data from the WU-Minn Human 
Connectome Project (HCP) (18). We found that the posterior 
alpha network had greater structural connectivity than the anes-
thesia-induced frontal network to thalamic sensory and sensory 
association nuclei (Fig. 3). Meanwhile, the anesthesia-induced 
frontal alpha network had greater structural connectivity than the 
posterior alpha network to thalamic cognitive-, limbic-, and 
motor-associated nuclei. Some nuclei, such as the centromedian, 
central lateral, and medial pulvinar, appeared not to be selectively 
connected to either network. Our results identify distinct groups 
of nuclei that may synchronize within each oscillatory network, 
perhaps through corticothalamic feedback (9). These groups 
appear to align conspicuously with known system-specific classes 
of thalamic nuclei: sensory and sensory association on the one 
hand versus cognitive, limbic, and motor on the other (11).

Discussion

Overall, our investigation of alpha anteriorization was made pos-
sible by collecting a unique dataset from a carefully orchestrated 
natural experiment of anesthesia using high-density human intrac-
ranial recordings, combined with diffusion images from an open 
repository. Extending previous findings obtained from high-density 
electroencephalography (4), these results link anterior and posterior 
coherent alpha networks to known functional divisions of the 
human cortex situated along the anterior–posterior axis (19, 20), 
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Fig. 2. Spatiotemporal mapping of preanesthesia and postanesthesia coherent alpha networks. (A–C) Changes in coherent alpha (10-Hz) cPSD across recording 
sites in all subjects. (D and E) Pre-LOC global coherence principal components depict a narrow 10-Hz rhythm disappearing at LOC (D), and a broader 10-Hz band 
beginning ~200 s after LOC (E). (F) cPSD is associated with structural (F) parcellations of brain regions. Frontal midline regions such as anterior and posterior 
cingulate, frontal, and orbitofrontal cortices, as well as the medial temporal lobe, show increased alpha-band cPSD after LOC, whereas posterior regions such 
as somatosensory and visual areas show a decrease. Constituent labels for each structural category are listed in SI Appendix, Table S3.
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which are revealed using diffusion tractography to be connected 
to distinct thalamic nuclei. Our results also reveal the cortical 
distribution of propofol’s anterior alpha signature in greater detail 
than previous studies by showing that it engages the cingulate and 
medial temporal cortices. These medial structures, typically inac-
cessible to measurement by scalp electroencephalography, have 
not been previously identified as key structural components of 
propofol’s alpha signature.

Propofol has a number of known biophysical effects that may 
generate the dual posterior and frontal alpha effects described here. 
Computational models have suggested multiple mechanisms for 
thalamic cells (2, 8, 21) to play a role in propofol’s diverse alpha-
band effects. Propofol increases GABA conductance and decay 
time, which is thought to slow prefrontal thalamocortical circuits 
to favor alpha oscillations (2, 22). Propofol also inhibits hyperpo-
larization-activated membrane currents mediated by hyperpolariza-
tion activated cyclic nucleotide gated potassium 1 (HCN1) channels, 
which is believed to disable thalamocortical circuits responsible 
for posterior alpha waves (8, 23, 24). These mechanisms may be 
linked to functionally specialized thalamic nuclei (25, 26). Our 
results identify circuit-specific locations where propofol may be 
acting via GABA or HCN1 mechanisms to either generate or 
disrupt alpha-band activity (8).

It is known that the posterior alpha is driven by first-order 
sensory thalamic nuclei such as the lateral geniculate (25) and 
coordinated by higher-order sensory thalamic nuclei such as the 
pulvinar (27, 28). Similarly, the prefrontal cortex and the medio-
dorsal nucleus share connections that support thalamocortical and 
corticocortical synchrony in the alpha and beta frequency ranges 
(29–31). Previous studies have shown that thalamocortical coher-
ence may either increase or decrease during propofol anesthesia 
depending on the thalamic nucleus from which recordings were 
made (5, 15–17). Our work suggests that there is a functional 
neuroanatomic pattern underlying these disparate accounts in 
which frontal cortical regions tied to higher-order thalamic nuclei 
can exhibit higher coherence under propofol, while posterior cor-
tical regions connected to first-order and higher-order sensory 
thalamic nuclei can exhibit diminished coherence under propofol. 
Our results provide a whole-thalamus segmentation of nuclei likely 
participating in the frontal and posterior forms of thalamocortical 

coherence. Some of the intralaminar nuclei, including central lat-
eral and centromedian, as well as the medial pulvinar, notably 
lacked a connectivity preference in this segmentation. The intral-
aminar nuclei are most commonly associated with ascending 
arousal and their cortical connections span both anterior and 
posterior cortical areas. Moreover, the intralaminar nuclei may not 
directly participate in alpha oscillations. A key result by Redinbaugh 
et al. has shown that stimulation of the central lateral nucleus 
increases overall arousal as well as intracolumnar and population 
alpha coherence in distributed cortical regions (16). Their result 
is consistent with our findings, in that stimulation of an intrala-
minar nucleus leading to increased arousal and recovery of con-
sciousness would be predicted to increase alpha coherence in both 
posterior sensory and sensory associational areas. Other nuclei, 
such as the medial pulvinar (32), may possess interconnections 
with key regions such as the frontoparietal network that span both 
anterior and posterior cortices, also yielding a low connectivity 
preference in our results.

Recent efforts to define the neural correlates of consciousness pro-
pose different roles for the prefrontal and sensory cortices (33–35). 
Our results suggest that propofol may impair function in both ante-
rior and posterior networks through distinct mechanisms in order 
to render sensory information in posterior networks inaccessible to 
prefrontal areas. Functional mechanisms involving alpha and beta 
oscillations have been found to gate sensory transmission (36), block 
perceptual integration of sensory information (37–39), and dysreg-
ulate attention (28, 40) and working memory (41). In light of these 
dynamics, we propose two ways by which propofol may disrupt 
conscious processing via oscillations: 1) By placing posterior thalam-
ocortical networks in a hyperpolarized state (8), which degrades 
feedforward sensory contents and renders them inaccessible to pre-
frontal oscillatory feedback, and 2) by inducing a nonphysiological 
inhibition within the prefrontal–mediodorsal thalamocortical net-
work (2), which restricts its activity to alpha and low-beta bands and 
interferes with top–down processes. These effects would serve to 
functionally disrupt feedforward perception on the one hand and 
feedback control of attention, memory, and executive function on 
the other. The two anesthesia-induced alpha network changes that 
we describe would be predicted to impair both bottom–up and top–
down processes, respectively. Disruptions of alpha network dynamics 
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Fig. 3. Distinct thalamocortical connections underlying preanesthesia and postanesthesia alpha networks. (A) Thalamic nuclei are selectively connected to 
distinct networks showing either increased or decreased cPSD after LOC. (B) Primary and association sensory thalamic nuclei selectively connect to alpha cPSD-
decreasing regions; nuclei of the executive and cognitive thalamus selectively connect to alpha cPSD-increasing regions.
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have also been observed in brain states such as traumatic brain injury 
(42), attention (43), and sleep (44).

In conclusion, our findings provide empirical evidence that 
anterior and posterior alpha networks modulated by propofol 
correspond to known functional subdivisions of the cortex and 
thalamus. In doing so, our results highlight the need for structural 
specificity in human studies of anesthesia’s effects on thalamocor-
tical rhythms. A careful analysis of how propofol compares to 
other anesthetic drugs with similar or shared mechanisms could 
further clarify the role that these and other molecular targets play 
to alter different thalamocortical circuit functions. We note that 
inhaled ether anesthetics, which also exhibit alpha anteriorization, 
have GABA and HCN1 mechanisms similar to propofol (45). In 
contrast, the anesthetic ketamine is known to act via N-methyl-
D-aspartate (NMDA) and HCN1 mechanisms. Like propofol, 
ketamine diminishes posterior alpha activity (46), but it neither 
produces frontal alpha waves nor engages GABA mechanisms in 
order to disrupt prefrontal functional networks (47, 48). Future 
animal studies employing multisite recordings of various thalam-
ocortical circuits, such as those connecting the mediodorsal 
nucleus with the prefrontal cortex and the pulvinar nucleus with 
visual cortex, could shed light on the impact of propofol-induced 
alpha dynamics on specific sensory and cognitive processes. 
Overall, our study suggests that propofol acts upon two types of 
thalamocortical circuits through separate alpha mechanisms to 
impair functions underlying awareness, distinct from the propo-
fol-induced slow oscillation’s disruption of arousal.

Materials and Methods

Enrollment, Demographics, and Ethics. We performed intracranial record-
ings at two hospitals in 14 patients diagnosed with medically intractable 
epilepsy following long-term epilepsy seizure monitoring prior to electrode 
explantation and surgical treatment. Three patients were excluded due to 
high-amplitude broadband noise across the channel array after LOC. Electrode 
placement was selected by the patients’ clinicians without regard to study 
participation. (Fig. 1 A–C and SI Appendix, Table S1 for channel type and place-
ment.) Patient demographics and clinical information are listed in SI Appendix, 
Table  S1. Study protocols and informed consent procedures were approved 
by the Institutional Review Boards of Partners HealthCare (Massachusetts 
General Hospital and Brigham Women’s Hospital), and all patients provided 
fully informed consent. In total, 897 recordings were made from both electro-
corticography (ECoG) arrays (containing strip and grid channels) and depth 
electrodes, and 99 recordings were made from scalp EEG.

Anesthesia and Behavioral Task. Prior to surgery, propofol was administered 
while subjects performed an auditory behavioral task (SI Appendix, Fig. S1). All 
subjects received bolus-dose administration. Bolus doses averaged 154.5 mg, 
with maximum and minimum dosages at 200 and 70 mg, respectively. Two sub-
jects also received infusions after LOC was achieved. Drug doses and protocols 
were selected by patients’ clinicians without regard to study participation.

Subjects were instructed to perform an auditory button-click task approxi-
mately every 4 s over a period spanning administration of anesthesia. Responses 
were presented and recorded using stimulus presentation software (Presentation, 
Neurobehavioral Systems, Inc. or EPrime, Psychology Software Tools, Inc.). The 
time at which loss of consciousness (LOC) occurred was identified by halving 
the difference between the last correct behavioral response and the first non-
response following a bolus dose of propofol (SI Appendix, Fig. S1). Where accu-
rate responses are unavailable, LOC was assigned to a timepoint 15 s following 
administration of propofol and prior to start of intubation.

Data Acquisition and Preprocessing.
Electrophysiological recordings. Recordings were made during explantation 
surgery following 1 to 3 wk of epilepsy monitoring for detection of epileptogenic 
foci. Signals were acquired prior to anesthetic induction and continued until after 
anesthetic induction. EEG and intracranial electroencephalography (iEEG) sig-
nals were recorded at 2,000, 2,500, or 250 Hz depending on acquisition system 

settings. Initial referencing was selected by the patients’ clinicians with earlobe 
(A1/A2), C2, or subdural references when available; otherwise, a common average 
reference was used. Signals were digitized after applying a high-pass filter above 
0.3 Hz (XLTEK, Natus Medical Inc.) (SI Appendix, Table S1).

Data were low-pass filtered at 100 Hz using antialiasing finite impulse 
response (FIR) filters, downsampled to 250 Hz, and then notch filtered at 60 Hz. 
Data v(t) were then rereferenced using an approximate Laplacian reference for 
intracranial electrodes in order to isolate local potentials. The rationale against 
using the common average reference and in favor of using the Laplacian can 
be found in the study by Cimenser et al. (3). In contrast to bipolar referencing 
methods, which also isolate field potentials from local regions, the Laplacian 
reference preserves the exact size of the channel set and has been previously 
validated for global coherence analysis (3, 4). The Laplacian reference utilized up 
to P = 6 neighbors for each grid electrode and up to P = 2 neighbors for strip 
and depth electrodes using the mean activity in the P channels neighboring a 
channel x (Eq. 1), and then linearly detrended in each 4-s nonoverlapping time 
segment l = 1, … , L (Eq. 2), where a(l)x  and b(l)x  are the segment slope and offset 
values, respectively:
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Data segments with missing data or with amplitude greater than 10× the 
median value across the full recording for each subject were excluded from the 
global coherence analysis. In individual electrodes, data segments containing 
epileptiform discharges were excluded from analysis. The total duration of the 
excluded segments totaled less than 5% of the recorded data. Three patients were 
excluded from analysis on the basis of generalized epileptiform discharges in the 
majority of the channels. No data from the remaining subjects were excluded 
from the network-weighted time–frequency representations.

Two epochs were selected from periods of clean data in each recording and 
labeled pre-LOC and post-LOC. Pre-LOC epochs were selected from up to a total 
of 503 s preceding the first propofol dose, and post-LOC epochs were selected 
from up to a total of 576 s following LOC. The beginning of post-LOC epochs 
was defined by visual inspection of steady-state spectral power in the median 
spectrogram occurring after paradoxical excitation, denoted by beta (12 to 25 
Hz) and gamma band (30 to 60 Hz) power, and prior to burst suppression, which 
occurred in five subjects. The post-LOC epoch ended at any of these events: a) 
the first suppression period apparent in the median spectrogram, b) delivery of 
any anesthetic drug besides propofol, or c) end of the recording. The consistency 
of spectral patterns in the selected post-LOC epoch was verified by investigators 
with expertise in EEG data analysis (V.S.W., D.W.Z., and P.L.P.). (See SI Appendix, 
Fig. S1 for pre-LOC and post-LOC epoch selections.)
Channel coordinate coregistration and morphing. Recording electrodes were 
identified using preoperative T1-weighted MRI and postoperative CT scans in 
each patient. RAS coordinates were assigned for all intracranial channels by 
visual inspection of a maximal intensity projection of the CT, and then projected 
to the subjects’ individual MRI spaces using coregistration matrices produced 
using FreeSurfer. MRI images were processed by FreeSurfer to produce a cortical 
surface, and channel coordinates were mapped to the nearest surface location 
using a minimum energy algorithm (49). FreeSurfer was also used to produce 
structural segmentations and cortical parcellations (50, 51), which were visually 
verified for each electrode and used to label intracranial depth and surface (grid 
and strip) electrodes, respectively. Poorly situated channels revealed upon veri-
fication were removed from the dataset (n = 25, 2.71% of total implanted chan-
nels). Coordinates that were not classified by FreeSurfer were assigned labels 
manually against the human atlas by Mai et al. (52). Known anatomical regions 
were assigned to subsets of the structural labels. Individual MRI images were 
nonlinearly coregistered to an average brain template in FreeSurfer MNI152 
space (cvs_avg35_inMNI152) using FreeSurfer’s combined volumetric- and 
surface-based (CVS) algorithm (53, 54). Subject-space channel coordinates were 
morphed to the average brain space using the CVS coregistration outputs and the 
FreeSurfer tool applyMorph, employing a procedure similar to the one described 
in the study by Hamilton et al. (55).

http://www.pnas.org/lookup/doi/10.1073/pnas.2207831120#supplementary-materials
http://www.pnas.org/lookup/doi/10.1073/pnas.2207831120#supplementary-materials
http://www.pnas.org/lookup/doi/10.1073/pnas.2207831120#supplementary-materials
http://www.pnas.org/lookup/doi/10.1073/pnas.2207831120#supplementary-materials
http://www.pnas.org/lookup/doi/10.1073/pnas.2207831120#supplementary-materials
http://www.pnas.org/lookup/doi/10.1073/pnas.2207831120#supplementary-materials
http://www.pnas.org/lookup/doi/10.1073/pnas.2207831120#supplementary-materials
http://www.pnas.org/lookup/doi/10.1073/pnas.2207831120#supplementary-materials
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Patients and channel localization. We performed intracranial recordings from 
897 channels in 11 patients as they underwent anesthetic induction with propofol 
prior to surgical treatment for medically intractable epilepsy. Patients were asked 
to perform an auditory behavioral task, and behavioral unresponsiveness was 
used to define the time of loss of consciousness (LOC). Eight patients ceased task 
performance within 1 min of bolus induction, one patient ceased performance 
within 2 min, and two patients were excluded from participation in the task by 
their clinicians. Channels were implanted throughout all lobes of the cortex, 
including regions of frontal cortex and the visual, auditory, and somatosensory 
regions of sensory cortex (Fig. 1 A–C), as well as white matter (n = 155) and a 
small number of subcortical regions (brainstem, amygdala, ventral dienceph-
alon, and ventricle; n = 8). Locations of electrodes were chosen for epilepsy 
monitoring and without regard to the current study. Cortical regions sampled by 
electrode recordings in this study include: caudal and rostral anterior cingulate 
cortices (n = 17), posterior cingulate cortex (n = 5), caudal middle frontal cortex 
(n = 26), entorhinal cortex (n = 9), frontal pole (n = 3), fusiform gyrus (n = 33), 
hippocampus (n = 35), inferior frontal gyrus (n = 53), inferior parietal lobe 
(n = 14), inferior temporal gyrus (n = 49), medial and lateral  orbitofrontal cor-
tices (n = 35), middle temporal gyrus (n = 107), postcentral gyrus (n = 45), 
precentral gyrus (n = 64), rostral middle frontal cortex (n = 65), superior frontal 
cortex (n = 19), superior temporal gyrus (n = 63), supramarginal gyrus (n = 44), 
and temporal pole (n = 11).
Matched diffusion MRI data. Because high angular resolution diffu-
sion-weighted MRI images were not available for the epilepsy patients 
enrolled in our study, we assembled a diffusion MRI dataset by matching 
each nonexcluded epilepsy patient to three healthy human surrogates in 
the 1200-subject WU-Minn Human Connectome Project (HCP) dataset (18). 
Surrogates were matched by producing a distance-based ranking of HCP sub-
jects with respect to epilepsy patients using the following demographic and 
MRI volumetric metrics: age, gender, handedness, brain volume, cortical white 
matter volume, and thalamic volume (SI Appendix, Table S2).

The HCP dataset provided high angular resolution diffusion imaging (dMRI) 
acquired using the 3 Tesla Siemens Skyra “Connectome” scanner. Full dMRI ses-
sions included six runs with three different gradient tables and oblique axial 
acquisitions alternating between right-to-left and left-to-right phase encoding 
directions in consecutive runs. Each gradient table includes approximately 90 
diffusion-weighting directions. Diffusion weighting consisted of three shells of 
b = 1,000, 2,000, and 3,000 s/mm2 interspersed with an approximately equal 
number of acquisitions on each shell within each run. Six b = 0 acquisitions were 
interspersed throughout each run.

The dMRI data were preprocessed using the HCP diffusion pipeline (56). The data 
were further processed with FMRIB Software Library's (FSL's) BEDPOSTX (Bayesian 
Estimation of Diffusion Parameters Obtained using Sampling Techniques, modeling 
crossing X fibers) to model white matter fiber orientations and crossing fibers for 
probabilistic tractography. BEDPOSTX uses Markov Chain Monte Carlo sampling to 
build probability distributions on diffusion parameters at each voxel (57).

Data Analysis and Statistics.
Data segmentation. In order to capture the structure of coherent dynamics in 
the brain states of resting state wakefulness and propofol-induced unconscious-
ness, we segmented periods of stable oscillatory activity in each patient before 
and after LOC, labeling these epochs pre-LOC and post-LOC, respectively. One 
of each type of epoch was chosen from each patient’s recording, with pre-LOC 
epochs beginning up to 513 s before LOC and post-LOC epochs terminating 
up to 775 s after LOC. The median length of pre-LOC epochs was 258 s (IQR = 
280 s), and that of post-LOC epochs was 150 s (IQR = 216 s).
Nonparametric bootstrap analyses. To account for subject-level spatial, tempo-
ral, and group-level uncertainty in the nested electrophysiological and connectiv-
ity estimates described in the subsequent data analysis sections, we employed 
the nonparametric bootstrap and the hierarchical, or multilevel, bootstrap. The 
multilevel bootstrap technique has been widely applied to account for hierar-
chically structured data with multiple sources of variation (58, 59). The specific 
details for each bootstrap technique (levels and iterations) are described in each 
of the sections in which they appear.
Multitaper spectral and cross-spectral estimation and the frequency domain 
bootstrap. We computed tapered Fourier coefficients at frequency f for each 

nonoverlapping time series segment zx (t) from a channel x ∈ N in the channel 
set N, as in

 
[3]Z

(k)
x

�
f
�
=

T−1�

t=0

zx(t)u
(k)(t)e2�f

√
−1t ,

over time t = 0, … , T − 1 and k = 1, … , K , where u(k)(t) is the k-th Slepian 
taper. In standard multitaper spectrograms, we used K = 3 tapers and 2 s  
time windows with 0.25 s overlaps. We set f = 10 Hz for alpha frequency 
analyses.

Then, we computed the |N| × |N|  cross-spectral matrix C(
k)
xy (f ) wherein an 

element in row x and column y represents the cross-spectrum between channels 
x and y for each respective taper and time segment:

 
[4]C

(k)
xy

(
f
)
= Z

(k)
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(
f
)
Z
(k)
y (f )H ,

where Z(
k)

y (f )H  is the complex conjugate transpose of thevectorized tapered 
Fourier estimates Z(

k)
y (f )H . For global coherence analysis, weused K = 15 tapers, 

with non-overlapping time windowsof 4 s and a half-bandwidth of 2 Hz. In net-
work-weighted time-frequencyplots (Eq. 10), we computed spectrograms using 
the same multitaper parameterswith step sizes of 0.1 s.

Forstatistical inferences about the output eigenvalues and eigenvectors, 
weimplemented a nonparametric resampling approach for the multitaper-
cross-spectral matrix using a frequency-domain bootstrap (FDB) approach tores-
ampling multitaper cross-spectral matrix for a given epoch. Proceeding underthe 

assumption that the tapered estimates Ĉ
(k)
xy

 of Cxy are statistically independent 
in a givennon-overlapping time segment l = 1, 2, … , L of the epoch, we fol-
lowed the nonparametricapproach to resample the average cross-spectrum with 

replacement (60). To create abootstrap replicate Ĉ
(k,l)∗
xy

(
f
)
 given f , x, and y , 

we independently drew K rows andL columns from each matrix of samples 
{C
(k,l)
xy

(
f
)
: k=1, … , K ; l=1, … , L} . Then, we computed the mean across-

tapers, and the median across time segments for the real and imaginarycompo-
nents of the multitaper mean separately (61):
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.

We repeated this procedure to generate B = 200 bootstrap replicates of 
the multitaper cross-spectral matrix per frequency, per epoch (pre-LOC and 
post-LOC), and per subject. Our resampling procedure can be considered a 
nonoverlapping block bootstrap in the frequency domain (62). All subse-
quent global coherence computations were performed upon each replicate  
matrix.
Global coherence analysis: Cross-spectral matrix eigen decomposition. To 
identify frequency-wise coherent networks across the intracranial recording 
dataset, we used global coherence analysis, a frequency-domain principal com-
ponent analysis of the cross-spectral matrix (3, 14). In comparison to standard 
coherence-based network analyses that compute network edge strengths using 
pair-wise coherence as a coupling function, global coherence analysis estimates 
whole networks from the principal components of the cross-spectral matrix at a 
frequency f. (Please see the Materials and Methods subsection, Network-weighted 
time–frequency analysis, for the precise definition of the term “network” in this 
study). We applied eigendecompositions to every bootstrap replicate of the mul-
titaper cross-spectral matrix to obtain empirical distributions of eigenvectors, 
eigenvalues, coherent power spectral density, and other derivatives of global 
coherence outputs (63):
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This decomposition represents multichannel spectral power in terms of ortho-
normal bases of coherent activity among channels, effectively summarizing the 
coherent activity at each frequency. Altogether, the eigendecompositions per-
formed at 10 Hz captured on average 41.29% (± 15.58%) of the variance in the 
pre-LOC data and 48.60% (± 20.64%) in the post-LOC data.
Cross-spectral matrix reconstruction. In order to estimate the amount of coher-
ent spectral power contributed by individual channels that is captured by the 
eigenmodes, we reconstructed the cross-spectral matrices using the top three 
principal components:
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xy
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Across all analyses, we chose to include the top three components to balance 
parsimony and representation accuracy. We refer to the diagonal elements c∗

xx
(f ) 

of Ĉ�
∗

xy

(
f
)
 as the coherent power spectral density (cPSD).

We estimated the difference in replicated means of the cPSD Δc∗
xx

(
f
)
=

−

c
post∗

xx(
f
)
−

−

c
pre∗

xx
(f ) using the bootstrap. We assessed the empirical cumulative distribution 

functions F̂x
�
h
�
=

1

B�

∑B�

i=1
1
Δc(i)∗xx ≤h

 with B� = 104 in order to partition the entire 

set N of intracranial channels into three subsets: N𝛼↑ =
{
x ∈ N�Fx(0) < 0. 05

}
 , 

N𝛼↓ =
{
x ∈ N�Fx(0) > 0. 95

}
 , and N�� =

{
x∈N|0.05≤ F̂ x(0)≤0. 95

}
 , reflect-

ing channels with increasing or decreasing mean coherent power change beyond a 
95% confidence level and channels for which the previous two conditions do not apply.
Network-weighted time–frequency analysis. In this study, coherence-based 
networks are defined as a set of weights across all recording channels rep-
resenting the degree to which they participate in multivariate synchrony. To 
estimate networks in a frequency band (such as alpha), we used estimates 
of c∗

xx
(g) at g = 10 Hz frequency to compute weights w∗

x
(g) for a given epoch 

and subject (Eq. 8). To visualize the time–frequency activity represented by 
these network weights over frequencies f and time segments l, we estimate 
the network-weighted spectrum ̂nwS(f , g) , which summarizes the spectrogram 
across channels i ∈ N using w∗

x
(g) as weights applied to each channel’s spec-

trogram (Eqs. 9 and 10). The number of channels |N| is added as a scaling term 
to allow comparison between datasets with different numbers of channels.
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Observe in Eq. 10 that a network represented by a set of equal weights 
wx =

1

|N|
 for all channels x ∈ N would yield a network-weighted time–frequency 

representation equal to 1 for all f and l; likewise, time–frequency activity over-
represented by only a few heavily weighted channels in wx (g) would result in 

values of ̂nwS
(l)
(f , g) substantially greater than 1. The mean ̂nwS

(l)
(f , 10) across 

replicates was computed per subject. In the plots shown in Fig.  2 D  and E, a 
two-dimensional median filter with a sliding window of 4 s and 4 Hz was applied 
to the group-level median network-weighted spectrum. To estimate the overall 
net change in frequency-domain activity in a network of interest, we computed 

the group-level mean network-weighted spectral shift Δn̂wS
(l)
(f , 10) of an alpha 

network from pre-LOC and post-LOC, using a two-level hierarchical bootstrap of the 
mean over 1,000 iterations: the first level over subjects (sampled with replace-
ment) and the second level over time segments in each epoch (sampled with 
replacement per subject) (64). Group-level temporal epochs were chosen using 
all time windows before 0 s and after 200 s for pre-LOC and post-LOC, respectively, 

given that each LOC in each subject is aligned at 0 s and the majority of time-var-
ying artifacts diminish after 200 s.
Probabilistic tractography. We performed a probabilistic tractography analysis 
(57) using matched diffusion-weighted MRI datasets from the WU-Minn Human 
Connectome Project (HCP) (18). The intracranial electrophysiology data analysis 
described above yielded two subsets of channels N�↑ and N�↓ across subjects in 
which the alpha-band cPSD significantly increased or decreased from pre-LOC 
to post-LOC, respectively. We used the channel coordinates to produce seed 
regions of interests (ROIs) for tractography analysis. To ensure accurate tracing 
along white matter tracts, we centered the cortical seed masks at the point on the 
white matter surface closest to the channel coordinates. For broader sampling 
of the brain region in the vicinity of each channel, we dilated the seed masks to 
a 2-mm sphere. To generate thalamic targets, we obtained a probabilistic atlas 
developed by Iglesias and coauthors (65) and created masks based on 22 nuclei 
on each side. We used separate masks for the right and left sides of each nucleus, 
resulting in 44 masks in total. Using FSL's PROBTRACKX2 (probabilistic tracking 
with crossing fibres) (57), we traced streamlines from each channel’s seed mask 
to all thalamic nuclei using FSL Classification Targets, using 5,000 streamlines per 
voxel in seed masks. We performed tractography analysis for each patient using 
that patient’s matched samples of diffusion-weighted images.

In order to account for intersubject variability in diffusion estimates, each 
subject from our study was matched with three surrogates in the HCP data-
base according to demographic and brain volumetric indices. Multiple studies 
have used HCP subjects as surrogates or references for patients in separate 
datasets, including epilepsy patients (66, 67). ROIs associated with thalamic 
nucleus membership were defined using a thalamic atlas created by Iglesias 
and coauthors (65). We used these thalamic ROIs as targets for traces made 
from seed coordinates belonging to electrodes in either the frontal or posterior 
alpha networks.

The specificity of the thalamocortical connection to each nucleus was estimated 
for the seed masks belonging to the channel sets N�↑ and N�↓ . The number of 
streamlines reaching each thalamic nucleus from seeds of the channel sets N�↑ 
and N�↓ was normalized by the total number of streamlines reaching the whole 
thalamus as well as the size of the given thalamic nucleus (number of voxels). 
We refer to this quantity as the ROI’s thalamic nucleus connectivity:

 
[11]�

�
ri → Tn�ri → Th

�
=

sri→Tn

size(Tn)
∑44

j=1
sri→Tnj

,

where sri→Tn is the number of total streamlines between a seed mask ROI r belong-
ing to channel i ∈ N�↑ or N�↓ and the mask of a thalamic nucleus Tn, and where 
Th is the union of all thalamic nucleus masks.

We wondered whether streamlines from a cortical ROI to a contralateral tha-
lamic nucleus would be anatomically plausible. In primary-level sensory thalam-
ocortical pathways, they are considered not to be; however, there is evidence in 
nonhuman primates that frontal areas may connect bilaterally (32, 68). Therefore, 
we calculated two versions of κ: one in which each Tn is the union of left and right 
nucleus masks and another in which each Tn is defined strictly as the nucleus 
ipsilateral to the respective cortical ROI ri.

To infer the connection preference of a given thalamic nucleus to regions 
covered by either N�↑ or N�↓ , we calculated the empirical probability distributions 
of the effect size (Cohen’s d) between thalamus nucleus connectivity values of 
ROIs in N�↑ and N�↓:
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where � i ∈
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�
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ri → Tn | ri → Th

)
∀ i ∈ N�↑

}
 and � j ∈

{
k
(
rj → Tnrj → Tn

)

∀ j ∈ N�↓

}
  . Over 10,000 iterations, we resampled the effect size with a similar two-

level hierarchical technique as described above, using surrogate subjects at the 
first level and regions in N�↑ or N�↓ as the second. Fig. 3 uses the bilateral version 
of κ. (See SI Appendix, Fig. S5 for the ipsilateral version).

To characterize the null condition in which channels included in regions N�↑ 
and N�↓ were randomly assigned, we reshuffled the channels in the two groups 
and repeated the effect size computations above (SI Appendix, Fig. S6).

http://www.pnas.org/lookup/doi/10.1073/pnas.2207831120#supplementary-materials
http://www.pnas.org/lookup/doi/10.1073/pnas.2207831120#supplementary-materials
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Data, Materials, and Software Availability. Anonymized Intracranial  
EEG data have been deposited in Zenodo (https://zenodo.org/record/7657814) 
(69).
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