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Crowding effects critically impact the self-organization of densely packed cellular
assemblies, such as biofilms, solid tumors, and developing tissues. When cells grow
and divide, they push each other apart, remodeling the structure and extent of the
population’s range. Recent work has shown that crowding has a strong impact on the
strength of natural selection. However, the impact of crowding on neutral processes,
which controls the fate of new variants as long as they are rare, remains unclear. Here, we
quantify the genetic diversity of expanding microbial colonies and uncover signatures
of crowding in the site frequency spectrum. By combining Luria–Delbrück fluctuation
tests, lineage tracing in a novel microfluidic incubator, cell-based simulations, and
theoretical modeling, we find that the majority of mutations arise behind the expanding
frontier, giving rise to clones that are mechanically “pushed out” of the growing region
by the proliferating cells in front. These excluded-volume interactions result in a
clone-size distribution that solely depends on where the mutation first arose relative
to the front and is characterized by a simple power law for low-frequency clones. Our
model predicts that the distribution depends on a single parameter—the characteristic
growth layer thickness—and hence allows estimation of the mutation rate in a variety
of crowded cellular populations. Combined with previous studies on high-frequency
mutations, our finding provides a unified picture of the genetic diversity in expanding
populations over the whole frequency range and suggests a practical method to assess
growth dynamics by sequencing populations across spatial scales.
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Environmental factors often structure the spatial organization of growing cellular
populations, such as microbial biofilms (1), bacteria in confined spaces (2–5), developing
embryos and differentiating tissues (6), as well as solid tumors (7–10). Advances in
lineage tracing techniques are progressively revealing that in many of these cases, growth
is nonuniform across the population, as it strongly depends on the mechanical and
biochemical cues experienced by each cell (8, 9, 11–18). Nonuniform growth can favor
individuals based on their spatial locations rather than their fitness (10, 19–22) and as
such can dramatically impact the evolutionary fate of the population.

The interplay between evolution and growth has been extensively investigated in the
context of range expansions, in which populations grow by invading surrounding virgin
territory (23–29). In cellular range expansions, growth is often limited to a thin layer
of cells at the expanding front of the population (the growth layer) due to processes
like nutrient depletion, waste accumulation, mechanical pressure, or quorum sensing
in the bulk (30–36). Recent studies have revealed that this growth constraint generates
an excess of high-frequency mutations in microbial colonies (37) and colorectal cancer
xenografts (10). Remarkably, the size distribution of these large clones is exclusively
determined by the surface growth properties of the population through a phenomenon
called allele surfing (23, 38).

The distribution of low-frequency mutations, however, remains an open question.
Assuming a mutation rate of 10−3 mutation/genome/generation (typical of microbes)
and a population size of 108 to 109 cells, a total of 105 to 106 mutations are generated
during population growth. Yet, experimentally only approximately 0.001% of these
mutations have been captured by population sequencing in the case of bacterial colonies
and tumors (37, 39–41). This suggests that low-frequency mutations constitute the
majority of genetic diversity in the population, but since their frequency is often below
the detection limit of population sequencing, they go unaccounted for. As a single mutant
can be sufficient to drive drug resistance (19), its quantification is imperative to better
understand the emergence of resistant cells after drug treatment. While several groups
have recently revealed the dynamics of small clones by multicolor lineage tracing in
solid tumors (9, 10, 16), a quantitative understanding of the dynamics of low-frequency
mutations is still lacking. Here, we address this gap by investigating the dynamics of
low-frequency mutations utilizing an expanding microbial colony as a model system.

Significance

Growing cell populations become
densely packed as cells
proliferate and fill space.
Crowding prevents spatial mixing
of individuals, significantly
altering the evolutionary outcome
from established results for
well-mixed populations. Despite
the fundamental differences
between spatial and well-mixed
populations, little is known about
the impact of crowding on genetic
diversity. With microbial colonies
on plates, we show that the allele
frequency spectrum is
characterized by a power law for
low frequencies. Using cell-based
simulations and microfluidic
experiments, we identify the
origin of this distribution in the
volume-exclusion interactions
within the crowded cellular
environment, enabling us to
extend these findings to a broad
range of dense populations. This
study highlights the importance
of cellular crowding for the
emergence of rare genetic
variants.
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To probe the low-frequency end of the mutational spectrum,
we adapt the classic Luria–Delbrück fluctuation test, normally
used to infer mutation rates in well-mixed populations (42), to
microbial colonies. We find that the vast majority of mutations
occurring during growth are present at very low frequencies and
characterized by a clone size distribution that decays faster than
that observed at high frequency (37). To investigate the origin
and statistics of low-frequency clones at single-cell resolution
in a well-controlled environment, we designed a microfluidic
chemostat (the “population machine”) that mimics the growth
at the expanding front of a colony. In combination with a newly
engineered color-switching S. cerevisiae strain, we track clonal
lineages for ten generations. Visualization of the clones shows
that small clones stem from mutations that occur behind the
population’s front. The mutant cells are then pushed toward the
bulk of the population by the proliferating cells in front and
eventually fall out of the growth layer and stop dividing, limiting
the maximum size a clone can reach.

Cell-based simulations show that mechanical cell–cell forces
are sufficient to explain the observed low-frequency spectrum and
that the spectrum’s behavior is robust to cell-level details such as
cell shape and mode of division.

We further develop a theoretical model that captures the
essential population genetic process that shapes the low-frequency
spectrum, extends our results to a broad range of cellular pop-
ulations, and provides predictions beyond evolutionary neutral
populations.

Finally, we discuss a useful sampling strategy to sequence
spatially structured populations such as tumors. We show that the
spatial position where one takes samples defines which regime of
the site frequency spectrum one can capture. Our results suggest
that the whole site frequency spectrum can be reconstructed by
combining various sampling methods and rescaling.

Results

Fluctuation Test in Bacterial Colonies. To assess the clone size
distribution of small clones (<104 cells) in E. coli colonies grown
from single cells to ≈109 cells, we adapted the Luria–Delbrück
fluctuation test (42), routinely used to determine spontaneous
rates of resistant mutations in well-mixed populations (43–47),
to structured populations like colonies (Fig. 1). Colonies were
grown on rich nonselective media, scooped up completely after
two days of growth, resuspended, and then plated on selective
plates containing nalidixic acid (Methods). After overnight

growth, the selective plates were imaged, and the number of
resistant colony-forming units (CFUs) was counted (Methods).

The resulting distribution exhibits a decay that resembles
the classic Luria–Delbrück distribution typical of well-mixed
populations (dashed blue line in Fig. 1), in contrast to the
distribution of large mutant clones (>105 cells) previously
observed in similar colonies of the same strain via population
sequencing (dashed red line) (37). Indeed, a comparison of the
clone size distribution prefactors between colonies and well-
mixed populations from sequencing data had previously hinted
at the necessary presence of a different distribution regime at
very low frequencies (37). In the following, we investigate the
physical origin of these low-frequency clones and characterize
their statistics.

Clone Tracking Experiments on Microfluidics. Because in
colonies, cell replication is primarily limited to the region near the
expanding front, called the “growth layer” (23, 49), most genetic
mutations likely occur in this region. In order to visualize the
emergence and dynamics of clones over several generations in a
well-controlled environment, we designed an in vitro growth
layer using a microfluidic chamber inoculated with a newly
engineered color-switching budding yeast strain (Fig. 2 A and
B and Methods). In the chamber, whose design is inspired
by previous studies (50–54), all cells grow at the same rate
(SI Appendix, Fig. S4) and are continuously pushed out as the
cells in front proliferate, mimicking the mechanical interactions
between cells at the growing edge of a colony in its comoving
frame. By pinning the position of the population front, the device
enables tracking the growth layer at single-cell resolution for up
to 4 d (Fig. 2 A and B and Methods).

To quantify the dynamics of clones stemming from a single
mutational event, we conducted lineage tracking experiments
(Methods and SI Appendix, Fig. S3). Since the switch can occur
only at cell division, is inheritable, and does not measurably
change the growth rate (SI Appendix, Fig. S5), it effectively
behaves like a neutral mutation, whose position and growth can
be visually tracked with fluorescent microscopy.

During the course of the experiment, we observed both surfing
clones, which are born at the very front, as well as nonsurfing
clones, which are born behind the front (Fig. 2B). Surfing events,
which have been previously investigated (37), occur rarely and
generate very large clones (102 to 103 cells each) by letting clones
stay at the front for some time. By contrast, nonsurfing clones
cannot reach sizes larger than 100 cells and exhibit completely
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Fig. 1. Fluctuation test in bacterial colonies reveals a distinct clone size distribution at low frequencies. (A) Fluctuation test on 234 E. coli colonies that were
grown for 2 d, completely harvested, and then plated on nalidixic acid. The size of clones corresponding to resistant mutations was determined by counting the
number of CFUs on selective plates. (B) Fraction of the sampled colonies carrying at least n resistant mutants (red solid line) in comparison with the well-mixed
control (blue solid lines). The blue dashed line corresponds to the classic Luria–Delbrück distribution for well-mixed populations (n−1) (48), while the red dashed
line corresponds to large clones found in colonies n−2/5 and n−4 regimes, corresponding to so-called “bubble” and “sector” patterns that were previously
characterized (37).
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Fig. 2. Our microfluidic incubator enables the tracking of front dynamics over several generations. (A and B) Schematic and snapshot of microfluidic
experiments. Cellular growth within the chamber models the comoving frame of the growth layer in an expanding colony. Nutrients are supplied from
both the top and bottom of the chamber by diffusion so that all cells grow at a uniform rate (SI Appendix, Fig. S4). Cells out of the growth layer are flushed away
by continuous media flow. (C) Proportion of color-switched cells whose final clone size is greater than n, where the area is used as a proxy for clone size. The
different lines indicate experimental replicas with, respectively, 45 (blue), 64 (green), 150 (red), and 245 (cyan) mutant clones. (D) Relationship between final
clone size and distance from the front at which such clone arose. The colors are as in panel (C). The black line corresponds to �/1, where � is the size of the
chamber and 1 is the distance from the front.

distinct dynamics. Using clone area as a proxy for size, we
obtained the clone size distribution by tracking nonsurfing clones
for 19–50 h. The resulting distribution (Fig. 2C ) exhibits a power
law decay in agreement with the fluctuation test experiments
(Fig. 1B).

The time resolution of this experiment enables us to go beyond
the clones’ ensemble behavior and to track the dynamics of the
individual clones. Remarkably, we find that clone size is inversely
proportional to the birth position of the first mutant (Fig. 2D).
This straightforward relationship, despite the complexities of real
cellular populations such as cell death, aging of mothers, and
feedback of mechanical pressures on growth rate, suggests that a
simple physical process may underlie low-frequency clones.

Mechanical Simulations. To gain an intuition into whether the
physical growth process alone is sufficient to generate the clone
size behavior observed in Fig. 2, we employed 2D mechanical
simulations where individually modeled cells proliferate and repel
each other upon contact (Methods)(35, 55). We introduced an
explicit growth layer of finite depth λ within which cells of width
σ grow exponentially at a uniform rate (Fig. 3A). Beyond the
growth layer, cells are considered to be in the bulk and stop
growing. We represented proliferation via budding to mimic our
microfluidic budding yeast experiments (Fig. 2).

The clone size distribution obtained from simulations exhibits
two regimes (Fig. 3B): Very small clones (n . λ/σ in
SI Appendix, Fig. S1) follow n−1 while larger clones follow a
shallower power law in quantitative agreement with the allele
surfing prediction (37). Small clones correspond to mutations
originating behind the front whereas large clones correspond to

mutations originating at the front. When looking at clones arising
behind the front, we find that clone size decreases monotonically
with the birth position of the first mutant (Fig. 3C ).

These results (Fig. 3 B and C ) agree quantitatively with
microfluidic experiments (Fig. 2 C and D), showing that the
physical process of population expansion is indeed sufficient to
generate the n−1 low-frequency clone distribution. To further
investigate whether clone sizes are dependent on cell-level details,
we altered the rules of bud site selection in budding cells and also
performed simulations of elongated cells (SI Appendix, Fig. S7).
In both cases, low-frequency clones decay as n−1, suggesting
that these underlying phenomena may be described by a simple
continuum mathematical model.

Crowding Model of Nonsurfing Clones. To uncover the physical
mechanisms underlying nonsurfing clones, we developed a
mathematical model that describes what we observe in the
microfluidic experiments and simulations. As in the simulations,
we assumed that the growth rate is uniform within a distance λ
of the expanding front and zero otherwise. We describe clones in
a reference frame that is comoving with the expanding front so
that rather than accumulating at the edge of the colony, cells are
washed out toward the colony bulk (Fig. 3 C , inset). A mutant
of infinitesimal size δn0 born at a distance 1 from the front
will grow until it is pushed out of the growth layer by excluded-
volume effects from the cells proliferating in front. This happens
when the cells in front of the clone have grown to size λ to fill the
growth layer. Because growth is constant within the growth layer,
the mutant will grow by the same relative amount as the layers of
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Fig. 3. Cell-based simulations show different behaviors between surfing and nonsurfing clones. (A) Illustration of the mechanical simulations. Cells lying in
the growth layer, defined as the region within a distance 1 < � from the front (the dark purple region with the dashed line showing the back of the growth
layer), replicate exponentially. In this image, � = 14 cell widths (about 50 µm). As growth proceeds, the front moves at a constant speed, and cells behind the
front are continuously pushed out of the growth layer by replicating cells in front due to excluded-volume interactions. Mutations can either occur at the very
front (red cells) generating a surfing clone or behind the front (blue cells) generating nonsurfing clones that are quickly washed out of the growth layer. Clonal
dynamics are shown for the first 20 generations of cellular growth. (B) The full clone distribution (solid black line) can be subdivided into the size distribution
of surfing clones (red dotted line), which dominate the high-frequency tail of the distribution, and nonsurfing clones (blue dotted line), which dominate the
low-frequency behavior. The dashed black line shows the n−1 prediction. (C) Scatter-plot identifying for each clone (blue dot) the distance from the front at
which the mutation first arose and the final clone size upon exiting the growth layer. Surfing clones are by definition clones that arose within 1-cell distance
from the front. Nonsurfing clones are found to satisfy the relationship n = �/1, rationalized in Eq. 1 (dashed black line). The inset shows the dynamics of the
blue clone a short time (<1 generation) after birth in the reference frame of the front. This clone is born at distance 1 = 7 cells from the front and grows to a
size of n = 2.

cells in front, reaching a final size δn = λ
1
δn0. By extending this

infinitesimal relation to mutant clones with n0 = 1 cell at the
onset of mutation, we have the prediction (SI Appendix, section 1
for finite-size analysis)

n ≈
λ

1
, [1]

in agreement with cell-based mechanical simulations (Fig. 3B).
Eq. 1 translates into a prediction for the clone size distribution

when combined with the probability of observing a mutation at
distance 1. If we assume that the mutation rate is proportional
to the growth rate, the probability that a mutation will occur at
1 < λ is P(1) = λ−1. Then, the probability of observing a
clone of size n is

P(n) = P(1)× |d1/dn| = λ−1
× λ/n2 = n−2, [2]

corresponding to a cumulative clone size distribution of P(Clone
size > n) = 1/n.

This prediction rests on the assumptions that clone size (n) is
infinitesimal compared to the growth layer depth (λ/σ ) and that
cellular growth rate is uniform within the growth layer. We show
in SI Appendix, section 1 that Eq. 1 is robust for finite clones
up to n = λ/σ , corresponding to mutants born one cell behind
the front, which is verified by both microfluidic experiments
(SI Appendix, Fig. S6) and cell-based simulations (SI Appendix,
Fig. S1). Additionally, in SI Appendix, section 2, we show that

our prediction also holds in the case of nonuniform growth inside
the growth layer, which we verify via simulations (SI Appendix,
Fig. S9).

Reconstruction of Clone Size Distribution from Subsamples.
By characterizing the behavior of low-frequency mutations, a
complete picture of the clone size distribution in crowded
expanding populations can now be assessed over the entire
frequency range. The full distribution (black line in Fig. 4)
exhibits three distinct regimes (gray shades in Fig. 4): two regimes
for surfing clones that were previously characterized (37) and one
regime for nonsurfing clones at low frequencies characterized in
this paper. Using random population sequencing, one can capture
the complete distribution only by sequencing unrealistically
deeply (over 105X coverage). With a typical coverage (10 to
100X), population sequencing is likely able to assess only the
high-frequency regimes (37) (red line in Fig. 4A) and misses the
nonsurfing bubble behavior that accounts for most of the genetic
diversity. However, other sampling strategies can be chosen to
take advantage of the spatial proximity of cells that are closely
related, a practice that is becoming increasingly frequent in cancer
research (40, 41, 56–60). We find that sampling all cells in a
small contiguous region of the colony is capable of detecting
nonsurfing clones (magenta line in Fig. 4A) or the transition
between nonsurfing and surfing clones (cyan line in Fig. 4A).
The data from these contiguous regions can be appropriately
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Fig. 4. Results from multiple sampling strategies can be combined to infer the mutation rate and growth dynamic of the population. (A) Different sampling
methods generate distinct clone frequency distributions that highlight distinct properties of the growth dynamics. This is in stark contrast with well-mixed
populations where the sampling scheme merely affects how well the clone frequency distribution can be resolved. The solid black line shows the clone
frequency distribution (clone size divided by population size) of the whole simulated colony (growth layer �/� = 14 cells) grown up to 106 cells. We identify
three frequency f ranges in the site frequency spectrum: i) for f < (�/�)/N, the distribution is dominated by nonsurfing clones; ii) for (�/�)/N < f < 0.003,
allele surfing dominates generating bubbles and sectors as previously described; iii) for f > 0.003, we see a third behavior, generated by mutations that arise
in the first few generations, when the whole microcolony is growing exponentially (N < �(��)2). The grayscale regions correspond to nonsurfing bubbles (light
gray), surfing bubbles (intermediate gray), and sectors (darkest gray). Sampling 0.1% of the population (equivalent to a 1000X coverage in sequencing) can
target nonsurfing small clones and generate their corresponding distribution (middle, magenta) or high-frequency surfing clones (random, red). Sampling an
outer segment generates a shifted distribution where distinct trends can be observed. (B) These sampling techniques can be combined to reproduce the entire
clone size distribution. The rescaling used here requires only knowledge of the total number of cells in the colony and the size/shape of the sampled region, as
described in SI Appendix, section 8.

rescaled (Fig. 4B,Methods for rescaling details) in order to recover
the complete behavior of the clone size distribution. The local
spatial distribution of mutations can therefore be used to identify
nonhomogeneous growth in the population by sequencing well-
chosen subsamples.

Discussion

A single resistant cell can seed an entirely new resistant population
following an antimicrobial attack. To predict the chances of
success of a drug therapy, it is therefore crucial to assess not
just the high-frequency mutations but also the rare ones present
in small clones after the incubation period. In well-mixed
populations, the probability that a mutation carried by at least
a frequency n is 1/n across the entire frequency range. Allele
surfing, a hallmark of spatial growth, has been shown to give rise
to a different probability distribution characterized by an excess
of mutational jackpot events (37). Here, we have shown that,
while allele surfing can explain the behavior of large clones, it
fails to describe the majority of mutations that reach much lower
frequencies.

Crowded growth in dense populations leads to clones whose
final size is determined not by when but where a mutation
first arose relative to the expanding front. Large surfing clones,
which are well described by the surface growth properties of the
population, arise at the very front of the expanding edge (49).
However, most mutations occur behind the front, are pushed
into the population bulk by proliferating cells near the front,
and reach only small final clone sizes. This process leads to a
reproducible relationship between the final clone size and the
initial position of the first mutant cell, generating a clone size
distribution different from that of surfing clones.

Because clone size is only determined by the relative position
to the front, our argument to derive the full distribution is not
limited to two-dimensional colonies expanding at the outer edge
but can be applied to a broader class of populations. Theoretical
analysis predicts that these results hold in any system where i)

growth rate varies only along the direction of expansion, ii) a
reference frame exists where the growth profile is constant over
time, and iii) the mutation rate per generation is proportional to
the growth rate (SI Appendix, section 1). Under these conditions,
the clone size distribution describing small clones decays like
n−1 up to a critical size that depends only on the growth layer
depth but is independent of the number of dimensions (circular
colonies vs. solid tumors) or mode of proliferation (budding vs.
symmetric division—SI Appendix, Fig. S7), demonstrating the
robustness of the distribution.

Our theoretical model enables us to make predictions in
some evolutionary scenarios that are more complex than that
investigated in this paper. For instance, we predict modifications
of the n−1 power law behavior in cases where mutations
confer selective effects (SI Appendix, sections 3–4 and simulation
confirmation in SI Appendix, Fig. S8) and where cell death
induces a decoupling of mutation and growth rates (SI Appendix,
section 6).

We also expect deviations from the n−1 prediction to occur
when our model assumptions break down. For instance, our
model assumes that the growth rate is time-independent in the
frame comoving with the front. This holds for a uniformly
growing population, as well as an expanding colony once the
growth layer has stabilized (SI Appendix, section 2). The time-
independence assumption breaks, however, during the transition
from uniform growth to a spatially varying but temporally
constant growth rate profile. Additionally, our model assumes
that cell motion within the growth layer of the colony is
purely in the expansion direction, which could break down if
long-range collective motion is created via cell motility. Lastly,
our model assumes that cell mutation rate is proportional to
cell growth rate, which could break down if cells within the
colony are stressed and therefore more likely to incur mutations.
In such cases, genetic diversity will likely deviate from our
predictions, which may be captured by incorporating a spatially
varying mutation rate in the model described in SI Appendix,
section 2.
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As the population expands, the majority of mutations are left
behind in the bulk, forming a reservoir of genetic diversity in
the population. In a typical microbial colony with a growth layer
of approximately 100 cells, these mutations would account for
more than 99% of the genetic diversity. Analogously, in a solid
tumor, they would be responsible for the vast majority of the
intratumor heterogeneity, while being largely undetectable by
population sequencing. As this class of nonsurfing mutations is
the most abundant, it is likely to harbor those rare mutations that
can confer resistance. Upon environmental changes that kill the
surrounding wild-type cells, for example, due to chemotherapy,
these mutants are competitively released (37) and might rescue
the population from extinction if cells in the bulk remain
viable (61). In the case that cells in the bulk undergo necrosis
as can occur in tumors lacking vasculature, we would expect
the n−1 prediction to still hold, but the extent to which these
mutants are able to rescue a population would depend on how
susceptible cells are to necrosis. High-resolution spatiotemporal
studies of rare variants inside tumors would be key to exploring
the likelihood of the competitive release scenario.

In well-mixed populations, the detection power is limited by
the sequencing coverage one can afford. Still, because the clone
size distribution is characterized by a single process across the
full range of frequencies, it is possible to estimate mutation rates
and selection effects using a reasonable depth of sequencing.
Here, we have shown that this procedure cannot be applied to
crowded populations growing in space since the shape of the
clone size distribution is controlled by very different processes
at low and high frequencies. A way around this problem
consists in exploiting the spatial arrangement of the population.
Neighboring cells are likely to be more closely related than cells
farther apart, therefore concentrating sampling power to one
or a few locations in the population could reach deeper into the
low-frequency regime and measure important population genetic
parameters like the mutation rate (SI Appendix, section 7) and
selection effects (SI Appendix, sections 3–4).

In the context of cancer, where there are active debates on
how to distinguish selection from neutral evolution (62, 63), our
findings highlight the additional challenge of distinguishing se-
lection effects from nonuniform growth that is exclusively driven
by spatial constraints. Recent work has recognized similar effects
in experiments and simulations, proposing phenomenological
models of the tumorogenic evolutionary process (9, 16, 41, 64).
Here, we offer a microscopic physical model of evolutionary dy-
namics, which is consistent with the patterns of genetic diversity
in solid tumors n−1 distribution in (9, 41) and flexible enough
to provide insight into the effects that different evolutionary and
demographic processes have on the statistics of rare mutants. By
taking advantage of the spatial proximity of closely related cells,
this model offers rational sampling strategies for probing clone
size distributions that can be useful for characterizing intratumor
heterogeneity in cancer research (56–60). These results can better
characterize the growth dynamics of tumors, which can be used
to more precisely identify signatures of selection.

Materials and Methods

Fluctuation Test in E. coli. The mutator strain mutT of the bacterium E. coli
was used for the fluctuation test experiment on nalidixic acid. The spontaneous
mutation rate in this strain was estimated to be approximately 2 · 10−7 per
generation from the fluctuation test in the well-mixed control, which is consistent
with previously reported values (65). Colonies starting from single cells were
grown on plates with LB and 2% agar at 37 ◦C for 30 h up to a population size

between 108 and 5 ·108 cells. Each of the 234 colonies was completely scooped
from the plate with a pipette tip and resuspended in PBS. A 100X dilution of
the resuspension was stored in the fridge for further analysis, while the rest was
plated on selective plates containing LB, 2% agar, and 30 µg/mL of nalidixic
acid for CFU count. The selective plates were incubated overnight at 37 ◦C and
imaged the following day. The CFU count was determined semimanually with
a built-in ImageJ function (below). If selective plates exhibited more than 400
CFUs, the set-aside 100X dilution was itself plated on nalidixic acid, incubated
overnight, and imaged the following day to better estimate the size of large
mutations. In the control experiment under a well-mixed condition, populations
were started from about 50 cells in 200 µL of LB and incubated on a table-top
shaker overnight up to saturation. The final population size was estimated to
be between 108 and 109. Each of the 178 well-mixed populations was treated
similarly as described above.

Colony Counting on Plates. Images of colonies on plates were thresholded
and binarized using ImageJ. Thresholding was done manually for each image
to minimize the effect of noise, such as dust particles, smudges, or glares.
Colonies near the rim of the plates were excluded to avoid an edge effect. Colony
counting was done automatically with the Analyze particles function of ImageJ.
The final clone size of the well-mixed populations control was rescaled by 10 to
take into account the different final population sizes and to better visualize the
comparison with the data from colonies.

Mechanical Simulations. Cells are modeled as 2D rigidly attached disks of
width σ that proliferate via budding. Upon division, cells divide in polarly, with
newly formed buds retaining the orientation of their mothers. Cells interact
with each other upon contact via purely repulsive elastic forces and move
via overdamped Stokesian dynamics (35). To mimic the diffusion of nutrients
into the population from the exterior, we allow only cells within a distance
λ from the front to actively grow while the rest of the population remains
in the stationary phase. In order to simulate a flat geometry, we impose
periodic boundary conditions in the horizontal direction so that the population
expands outward only in the vertical direction. To calculate the frequency of
neutral mutations, we periodically label 40, 000 newly born cells and track
their descendants.

Fabrication of Microfluidics. The microfluidics was fabricated by soft lithog-
raphy (66). The master mold was made by spin-coating (CEE 100 spin
coater, Brewer Science) a 10-µm-thick layer of negative photoresist (SU8-2010,
MicroChem) on a silicon wafer (WaferNet). The photoresist was patterned by
photolithography on a mask aligner (Hybralign 200, OAI) through a chrome
photomask (Compugraphics). The thickness of the pattern was measured by a
stylus meter (Dektak3030, Bruker). Polydimethylsiloxane (PDMS, Sylgard 184,
Dow Corning) was mixed with the crosslinker in 10-to-1 ratio and poured on
the mold. After being cured at 60 ◦C overnight, the PDMS was peeled off from
the mold and punched holes in for inlets and outlets. The chip was bonded to
a glass coverslip after O2 plasma treatment by a reactive ion etcher (Plasma
Equipment Technical Services). Prior to cell culture, 0.1% bovine serum albumin
(Sigma-Aldrich) was loaded into the device to reduce the interaction between
cells and the substrate.

Yeast Strain. The microfluidics experiments were conducted with the S.
cerevisiae strain yJK10, derived from strain yDM117 (courtesy of Jasper Rine,
University of California, Berkeley). yJK10 employs a Cre-loxP recombination
system to switch stochastically from a red (yEmRFP) to a green (yEGFP) fluorescent
state, as previously published (37, 67). Using an estradiol-inducible Cre construct
allowed us to optimize the average switching rate for our experiments (68). For
all experiments, we used a concentration of 1.6 nM β -estradiol corresponding
to a switching rate of 7.1 ± 4.8 × 10−4 per cell per generation (estimated
from the number of observed switching during the microfluidics experiments).
In principle, the relative fitness between switched and unswitched cells can
be set via the differing cycloheximide susceptibility of both states. However,
while we did not perform any variation of relative fitness in this study, we
chose to use yJK10 to maximize the comparability of our results to ongoing and
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future investigations involving this strain. Under our experimental condition,
the relative fitness between the two states (s = 0.022± 0.040) is sufficiently
small to be neglected (SI Appendix, Fig. S5). SI Appendix, section 4 for the effect
of nonzero s on the power law exponent of the distribution of clone size.

Clone Tracking in Microfluidics. The microfluidic growth chamber was
designed as a population version of the mother machine (54). A suspension
of yJK10 cells in an exponential phase was injected into the device with YPD
culture medium. After overnight culture, cells grew and filled up the growth
chamber. At this point, 1.6 nM β -estradiol was added to the culture medium
to induce color switching (the switching rate was about 10−3 per cell division).
Subsequent growth was imaged using time-lapse microscopy on an inverted
microscope (IX81, Olympus) with a 10X objective every 10 min for 2 to 4 d. The
taken GFP images (color of switched cells) were binarized by Otsu’s method (69),
and the dynamics of the clones were manually tracked on Matlab (Mathworks)
and ImageJ (NIH). Throughout the experiment, the temperature was controlled
at 30 ◦C by a microscope incubator (H201-T, Okolab), and the flow rate of the
medium was regulated by syringe pumps (neMESYS, CETONI) at 15 µL/h. The
growth rate of cells was uniform across the chamber under our experimental
condition (SI Appendix, Fig. S4) (70).

Data, Materials, and Software Availability. Codes in FORTRAN and Matlab,
CAD blueprints for microfluidics, and experimental pictures and movies are
available on GitHub at https://github.com/Hallatscheklab/Impact-Crowding-
Diversity.
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