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How does neural activity drive muscles to produce behavior? The recent development
of genetic lines in Hydra that allow complete calcium imaging of both neuronal and
muscle activity, as well as systematic machine learning quantification of behaviors,
makes this small cnidarian an ideal model system to understand and model the
complete transformation from neural firing to body movements. To achieve this,
we have built a neuromechanical model of Hydra’s fluid-filled hydrostatic skeleton,
showing how drive by neuronal activity activates distinct patterns of muscle activity
and body column biomechanics. Our model is based on experimental measurements
of neuronal and muscle activity and assumes gap junctional coupling among muscle
cells and calcium-dependent force generation by muscles. With these assumptions,
we can robustly reproduce a basic set of Hydra’s behaviors. We can further explain
puzzling experimental observations, including the dual timescale kinetics observed
in muscle activation and the engagement of ectodermal and endodermal muscles in
different behaviors. This work delineates the spatiotemporal control space of Hydra
movement and can serve as a template for future efforts to systematically decipher the
transformations in the neural basis of behavior.
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To generate behaviors, neural activity is transformed through the biomechanics of the
body. There have been exciting developments of predictive models that incorporate
musculoskeletal dynamics in an array of vertebrate and invertebrate animals (1–5),
including humans (6, 7). Neuromechanical approaches have been taken to describe
the movements of C. elegans (8–13), larval Drosophila (14–16), and leech (17, 18), which
all act as muscular hydrostats. In cnidarians, a 2D model of the medusa form of jellyfish
Aurelia aurita neuronal network and muscles simulates swimming and turning behaviors
(19). In octopus, Yekutieli et al. have simulated the biomechanics and control of reaching
movements (20, 21). However, generally, these models are limited in their completeness
by the inability to observe the system in its entirety, with simultaneous spatiotemporal
patterns of neural activity, muscular activation, and whole animal behavior.

Small model systems pose the opportunity to develop relatively complete models of
the transformations from neural activity to behavior, taking into account not only the
biomechanics of the body but also the biophysics of muscle activation. As an active
medium, muscle tissue has its own dynamics that can contribute significantly to this
transformation. The small freshwater cnidarian Hydra offers a unique inroad into this
problem. Along with Hydra’s simple body structure, recently developed genetic lines
now allow the direct imaging of calcium-based activity in both neurons (22, 23) and
muscle cells (24, 25) during behavior. This system thus presents an opportunity to
account for the transformation from neural firing to behavior by modeling both body
and active muscle dynamics, which determine how neural activation mediates behavioral
outputs.

Anatomy and Behaviors of Hydra.Hydra’s anatomy is that of a fluid-filled body column
consisting of two body layers, the ectodermal and endodermal epithelia, separated and
supported by an acellular gelatinous layer, the mesoglea (Fig. 1) (26–28). The epithelial
layers consist of a sheet of epitheliomuscular cells, innervated by separate nerve nets (22).
The ectodermal and endodermal epitheliomuscular cells respectively display longitudinal
and circumferential processes called myonemes, producing contractions oriented in
corresponding directions (26). These layers, together with the enclosed fluid, form a
hydrostatic skeleton in which the force of muscle contraction is transmitted throughout
the body column by internal pressure (29).
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Fig. 1. Simplified Hydra anatomy, adapted from ref. 28.

Movement in Hydra is controlled by a diffuse nerve net.
Early cnidarians are believed to have acquired one of the first
nervous systems (30, 31). Their descendant Hydra’s uncoupled
ectodermal and endodermal nerve nets (32) lack a centralized
“brain” or ganglia, yet their firing activity underlies a rich
repertoire of behaviors. These include contraction bursts, active
elongation, nodding, bending, and two forms of locomotion
(24, 33–37). However, how neural activity drives behavior is
not understood. Early extracellular recordings identified several
distinct electrical events in Hydra: contraction bursts (CB),
rhythmic potentials (RP), and prelocomotion bursts (PLB)
(35, 36, 38, 39). Recent work has clearly identified three separate
functional nerve subnetworks responsible for these electrical
events (22). However, only one of these, the contraction burst
(CB) network, is directly correlated with a motor output, namely
whole-body contraction (22). What causes the CB nerve net to
fire is still not known, although its frequency is influenced by
environmental conditions including osmolarity (25, 40–47) and
temperature (48), as well as microbes (49, 50). Aside from the
CB, the precise association of neural activity with behavior has
not yet been mapped out.

Neural Control of Behavior in Hydra. At what length scale and
with what precision does the firing of nerve cells influence
movement? These factors depend on how activation is conveyed
through muscles and how the resulting network of muscular
contractions interacts with the biomechanics of the body. Due
to gap junctional coupling (51, 52), the epitheliomuscular
network is able to propagate excitation (35, 53–55) even when
Hydra’s nerve cells have been removed (56, 57). Several studies
have suggested that contraction pulses can be conducted by the
epithelium in Hydra (53, 54, 58–60); conduction in nerve-free
epithelia has also been demonstrated in other hydrozoans such
as Siphonophores, Sarsia, and Euphysa (61, 62). By imaging
calcium signals in the endodermal and ectodermal epithelial
layers, Szymanski and Yuste (24) reported two distinct forms
of muscle layer activation: a rapid global activation that drives
whole-body contraction, and slow waves of local activation,
including body column waves, that initiate anywhere in the body
column, and bending waves, initiating in a region of the peduncle
and that correlate with bending.

Furthermore, as noted, Hydra has a fluid hydrostatic skeleton,
and its endodermal and ectodermal muscle fibers are oriented
in orthogonal directions. One would expect, therefore, that
contraction is effected by activating the longitudinal ectodermal
layer, while extension is due to activation of the circumferentially

oriented endodermal muscles. However, Szymanski and Yuste
(24) showed, counterintuitively, that the two muscle layers
activate together during contraction bursts, despite the fact that
the CB neural network is localized to the ectoderm, and that
this activation would presumably cause the muscle layers to act
against one another during contraction. How can we account
for the generation and transformation of this activation pattern
into the observed behavior? All of these observations suggest that
the dynamics of the muscle layer itself form an important and
nontrivial component of the transformation from nerve firing to
behavior.

Here, we construct a model of Hydra that includes sufficient
biophysical and biomechanical detail to simulate the complete
transformation from measured neural activity to muscle activity
to behavior. We aimed to address the following specific questions:
i) What are the mechanisms that support the observed dual
time scales of muscle activation, and how does Hydra use these
different dynamics in behavior? ii) During contraction bursts,
although only neurons in the ectodermal nerve net fire (22),
both muscle layers are activated (24), and thus work against one
another. What explains this dual-layer activation, and how can
body contraction be achieved with opposing muscle drive? iii)
Can we quantitatively reproduce basic behaviors (37), including
contraction, elongation, and bending?

To answer these questions, we implemented a multilayered
model (Fig. 2) to transform neural activity to movement. Our
models are constrained both by observations from calcium
imaging and by the use of physiologically plausible mechanisms
consistent with a recently developed RNAseq database for Hydra
(63). To model calcium dynamics in the epitheliomuscular
cell network, we postulate the coexistence of a fast cellular
electrically mediated pathway and a slow IP3-driven pathway.
We assume that these activation signals are transmitted through
the epithelial layers by gap junctions (64–67). These two
mechanisms permit the coexistence of the fast electrically driven
contractions as well as slow waves responsible for bending; the
model predicts that these dynamics are triggered by distinct
signals. We show that an intermediate level of gap junctional
coupling between the ectodermal and the endodermal epithelium
can share contraction activation between the two muscle layers
but isolate slow wave activity to the ectoderm, consistent
with observation. We next convert calcium dynamics to force
generation. In order to account for Hydra’s movement dynamics,
it was necessary to hypothesize that the relationship between
calcium and force has more persistent dynamics in the endoderm
than in the ectoderm, leading to slower relaxation times for
endodermal muscles. Finally, we convert the simulated epithelial
calcium dynamics to strain, which provides an active force
input into a biomechanical model of the fluid-filled hydrostat.

Ecto
Endo

Nerve Nets Muscle

Neural activity Calcium dynamics Stress Muscle contraction

Behaviors

Fig. 2. Framework of our project. Neural activity patterns trigger calcium
dynamics in the muscle layers, which are transformed into contractile forces
in the longitudinal (ectoderm; green) and circumferential (endoderm; red)
directions, here indicated by the direction of fibers in the muscle layers. This
provides the active force to drive a viscoelastic biomechanical model of the
Hydra body column, simulating behaviors.
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While previous hydrostatic models generally model the body
by actuating longitudinal segments (68), here all forces are
applied in the fluid-enclosing shell. We use this model to show
that the simulated muscle activation, when driven by neural
activity inferred from calcium imaging, can account quantita-
tively for the measured behaviors of contraction, elongation,
and bending.

Results

Slow and Fast Intracellular Calcium Pathways Explain Two
Timescale Dynamics. We first show how the muscle system can
exhibit two activation patterns with distinct timescales. The
mechanisms of muscle activation are rooted in the biophysics
of the single muscle cells and their interactions; thus, we
begin by modeling the intracellular dynamics of a single Hydra
muscle cell.

Muscle contraction is controlled by calcium dynamics, where
calcium elevation has two possible sources: i) IP3-induced Ca2+

release from the endoplasmic reticulum/sarcoplasmic reticulum
(ER/SR) calcium store and ii) Ca2+ influx from the extracellular
space through L-type/T-type calcium channels (69–72). We will
refer to these two calcium signaling pathways as the “slow” and
“fast” pathways respectively, based on their typical time scales.
Both IP3-related calcium release (73) and electrical excitability
(74) are observed in epitheliomuscular cells, and the genes of
the relevant proteins including the IP3 receptor, L-type/T-type
calcium channels, PMCA, SERCA, etc., are present in Hydra’s
genome (Materials and Methods, for details).

Models of smooth muscle frequently treat only one of these
pathways. Some models of calcium signaling consider only the
slow pathway, ignoring membrane ion channels (75–78), while
others consider only the fast pathway, neglecting the dynamics
of the internal calcium stores; examples include models for
uterine smooth muscle (79–83), gastric smooth muscle (84),
urinary bladder smooth muscle (85), and pancreatic β-cells (86).
While some models integrate both pathways by incorporating
both influx through ion channels and Ca2+ release from stores
(64, 67, 87, 88), modeling the two pathways separately and
simulating calcium dynamics at different time scales is rare
(89, 90). However, since calcium imaging in Hydra clearly
reveals dynamics with different time scales short-lasting and fast-
propagated calcium transients in CB; long-lasting, slow calcium
waves in bending and nodding (24), we incorporate the necessary
components for both slow and fast pathways in our model for
Hydra epitheliomuscular cells.

Neurons are believed to connect to and stimulate muscles via
neuropeptides. While electron microscopy (EM) observations
have shown evidence of dense core vesicles in Hydra tissue
(51), these are not associated with the postsynaptic structure
typical of synapses. The neuropeptides Hydra-RFamide and
Hydra-KVamide (expressed in the peduncle region) may play
roles in neuromuscular transmission (92–94). The neuropeptide
Hym-176C can induce ectodermal contraction and is selectively
expressed in ectodermal peduncle neurons (50, 63, 93, 95).
Nonselective cation channels HyNaCs were identified in ep-
itheliomuscular cells, which are directly activated by Hydra-
RFamides I and II and can depolarize the cellular membrane
potential (92, 96). These findings indicate that neural control
may be achieved by the binding of these neuropeptides by
receptors in muscle cells. In our model, we propose that two
different types of neuropeptides trigger the fast and slow Ca2+

pathways, enabling differential control of distinct spatiotemporal

dynamics in the muscle layers, potentially by distinct neurons
(30) (Fig. 3A).

The simulated slow and fast dynamics are shown in Fig. 3 B
and C , respectively. With reasonable choices of parameters, the
timescale of the calcium dynamics triggered in the slow pathway
is much larger than that in the fast pathway, consistent with
the observations from calcium imaging. Sensitivity analysis of
the parameters on the single cellular dynamics is included in
SI Appendix, Figs. S1 and S2. Ca2+ fluxes, and ion current traces
are shown in SI Appendix, Fig. S3.

Muscle Activation Patterns Can Be Simulated by Dual-Function
Coupling through Intercellular Gap Junctions. We next extend
the single-cell model to a multicellular model by incorporating
intercellular communication. We construct a muscle sheet com-
posed of 60× 30 30 μm× 30μm cells, as measured in an example
small Hydra (SI Appendix, Fig. S4), with each cell modeled as
described above. While cell shape varies during contraction, for
modeling simplicity, we neglect this deformation. Neighboring
cells are taken to be electrically coupled, which we assume here

IP3

Ca2+

PMCAGPCR
G protein

activated 
G proteinPLC

IPR

SERCA

CaV

LGIC KV

Voltage

neuropeptide

neuropeptide

endoplasmic reticulum (ER)

Volatge, IP3

Volatge, IP3

Ca2+(ER)

gap junctions

A

B Cslow fast

Fig. 3. Modeled single-cell dynamics. (A) Intracellular calcium signaling
model including two pathways: (i) In the slow pathway (red), neuropeptides
bind a G protein-coupled receptor (GPCR) and activate a G protein, which
activates phospholipase C (PLC) and hydrolyzes phosphatidylinositol bispho-
sphate (PIP2) into inositol 1,4,5-trisphosphate (IP3), which plays a role of
the second messenger for calcium signaling. IP3 can bind to IP3 receptors
(IPR) on the endoplasmic reticulum (ER) membrane and thus cause the
release of Ca2+ from the ER. Ca2+ is extruded to the extracellular space
through plasma membrane Ca2+ ATPase (PMCA) and is recycled to the ER
through sarco/endoplasmic reticulum Ca2+-ATPase (SERCA) (30, 91). (ii) The
fast pathway (blue) is initiated by the binding of neuropeptides on ionotropic
receptors, which activate ligand-gated ion channels (LGIC) and depolarize
the cellular membrane (92). The elevated membrane potential activates
calcium channels (L-type/T-type), triggering a large influx of Ca2+ from the
extracellular space and invoking further depolarization. Meanwhile, the high
membrane potential inactivates calcium channels and activates potassium
channels, resulting in membrane repolarization (71). (B) Simulated slow
dynamics showing change of Ca2+ and IP3 concentrations. (C) Simulated fast
dynamics showing change of membrane potential and Ca2+ concentration.
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to be via gap junctions. Gap junctions have been observed in
EM studies (32) both between cells in the same layer and also
penetrating the mesoglea to connect the ectoderm and endoderm
(32, 52, 97). Further, single-cell RNA sequence analysis in
Hydra shows multiple innexin types in both epithelial cells and
neurons (63).

Junctions between cells, including gap junctions, propagate
signals by i) allowing the diffusion of Ca2+ as well as sec-
ond messengers like IP3 and ii) conducting electrical signals
(55, 98, 99). We hypothesize that the two different observed
forms of wave propagation in Hydra (slow waves and fast
calcium synchronization) both occur through different epithelial
activation patterns. In other systems, the propagation of IP3,
but not Ca2+ which is generally so heavily buffered that its
effective intercellular diffusion is negligible (64, 65, 91, 100),
through junctional coupling is believed to be the primary trigger
of slow intercellular calcium waves (ICW) (65, 101–105), whose
propagation timescale is thus driven by diffusion. The fast wave
of calcium synchronization has generally been modeled through
electrical conduction by gap junctions (87, 106, 107). Given the
prevalence of gap junctional innexin genes in theHydra genome
(63), we will for simplicity here assume that muscle cells are
coupled gap junctionally.

Based on this setting, we simulate several different muscle
activation patterns, by assuming the necessary neural stimulation
for each pattern and applying it to trigger specific muscle cells
directly:

Body-column wave. We hypothesize that the body-column waves
are initiated at neuromuscular junctions at which neurons release
a neuropeptide that locally triggers the slow pathway in muscle
cells randomly located in the body column. To simulate these
waves, we randomly select a small (2 × 2) region of cells in
the sheet and stimulate their slow pathways. The elevated IP3
in the stimulated cells diffuses to the neighboring cells and
triggers the slow dynamics there, resulting in slow calcium
waves propagating through the corresponding local domains.
The example results of the simulation are shown in Fig. 4A.
Bendingwave. A second type of slow wave initiates at the peduncle
and slowly propagates in the oral direction through the ectoderm
(24). This asymmetrical calcium activity in the ectoderm is
believed to cause bending. To simulate the bending wave, we
stimulate the slow pathway in a 4 × 4 cell-patch located in
the peduncle of the ectoderm sheet of our model; propagation
is due as above to gap junctional IP3 diffusion (Fig. 4B). To
obtain a wave as observed in data, it is necessary to assume that
gap junctional coupling is anisotropic, larger longitudinally than
circumferentially (Discussion).
Fast wave (contraction pulse).Hydra’s contraction burst (CB) is
driven by the firing of a unique subnetwork of the ectodermal
nerve net (22) that is distributed across the body but particularly
concentrated in a ring in the peduncle. Each contraction pulse
causes a global calcium synchronization activating all muscle
cells in both ectoderm and endoderm. Measurements in ref. 24
showed that the contraction pulses initiate in the peduncular
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Fig. 4. Modeled multicellular calcium dynamics. (A–C) Simulation of calcium dynamics in a muscle sheet: (A) the body column wave, (B) the bending wave, and
(C) the fast wave. (D and E) [Ca2+]i traces (Left panels, each trace corresponds to a cell) and indices of wavefronts (Right panels, increasing from the Bottom
to the Top) along the center longitudinal line of the muscle sheet: (D) bending wave simulated as occurring simultaneously with a late stage of contraction
bursts, which is commonly observed in experiments (24); (E) fast wave. (F ) Layout of the body column model. Green and red represent the ectodermal and
endodermal layers respectively, in which the myonemes are aligned in longitudinal and circumferential directions respectively, as represented by the fiber
directions. Blue dots represent cross-layer gap junctions. (G–I) Connectivity patterns and calcium patterns of ectoderm (green border) and endoderm (red
border) in simulations with different connectivity ratios, where the ratios are separately 20% (G), 2% (H), and 0.05% (I). In connectivity patterns, each bright spot
represents a gap junctional connection at that position. (J and K) Diagrams show cross-layer propagation for different connection densities of cross-layer gap
junctions. We simulate 20 epochs for each density; we take snapshots at 50 ms and 100 ms after triggering only the fast pathway (J) and 10 s and 25 s after
triggering only the slow pathway (K ) and then average the [Ca2+]i of the whole endoderm, plotting the mean and SD of the 20 epochs for each density at these
time points.
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epithelium and propagate to the rest of the body column. Here,
we assume these neurons to be the primary source of activation
although, as we show later, the distribution of these neurons is not
critical to the dynamics. We initiate the fast wave by simulating
inputs from a ring of neurons in the peduncle onto the connected
muscle cells: We stimulate the fast pathway dynamics in the
bottom row (1× 30) of the ectodermal sheet. Elevated membrane
potentials propagate rapidly to the remainder of the cells via
their electrical coupling, giving global calcium synchronization,
as shown in Fig. 4C .

To quantitatively compare the speed of the simulated waves
with experimental data, we identified the wavefront of the
bending wave in our model as shown in Fig. 4D, from which
the average propagation speed can be calculated as around 0.9
cells/s. The length of our biomechanical model is in the range of
0.6 mm (fully contracted) to 1.7 mm (elongated), based on which
the length of each cell can be calculated as 9.8 μm (contracted)
to 28.8 μm (elongated), so the propagation speed is in the range
of 9 μm/s to 26.5 μm/s. In ref. 24, the propagation speed of the
bending wave was calibrated as 13 ± 0.7 μm/s, which falls in
the range of the simulation. The speed of the fast wavefront is
computed as shown in Fig. 4E , giving 0.7 cells/ms or 6 mm/s
when the model is in the contracted state. This is of the same order
as the propagation speed measured from calcium imaging (4.6 to
5 mm/s) in ref. 24. The dependence of these speeds on choices of
parameters such as stimulation strength, gap junctional coupling
coefficients, and some intracellular parameters is explored in
SI Appendix, (Figs. S5–S7).

Sparse Cross-Layer Gap Junctions Can Explain Synchronous
Fast Wave and Isolated Slow Wave Between Ectoderm and
Endoderm. During a contraction burst, neuronal activity is con-
fined to the ectoderm, indicating that CB neurons are localized
to the ectoderm (22), while both the ectoderm and the endoderm
show an almost-synchronous fast wave of epitheliomuscular
calcium (Fig. 5); in contrast, body column waves and bending
waves are observed only in the ectoderm (24).

We propose that the synchronization of fast waves in the
two layers is due to electrical coupling through cross-layer gap
junctions which have been observed to penetrate the mesoglea:
When cells in the ectoderm are electrically activated, the action
potential can propagate through the gap junction and trigger
activity in the endodermal epithelium. Cross-layer gap junctions
should then also allow a flow of IP3. However, there is no
evidence that slow waves in ectoderm propagate to the endoderm
(24). How can we resolve this? One possibility is that the
epitheliomuscular cells of the endoderm do not have the slow
activation pathway. Another possibility is that the biophysics of
calcium activation is the same, but the physical properties of
coupling can lead to this differential filtering.

We test the idea that physical coupling can explain these
findings, ie., that the ability of global fast waves to cross between

Fig. 5. Recorded fluorescence from calcium imaging showing simultaneous
activation of ectoderm (green) and endoderm (red) during contractions,
shown by computing the corresponding time-varying length (blue) of Hydra.

the muscle layers while local slow waves are blocked is due simply
to the density of cross-layer coupling (Fig. 4F ). By varying the
connectivity ratio (density) of the cross-layer gap junctions in our
model, we indeed found that when the connectivity ratio is high,
both fast and slow waves can propagate between the two layers;
when the ratio is low, neither of the two waves propagates; and
there is an intermediate range in which only the fast wave crosses
the layer (Fig. 4 G–I ).

To further probe the effect of cross-layer gap junction
density on the propagation of transmesoglea calcium waves, we
quantitatively analyzed the relationship between the averaged
calcium concentration of the endodermal muscle sheet and the
connection density, after stimulating the ectodermal muscle cells’
fast (Fig. 4J ) and slow (Fig. 4K ) pathway. As shown, for both
slow and fast waves, a higher connection density of cross-layer
gap junctions allows stronger calcium wave propagation from
the stimulated ectoderm to the endoderm. When the connection
density is very low or very high, the SD is small. In intermediate
ranges, there is considerable variability, depending on the specific
placement of cross-layer connections. Overall, for an intermediate
range of connection densities, only fast waves can cross layers, and
slow waves are limited to the directly stimulated ectodermal layer.

As noted, while it is also possible that the endodermal epithelial
cells lack mechanisms supporting the slow dynamics of the
ectoderm, we will for simplicity use the same single-cell model
for all epithelial cells along with this proposed mechanism for
sharing of muscle activation in subsequent simulations.

Transforming Calcium Dynamics to Muscle Contraction. Given
the modeled calcium dynamics and activation patterns of the
whole-body muscle system, we next compute how they generate
contraction.
Calcium to force. In smooth muscle, a rise of intracellular calcium
concentration [Ca2+]i leads to a rise of calmodulin, leading
to increased activation of MLCK (myosin light-chain kinase),
phosphorylation of myosin, and thus contraction (91). The
Hai–Murphy model of smooth muscle (108) uses four states of
the cross-bridge to simulate the force-production process, where
Ca2+ plays a role in MLCK activation. The Hai–Murphy model
includes the “latch-state” of the cross-bridge, which allows the
maintenance of steady-state stress of muscle even if the Ca2+

concentration has decreased. Modified Hai–Murphy models have
been used to simulate contractions in arteriole (109) and uterine
(82, 110) smooth muscle. In our work, we applied a modified
version of the Hai–Murphy model, following (82) and (110), to
transform [Ca2+]i into active stress.
Force to contraction. To further convert the stress into Hydra
movement, as our final step, we need to construct a model of the
hydrostatic skeleton of Hydra that can simulate the biomechanics
of the body, driven by the transformed stress. We construct our
model using COMSOL Multiphysicsr 5.3a. We approximate
the anatomy ofHydrawith a simplified biomechanical model that
contains two domains: the body shell and the enclosed fluid. The
body shell, which represents the combination of the ectoderm and
endoderm layers and the mesoglea, is composed of a half-spherical
shell at the hypostome and a half-spherical shell at the peduncle,
connected by a uniform body column cylinder shell. COMSOL
automatically generates a physics-controlled mesh by dividing
the model into small finite elements for simulation (Fig. 6A).
The body shell and enclosed fluid together form a hydrostatic
skeleton. In order to manipulate the biomechanical model at
high resolution, we divide the body shell into 10 (radial) by 20
(longitudinal) domains (Fig. 6B).
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A B

C D

E F

Fig. 6. Biomechanical model and simulated behaviors. (A) Finite element
mesh of the biomechanical model generated by COMSOL. (B) Geometry of
the biomechanical model from a side view (Left) and Top view (Right). Gray
represents the muscle shell domain, while the enclosed fluid is shown as
purple. (C–F ) Different behaviors simulated by the model: (C) contraction, (D)
elongation, (E) nodding, and (F ) bending.

While the COMSOL architecture as described handles the
passive biomechanical properties, we apply time-varying active
stresses generated by the output of the calcium signaling models;
the ectodermal model drives longitudinal external stresses, while
the endodermal output drives stress in the circular direction.
We obtain the active stress from the calcium signaling model
as described above and average the stress of neighboring 9 cells,
coarse-graining the original 30 × 60 matrix to fit the 10 × 20
dimensions of the biomechanical model.
Phasic ectoderm and tonic endoderm muscle types simulate the
interplay of contraction and elongation. Calcium measurements
in the ectoderm and endoderm pose two major questions.
How does the observed coactivation of the opposing ectodermal
and endodermal contracting forces result in a total effect of
longitudinal contraction of Hydra, instead of opposing each
other? Further, why do we see no calcium signal in the endoderm
during elongation between contractions (Fig. 5)? Indeed, when
we directly apply the transformed stress from calcium dynamics to
the biomechanical model, the predicted stresses act in opposition,
preventing normal contraction (Movie S2).

As a potential resolution to this conundrum, we propose
that ectoderm and endoderm may exhibit different Ca-stress
relationships. Different muscle properties can be accounted for
within the Hai–Murphy formulation, which can account either
for fast-acting phasic behavior as for “fast” myosin isoforms or
tonic contraction via the latch-bridge mechanism, as for “slow”
isoforms (111). By assuming that the ectoderm is phasic and
endoderm is tonic, and under the hypothesis that ectoderm can
generate a larger maximum stress than that of endoderm inspired
by the observations that the myonemes in ectoderm are longer
than those in endoderm (26), we can successfully simulate the

interplay of contraction and elongation. When CB neurons fire,
both layers are activated, and the ectoderm initially dominates,
driving a longitudinal contraction. When CB firing ceases and
[Ca2+]i drops in both layers, the hypothesized slow dynamics
of the endoderm allow it to maintain the stress longer without
ongoing neuronal stimulation, thus dominating during Hydra’s
elongation phase.

Integration: Simulating the Transformation fromNeural Activ-
ity to Behaviors. With the bottom–up pipeline described above,
we can now simulate the observed behaviors of Hydra, using
different spatiotemporal neural firing patterns to drive muscle
activation.

Fig. 6 C–F shows the model simulation of several typical
behaviors of Hydra. We simulate contraction and elongation as
described above. We simulate bending by stimulating the slow
pathways of a small localized group of ectodermal cells at the
peduncle, which triggers the bending wave as shown in Fig. 4B,
generating local contraction which causes Hydra to bend toward
the stimulated side. This demonstrates that activation of the slow
and fast pathways can coexist without interfering with each other,
as the contraction event in the fast pathway does not saturate
the calcium dynamics. For nodding, a separate nerve net, called
the subtentacular network (22), is found to be correlated with
nodding behavior. Here, we assume that this network simply
stimulates the slow pathways of a small set of ectodermal cells in
the subhypostomal region. This is similar to bending behavior
but with an opposite location. Our model is thus able to generate
a “bending” of the hypostome toward the stimulated side.

Next, we attempt to reproduce naturalistic behavioral se-
quences of Hydra. Left undisturbed, Hydra undergoes repeated
cycles of contraction and elongation, combined with bending.
From videos of the neuronal GCaMPHydra, we extract behavior,
characterized by the animal’s skeletonized body length (Materials
and Methods). We use the integrated GCaMP fluorescence trace
to infer the firing times of the CB neurons (Fig. 7A) and
additionally include sparse triggering times for the bending
waves (Fig. 7B). With this stimulation, we compute the calcium
dynamics underlying fast and slow bending waves in the epithelial
sheets (Fig. 7 C and D); the simulated fluorescence traces
match the observed curves in Fig. 5. After encoding the calcium
concentration into stress (Fig. 7 E and F )), we use it to drive
the biomechanical model, successfully exhibiting a series of
behaviors that mimic the real Hydra (Fig. 7H ). The simulated
length changes show very good quantitative agreement with the
dynamics of contraction and elongation of the animal (Fig. 7G).
An animation of the entire simulation pipeline is provided in
Movie S1 as well as an additional example with a different neural
drive (SI Appendix, Fig. S8).

The fits capture well the form of the “impulse response” of
the length to the neural inputs as well as the total elongation.
This fit is achieved by an appropriate setting of the parameters
of the Hai–Murphy model, as shown in SI Appendix, Fig. S9
A–C, governing the offset in timescales of force generation of the
ectoderm and endoderm. It is also quite sensitive to the relaxation
time constant of the muscle, SI Appendix, Fig. S9D, serving as a
prediction for future experiments.

Discussion

In this work, we have succeeded in implementing a model
framework that predicts behaviors from neural firing patterns.
Here, we review the assumptions, required mechanisms, and
limitations of our model. We began with a biophysical model for
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Fig. 7. Pipeline of the simulation from neural activity to behaviors. (A and B)
NGCaMP fluorescence trace: stars mark estimated times of neural firing (A)
and consequently stimulation times for the model (B). (C and D) Averaged
[Ca2+]i and fluorescence intensities in ectoderm and endoderm (C) and
[Ca2+]i patterns of some moments (D). (E–F ) Averaged active stress in
ectoderm and endoderm (E) and stress patterns of some moments (F ). (G and
H) Comparison between length evolution of the model and from a Hydra (G)
recording and some stills of the final simulated behaviors from the model (H).

single muscle cell dynamics that is grounded in known molecular
mechanisms; we then linked muscle cells into a network via
gap junctional coupling, which successfully simulated multiple-
timescale calcium activation dynamics observed in GCaMP
imaging experiments in Hydra. Such multiple-timescale calcium
signaling has also been observed in arterial smooth muscles
(90). We then used this model to generate active stress to
drive a passive biomechanical model of the body. This model
successfully simulated Hydra behaviors including contraction
bursts, bending, and elongation. These two components together
form a model that can exhibit different behaviors with given
neuronal stimulation and can thus serve as a testbed for reverse-
engineering the neural activity that underlies more complex
Hydra behaviors.

In order to match observed activity and behavior, we raised
and addressed a series of questions. We accounted for the two
distinct time scales of calcium patterns in imaging experiments
by assuming that there are two different calcium pathways
(ionotropic and metabotropic) in each single muscle cell and
then captured the different propagation speeds through the dual
functions (electrical coupling and chemical diffusion) of gap junc-
tions. By assuming sparsely distributed cross-layer gap junctions
between ectoderm and endoderm, we succeeded in producing
synchronized fast waves in the two layers along with the isolation
of slow waves to the ectoderm. To explain how Hydra can
longitudinally contract although the two counteraligned muscle
layers are simultaneously activated, we postulated that muscles

of ectoderm and endoderm have different properties (phasic and
tonic). This further explains how Hydra can elongate with no
apparent endodermal calcium activation (Fig. 5). Putting these
factors together, we successfully simulated cycles of contraction,
elongation, and bending.

Despite this success, there are many details and limitations
that need to be explored further. For instance, how and which
groups of neurons generate activity patterns and transmit these
distinct inputs to the muscle is still unclear. We have considered
a simplified structure of Hydra and neglected the effects of
the surrounding water, whose viscosity and buoyancy may
influence natural behavior (112–114). Furthermore, our model
assumes only feedforward transformations from neural activity
to behaviors although it is likely important to understand how
behavior influences neural firing through mechanosensation and
other forms of sensory feedback.

Electrical Signaling in Nerve Net and Muscle. Our model
addresses the question of whether electrical activity during
contraction bursts is transmitted through the nerve net or the
muscle layer. We propose that hypostomal neurons play a role
in integrating information from the environment: Following a
decision to fire, the signal is propagated through the sparsely
distributed CB nerve subnet to the peduncle ring of motor
neurons, which acts as the primary drive of contraction. This
architecture is supported by the observed propagation of fast
calcium activation from the peduncle toward the oral side (24),
the expression of Hym-176C in the peduncle (93), and the
previous observation that nerve-free Hydra epithelia are capable
of electrical conduction (56).

However, the success of our model supports the proposal that
during contraction, synchronous drive from the nerve net is
supplemented by the electrical coupling property of muscle cells
themselves. The CB neurons are sparsely distributed in the body
column; it is unlikely that the CB neurons directly innervate all
muscle cells although it is possible that each neuron drives a small
group of them. We simulate the case that muscles are electrically
isolated, and small groups receive input from an electrical wave
purely in the nerve net; this leads to slowly growing nodes of
excitation via the slow chemical diffusion of IP3 (Fig. 8). Thus, we
believe that electrical coupling of muscle cells contributes to the
rapid synchronization of calcium activity in the epithelium (115).
The distributed network of CB neurons likely serves to integrate
and generate the contraction activity and may contribute to the
robustness of contraction.

We also demonstrated that sparse electrical coupling between
the muscle layers is a mechanism that can account for the coac-
tivation of longitudinal and circumferential contraction during
contraction bursts. We note that it is also possible that the internal
muscle layer is triggered to contract through mechanosensation in
the interior, caused by the contraction of the outer layer. While it
is counterintuitive for these muscles to activate together, this may

Fig. 8. Modeled calcium activation pattern under sequential stimulation of
the fast pathways of randomly chosen 2 × 2 groups of muscle cells in the
body column with no gap junctional electrical conductance between muscle
cells.
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have a functional role; as suggested in ref. 24, the resulting stresses
on the body may serve to squeeze absorbed water out of the
body walls.

Hydra has two additional known synchronously firing net-
works, the “rhythmic potentials” RP1 and RP2. We have
found no correlation of RP firing with instantaneous length
changes; thus, it is unlikely that the RP networks directly control
muscle contraction. However, it has been suggested that “radial
contraction” behavior is related to RP2 (22). The ectodermal
RP1 nerve net may inhibit CB neurons, therefore suppressing
contraction bursts, as its frequency is inversely proportional to
contraction bursts (22, 38, 116). Previous studies have proposed
a mutual postinhibitory rebound relationship between CB and
RP neurons (117, 118), but the mechanism governing CB and
RP interaction has not yet been identified.

Feedback from Behavior and the Environment. Our model
simulates the transformation from neural activity to behaviors
as a purely feedforward control pipeline, but there are several
ways in which feedback may play a role.

We have not modeled direct feedback from the body to
generation of neural activity. Many previous studies have pos-
tulated that contraction bursts play a role in osmoregulation
(25, 40, 42, 43, 45, 119). EM studies show that intercellular
vacuoles in Hydra tissue may contribute to hyposmotic fluid
formation, so that contraction bursts may regulate the osmotic
pressure by periodically squeezing the fluid from vacuoles to
the enteron (44). Based on these observations, it is reasonable
to assume that periodic neural activity is mediated by osmotic
pressure through mechanosensation (115).

A further source of potential feedback that we have neglected
is that between the state of the animal’s body and the modeled
dynamics. First, diffusion dynamics may be affected. In the
model, we assumed that the speed of IP3 diffusion is faster in
the longitudinal direction than in the circular direction, in order
to account for the different propagation speeds of bending waves
in longitudinal and circular directions, in units of cells per second.
While it is possible that the density of longitudinally oriented gap
junctions may be larger than that of circularly oriented ones, it
is also possible that the propagation speeds in the two directions
are the same, but since bending waves are usually initiated when
Hydra is contracted and cells are squeezed longitudinally, the
diffusive wave may travel through more cells longitudinally than
circumferentially. In order to incorporate this, one would need
to compute the speed of IP3 diffusion as a function of the
local cell shape. Second, we have not incorporated a model of
water absorption, thus neglecting the possible biomechanical
influence of changes in tissue thickness and stiffness due to
variable turgidity.

Implementing feedback between calcium activation in the
muscle layer and the biomechanical model would be very complex
within COMSOL and require considerable engineering effort. In
general, however, accounting for any of these effects is possible
by extending the framework of our model.

BodyPlan Simplicity. Our biomechanical model simplifiesHydra
to a hollow cylinder with two spherical ends. However, Hydra’s
body column deviates from cylindrical, slimming toward the
peduncle. Furthermore, cells across the body are heterogeneous
in size and shape. Recent work indicates that there is variation in
Young’s modulus of the body column and suggests that this
can affect somersaulting behavior (112). Future work could
explore more precisely how the body wall mechanics influence

the transformation of neural signals and muscle forces into
behavior. Further, we do not attempt to model the tentacles,
whose sensory input likely contributes significantly to Hydra’s
movement and whose adhesion to surfaces frequently affects
body movement. Modeling such details will be necessary to
obtain detailed quantitative agreement between the model and
additional aspects of behavior, including the effects of water, that
are present in fully natural 3D behaviors.

Model Fitting and Parameter Selection. Overall, our model
succeeds in qualitatively reproducing observed wavefronts and
dynamics of calcium activation and transforming this into
observed behaviors, showing good quantitative match to body
extension data. While we began with generic formulations of
biomechanics and muscle dynamics, we incorporated minimal
additional mechanisms that account for the set of observations
we aimed to describe. While the result is a fairly complex model,
we have constructed it according to the following principles:

1. Biological plausibility: We have included only parameters for
key mechanisms that plausibly exist in Hydra, determined
through Hydra gene expression; further, the values of those
parameters should be in a physiological reasonable range, de-
termined from related experimental papers and in comparison
with other biophysical models, or from direct measurements
on Hydra.

2. Simplicity: We have included only a minimal set of mecha-
nisms that account for the observed dynamics.

3. Robustness: We avoid selecting parameter values at singular
or exotic points and have confirmed that a reasonable range
of perturbation of the value does not dramatically change the
simulation results.

4. Significance: We focused on a subset of parameters that
play important roles in wave propagation speed and range
(SI Appendix, Figs. S5–S6) and length change (SI Appendix,
Fig. S9). We include all parameters involved in important
dynamics but have focused attention on those that dominate
the macroscopic dynamics and behaviors.

Given this general philosophy, we have built our model using
the following parameters, ordered by decreasing significance for
the focus of our work:

1. Parameters that strongly influence match with recorded
behavior through the mechanics of the muscle layers:
(a) Geometrical parameters, e.g., Hydra’s length, width,

thickness, etc: These parameters are given reasonable
values following the literature (24, 27) and through direct
measurement (SI Appendix, Fig. S4).

(b) Hai–Murphy model parameters: We apply the Hai–
Murphy model as a classic model of the transformation
from calcium concentration to stress. However, to date,
no experiments have directly measured this transforma-
tion inHydra. Therefore, the choice of these parameters is
an assumption and introduces one of our most important
hypotheses—the proposal of phasic and tonic properties
for the ectodermal and endodermal muscle layers. The
parameter values we adopt in the model serve primarily
to differentiate the two layers. We show the effects of
variation of these critical parameters on the simulated
behavior (SI Appendix, Fig. S9 A–C).

(c) Biomechanical parameters describing the material proper-
ties of muscle: Some of these have already been calibrated
in experiments (27) (including Lamé parameters and bulk
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modulus of Hydra’s shell), while others are tuned to lie in
a reasonable range to fit experimental data, in particular,
the relaxation time of muscle (SI Appendix, Fig. S9D).

2. Parameters that determine macroscopic calcium dynamics
(wave propagation speeds/range):
(a) Stimulation strengths (vPLCβ , slow pathway, and Istim,

fast pathway). Through parameter sweeping (SI Appendix,
Fig. S5), we selected values that trigger an effective
calcium dynamics and wave propagation.

(b) Gap junctional coupling coefficients (gc and gIP3 ). It is
intuitive that these parameters play an important role in
determining wave propagation as we assume that both
slow and fast waves propagate through the muscle sheet
through gap junctions. We tested the effects of parameter
values and inhomogeneity on wave propagation (SI Ap-
pendix, Fig. S6), selecting values that fit the imaging data.

3. Parameters of single-cell dynamics: Perturbation of these
values subtly affects simulation results (SI Appendix, Fig. S1).
Parameters of the voltage-dependent channels can influence
details of the electrical current and corresponding Ca wave-
forms, but due to the rapid spread of activation across the
entire body through electrical coupling, these variations have
little to no influence on behavior. The most significant effect
of these parameters is to establish single-cell excitability, influ-
encing how neural firing drives muscle activation. We have set
these parameters in a range that avoids spontaneous muscle
activity, consistent with experiments, and in which neural
inputs drive a rapid (20-ms delay) response. A quite wide range
of parameters is consistent with this behavior (SI Appendix,
Fig. S1). Furthermore, the specific timescale of delay is an
unmeasured property as one cannot yet simultaneously image
both neural and muscle calcium activity, so it is possible that
a different set of parameters may ultimately provide a better
fit. In either case, these settings have no significant effect on
behavior. Other parameters that affect the [Ca2+]i/membrane
potential curve shapes have been discussed above and results
are shown in SI Appendix, Fig. S2.

In bridging from neural firing to behavior, our model
incorporates sufficient biological realism, including the most
significant biomechanical factors, to account for recorded calcium
activity in muscles and to successfully reproduce a basic suite
of behaviors. Our model stands as an important step toward a
complete account of the neural basis of behavior in this model
organism and will serve as a starting point for further work to
capture the full richness of Hydra’s natural behavior.

Materials and Methods
Single-Cell Model. The differential equations that describe the calcium
dynamics in a single cell are shown in Eq. 1,

dC
dt

= JIPR + Jleak − JSERCA − JPMCA + Jin − αICa [1a]

dS
dt

= β(−JIPR − Jleak + JSERCA) [1b]

dP
dt

= vPLCβ − kdegP + Pcoupling [1c]

dV
dt

= −
1

Cm
(ICa + IK + IL + Istim) + Vcoupling, [1d]

where C is the cytosolic Ca2+ concentration; S is the ER Ca2+ concentration;
P is the cytosolic IP3 concentration; and V is the membrane potential. Detailed
expressions of terms and equilibrium conditions are included in SI Appendix;
the corresponding parameters can be found in SI Appendix, Table S1.

Triggering of the slow pathway is simulated by elevating vPLCβ from 0.002
to 1 μM/s for 4 s; triggering of the fast pathway is simulated by a 10-ms current
Istim. Though the dynamics of both fast and slow pathways are formulated with
the same set of equations, one does not interfere with the other when activated—
when only the fast pathway is on, the elevated [Ca2+]i cannot activate IPR alone
with a low [IP3]i; when only the slow pathway is on, since the dynamics is in the
inner cytosol (65, 91), the membrane potential remains subthreshold and the
voltage-gated channels remain inactivated (64). Both slow and fast pathways are
active during the initiation of bending during contraction bursts, but, as shown
in the simulation results, they simply overlap one another, giving a natural
activation pattern and motion.

The sensitivity analysis showing how parameters affect the single cellular
dynamics is included in SI Appendix, Text and Fig. S1, showing the sensitivity
analysis of parameters involved in the slow pathway; SI Appendix, Fig. S2 shows
a phase diagram of how gCa and gK together affect the lag time of action
potential after the stimulation.

Multicellular Model. Each cell is treated as a compartment. To model the role
of gap junctions in propagating electrical signals and diffusing IP3, neighboring
cells within a layer and the cells at the same location in the endoderm and
ectoderm are connected by coupling terms Vcoupling =

∑
k∈neighbors gc

(Vk − V) and Pcoupling =
∑

k∈neighbors gIP3(Pk − P) (incorporated in
Eq. 1). While all neighboring cells within a layer are coupled, cells with the
same indices in the two layers are connected probabilistically, with a defined
connection density as the ratio. The sensitivity analysis showing how parameters
affect the wave propagation is included in SI Appendix, Text and Fig. S5, showing
the effects of stimulation strength; SI Appendix, Fig. S6 shows the effects
of coupling coefficients and SI Appendix, Fig. S7 shows the effects of some
intracellular parameters.

ForceGeneration. We apply the Hai–Murphy model (108) to transform calcium
concentration to force, described by Eq. 2,

dM
dt

= −k1M + k2Mp + k7AM, [2a]

dMp
dt

= k1M− (k2 + k3)Mp + k4AMp, [2b]

dAMp
dt

= k3Mp− (k4 + k5)AMp + k6AM, [2c]

dAM
dt

= k5AMp− (k6 + k7)AM, [2d]

where M, Mp, AMp, and AM represent the ratios of four possible states of the
myoneme, respectively unattached and unphosphorylated (M), unattached and
phosphorylated (Mp), attached and phosphorylated (AMp), as well as attached
and unphosphorylated (AM). The final active stress is Fa = KF(AMp + AM).

The proposed difference between ectoderm and endoderm is reflected by
different parameters of the Hai–Murphy model, primarily represented by the
difference of k7, which is the detachment rate of the “latch-bridge” state of
myoneme: Its value for endoderm (tonic muscle) is set to be much larger than
that for ectoderm (phasic muscle), allowing the endoderm to maintain the
contraction for a longer time than the ectoderm; also, k1 of the endoderm is
more sensitive to calcium concentration than that of the ectoderm, so endoderm
activates more readily.

The values of these parameters can be found in SI Appendix, Table S2. The
match between the length change of the model and Hydra data in Fig. 7G is
primarily achieved by tuning these Hai–Murphy model parameters.

Biomechanics. We build our biomechanical model on COMSOL Multiphysicsr

5.3a, based on the finite-element method. To define the passive properties of
Hydra body, we define the body shell of our model as an incompressible
hyperelastic material which follows a Neo-Hookean model (120). Hyperelastic
materials exhibit a nonlinear stress–strain behavior and can respond elastically
under very large strains (121). Muscle tissues are often well described
(122–124) and modeled (125–127) using hyperelastic properties. The passive
biomechanical properties were mostly modeled based on Hill’s three-element
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model (128). Since biological soft tissues have hyperplasticity or viscoelasticity
(129), we use hyperelastic material parameters to model the Hydra muscle shell
and further incorporated viscoelasticity by including a Kelvin–Voigt model into
the body shell material. For the enclosed fluid, we use the COMSOL simulation
environment’s preset material “Water,” with a moving mesh. The elastic modulus
and viscosity are set based on previous experimental measurements (27). The
interaction between the body shell and enclosed fluid is simulated by the
Fluid-Structure Interaction (FSI) module of COMSOL.

To integrate the biophysical Ca model with the COMSOL-based biomechanical
model, we use the LiveLinkTM for MATLABr extension of COMSOL: We save
the Python simulation results of stress into .csv files and then use MATLAB
to load them and call API of the LiveLink to apply the resulting stress to the
biomechanical model built on COMSOL; finally, we run the biomechanical
simulation on COMSOL.

The parameters used in the COMSOL model are shown in SI Appendix,
Table S3. Our biomechanical settings (represented by Lamé parameters) assume
a 10 kPa elastic modulus and 20 μm shell thickness, which are consistent with
Kücken et al. (46)’s 11 kPa and 20 μm, and do not conflict with the parameters
(4.94 kPa ectodermal, 4.39 kPa endodermal, in the absence of mesoglea)
measured by Carter et al. (27). For simplicity, we treat the muscle shell as
incompressible, without taking its inner vacuoles and water excretion (44) into
specific consideration; thus, we set Poisson’s ratio as 0.499 (not 0.5 for numerical
simulation restriction), rather than 0.25 as in Kücken et al. (46).

Configurations for the COMSOL solver are shown in Table S4. Sensitivity
analysis showing how some pivotal parameters affect the length change of the
biomechanical model during the simulation is shown in SI Appendix, Fig. S9.

Model Constraints: Gene-Expression Database. To validate choices of
biophysical mechanisms including channels, receptors, and pumps, we queried
gene expression databases for proposed components. We identified candidate
genes by FASTA using the NCBI protein database and then used BLAST (130)
to search for these genes in the databases Hydra 2.0 genome, Augustus Gene
Models and Juliano aepLRv2. The Broad Hydra Single-Cell Portal (63) further
allowed us to identify body regions with corresponding gene expression. We
limited ourselves to mechanisms that were consistent with these databases.

Fluorescence Encoding. We adopt a modified SBM model from ref. 131
to simulate fluorescence traces from [Ca2+]i, in which GCaMP6s has five
different binding states depending on how many Ca2+ ions are binding,
and the fluorescence can be produced by all binding states to different extents.
Since fluorescence encoding is independent of our neuromechanical modeling
and we lack single-cellular-level accurate data with which to fit the model,
we roughly tuned the parameters to produce qualitatively reasonable traces
for comparison.

HydraCulturesand Imaging. AllHydra linesweremaintainedat18°Candfed
newly hatched Artemia nauplii two to three times per week. Hydra expressing
the calcium indicator GCaMP6 in the ectoderm of the animal were used for
imaging experiments. We used a modified imaging preparation from ref. 22.
All imaging took place under a ZEISS Axio Zoom.V16 equipped with a Zeiss
AxioCam 506 monochrome camera for fluorescent imaging, a PlanNeoFluar Z
2.3X objective lens, and a GFP fluorescent filter set. The imaging arena consisted
of a microscope slide, 50- to 100-μm spacer, and a coverslip. The use of the spacer
allowed us to keep the animals in focus by preventing motion in the z direction
while still allowing free motion in the x and y directions. Animals were recorded
in the arena for 30 to 60 min at a sampling rate of 4 to 10 frames per second.

Video Analysis. We used image analysis to estimate integrated fluorescence in
the neuronal and muscle GCAMP lines in contrast to single neuron tracking (132)

Contour

Markers

Bisected Contour Segments & Midpoints

Fig. 9. Pipeline of the video analysis.

as well as to accurately characterize Hydra’s body configuration. Acquired movies
were processed using a combination of ImageJ (133), the Icy Imaging software
suite (134), DeepLabCut (135), and custom scripts (136), with a pipeline shown
in Fig. 9. ImageJ was used to adjust the contrast from background noise, which
is essential to accurately extract contours of the Hydra. Noise was reduced using
median filtering (Despeckle plugin). Icy Imaging was then used to extract the
contours of individual frames using the Active Contours plugin. We can then
integrate fluorescence signals within the contour. We then used DeepLabCut to
track 4 reasonably well-identified body locations: the center of the hypostome,
the center of the peduncle, and the points of intersection of the leftmost and
rightmost tentacles with the body column (the “armpits”). The tracked “armpits”
from DeepLabCut were used to exclude the tentacles from the Icy contour. We
then used the peduncle to bisect the contour and proportionally segment the two
contour halves. Connecting the midpoints of the segmentation points allowed
us to extract the curved midline of the Hydra body in each frame.

Model Reduction. While all of the parameters included in our model are based
on previous work and lie within physiological ranges, such a biophysical-level
model inevitably includes many parameters. Therefore, we explored reducing
the dimensionality of our model by fitting Green’s functions, which can represent
spatiotemporal patterns as an impulse response to neural input. This had some
success in capturing qualitative aspects of the responses, but as a linear method,
it cannot capture nonlinear interactions between activations. Details of this
analysis are shown in SI Appendix, Text, Figs. S10–S11 and Table S5.

Data,Materials, and SoftwareAvailability. Code, imaging data, and simula-
tion data have been deposited in https://github.com/hengjiwang/hydramuscle
(N/A).
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