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ABSTRACT
It is a great challenge to effectively eradicate biofilm and cure biofilm-infected diseases because dense
extracellular polymeric substance matrix prevents routine antibacterial agents from penetrating into biofilm.
H2 is an emerging energy-regulating molecule possessing both high biosafety and high tissue permeability.
In this work, we propose a concept of sonocatalytic hydrogen/hole-combined ‘inside/outside-cooperation’
anti-biofilm for promoting bacteria-infected diabetic wound healing based on two-dimensional
piezoelectric nanomaterials. Proof-of-concept experiments using C3N4 nanosheets as a representative
piezoelectric catalyst with wide band gap and high biosafety have verified that sonocatalytically generated
H2 and holes rapidly penetrate into biofilm to inhibit bacterial energy metabolism and oxidatively deprive
polysaccharides/NADH in biofilm to destroy the bacterial membrane/electron transport chain,
respectively, inside/outside-cooperatively eradicating biofilm. A bacteria-infected diabetic wound model is
used to confirm the excellent in vivo antibacterial performance of sonocatalytic hydrogen/hole-combined
therapy, remarkably improving bacteria-infected diabetic wound healing.The proposed strategy of
sonocatalytic hole/hydrogen-combined ‘inside/outside-cooperation’ will make a highway for treatment of
deep-seated biofilm infection.
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INTRODUCTION
Biofilm is a collective of microbial cells surrounded
with dense extracellular polymeric substance
(EPS) matrix with high heterogeneity and com-
plexity, which prevents antibacterial agents from
penetration into the deep region of biofilm, fre-
quently leading to high drug resistance [1–3].
Most pathogenic microorganisms can form biofilm
and make significant contributions to human
diseases, but no specific targeting drugs are available
so far [4,5]. Recently, photocatalytic oxidation
has been developed as an emerging antibacterial
method, which mainly destroys the structure
of bacterial membrane through oxidation, but
hardly affects the internal structure and bacteria
inside biofilm, resulting in limited efficacy of
anti-bacteria treatment and rare application in
anti-biofilm [6–18]. Therefore, we here proposed a
strategy of sonocatalytic hydrogen/hole-combined

‘inside/outside-cooperation’ anti-biofilm. As illus-
trated in Scheme 1, low-intensity medical ultra-
sound (US), with a higher tissue penetrability
than light, excitated piezoelectric nanomaterials to
generate hydrogenmolecules (H2) and holes, which
play a role of fighters inside and outside of biofilm
castles, respectively, for cooperative anti-biofilm.H2
was used as a Trojan horse to easily penetrate into
the biofilm castle for cooperating with hole fighters
outside the biofilm castle.

The existence of biofilm at the infected wound
will greatly impede wound healing [19,20]. Typi-
cally, the high glucose environment of a diabetic
foot ulcer is subject to inducing bacterial infec-
tion and biofilm formation, which leads to long-
term severe ulceration and difficult healing of a
diabetic foot wound [21,22]. Anti-biofilm on the di-
abetic foot wound is one of the important routes
to promote diabetic wound healing [22,23], but is
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Scheme 1. Schematic illustration of the strategy and
mechanism of sonocatalytic hydrogen/hole-combined
‘inside/outside-cooperation’ anti-biofilm.

still a very challenging problem. Therefore, we here
innovatively proposed the catalytic hydrogen/hole
production strategy to eradicate biofilm and thus
promote infected diabetic wound healing.

In this work, based on the proposed strat-
egy of sonocatalytic hydrogen/hole-combined
‘inside/outside-cooperation’ anti-biofilm, we de-
veloped a kind of piezoelectric C3N4 nanosheets
loading hydrogel (C3N4@Gel) as a US probe-
couplable catalyst for sonocatalytic hydrogen
production by utilizing polysaccharides/NADH
in biofilm as a sacrificial agent. As illustrated in
Scheme 1, sonocatalytic polysaccharides/NADH
deprivation and hydrogen production destroyed the
bacterial membrane/electron transport chain and
depressed biofilm energy metabolism, respectively,
jointly playing an efficient anti-biofilm effect and
consequently promoting the healing of an infected
diabetic wound. Noticeably, H2 rapidly penetrated
into the inside of biofilm for anti-bacteria purposes,
which cannot be achieved by routine antibacterial
agents including reactive oxygen species (ROS)
with a short life time and a short diffusion distance.
Compared with light waves for photocatalytic
anti-biofilm, US wave has remarkably higher tissue
penetrability and lower toxicity to normal cells at
low intensity, and sonocatalytic efficiency is much
higher and also enables easier catalytic hydrogen
generation for combined anti-biofilm with more
candidates of catalysts, especially those which have
a large band width such as C3N4 [6–10].

RESULTS AND DISCUSSION
Preparation, characterization and
sonocatalytic hydrogen production
performance of C3N4 nanosheets
C3N4 bulk with a graphitic structure and high
piezoelectricity was firstly prepared on a large scale

using urea as raw material by using a thermal poly-
condensation method [8], and then exfoliated into
C3N4 nanosheets by an ultrasonic crushing method
in order to obtain higher surface area and flex-
ibility in favor of piezoelectric catalysis [24–28].
As shown in Supplementary Fig. S1, as-synthesized
C3N4 bulk was a kind of micron-sized particle con-
structed by stacking multilayer sheets. After ultra-
sonic exfoliation, C3N4 presented a morphology of
thin nanosheets, possessing a higher specific sur-
face area (Fig. 1a and b). Atomic force microscope
(AFM) results further confirmed that the thickness
of C3N4 nanosheets was only 10−18 nm (Supple-
mentary Fig. S2). High surface area can provide
an abundance of reaction sites for catalysis, while
thinner nanosheets morphology has higher flexibil-
ity and piezoelectricity with higher performance of
piezoelectric catalysis [29]. Furthermore, from el-
emental mapping results, both C and N elements
were uniformly distributed in C3N4 nanosheets, re-
vealing that ultrasonic exfoliation did not destroy its
molecular structure (Supplementary Fig. S3) in con-
sistence with XRD structure characterization results
(Fig. 1c, JCPDS#87-1526). The slight shift in the
(002) diffraction peak was possibly due to the de-
crease of C3N4 layer thickness.

The piezoelectric property of C3N4 nanosheets
was analyzed by piezoelectric force microscopy
(PFM). As shown by hysteresis loops in Fig. 1d,
C3N4 exhibited a phase angle change of ∼180◦ and
an amplitude change of∼75 nmunder the inversion
of 10 V direct current bias field, indicating that syn-
thesized C3N4 nanosheets had excellent piezoelec-
tric effect. Moreover, the piezoresponse amplitude
and phase patterns also clearly demonstrated visible
contrasts (Fig. 1e−g), further confirming the piezo-
electricity of C3N4 nanosheets [30].

Next, the energy band structure of C3N4
nanosheets was measured to check the feasibility of
sonocatalytic hydrogen generation. The absorption
spectrum of C3N4 nanosheets was firstly measured
by UV spectroscopy (Supplementary Fig. S4), and
then their band gap was calculated to be 2.87 V
using the conventional Tauc equation (Fig. 1h).
Furthermore, the conduction band (CB) of C3N4
nanosheets was detected to be −0.95 V with the
Mott−Schottky curve (Fig. 1i), and the band struc-
ture was illustrated as demonstrated in Fig. 1j. It can
be found that catalytically generated electrons and
holes held enough high redox potentials to reduce
H+ into H2 and oxidize both bacterial/biofilm
polysaccharide (+0.43 V) and bacterial NADH
(+0.32 V) in theory [31,32].

The sonocatalytic hydrogen generation behav-
iors of C3N4 nanosheets in different bacterial sus-
pensions were examined using a medical ultrasonic
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Figure 1. Morphology, structure, piezoelectricity and sonocatalytic hydrogen production performance characterizations of C3N4 nanosheets. SEM (a)
and STEM (b) images of C3N4 nanosheets, the XRD pattern (c), the hysteresis loops (d), the piezoresponse height (e), phase (f) and amplitude (g) patterns,
the curve of (αhν)2 vs hv (h), the Mott−Schottky curve (i), the schematic illustration of band structure (versus NHE (normalized hydrogen electrode))
and sonocatalytic H2 production and bacterial oxidation (j), the time-dependent sonocatalytic performances of C3N4 nanosheets (k).

physiotherapy instrument (1.0MHz, 1W/cm2, 50%
duty cycle). As shown in Fig. 1k, 2 mg/mL C3N4
nanosheets sonocatalytically produced more than
110μMH2 after 20 min irradiation of US, meaning
that both Escherichia coli (E.coli) and Staphylococcus
aureus (S.a.) bacteria can be used as sacrificial
agents for sonocatalytic hydrogen generation in
accordance with the above-mentioned energy band
results. Moreover, the amount of H2 produced was
almost linearly dependent on the US irradiation
time, and both types of bacteria at the same con-
centration exhibited almost the same rate of H2
production (Fig. 1k). These results indicated that
C3N4 nanosheets can stably generate H2 and simul-
taneously oxidize bacteria in a sonocatalytic way.

Antibacterial and anti-biofilm behaviors
of sonocatalytic hydrogen-hole
combination
Based on the confirmation of the sonocatalytic hy-
drogen production and bacterial oxidation perfor-

mance of C3N4 nanosheets in vitro, the sonocat-
alytic antibacterial performance ofC3N4 nanosheets
was further evaluated with two representative types
of bacteria, E.coli (Gram-negative) and S.a. (Gram-
positive). As shown in Fig. 2a and b, and Supple-
mentary Fig. S5, C3N4 nanosheets almost did not
affect the bacterial viability of both E.coli and S.a.,
and US irradiation alone had a weak bacteriostatic
effect, which was probably caused by ultrasonic cav-
itation [33]. In contrast, sonocatalytic therapy with
C3N4 + US (1.0 MHz, 1 W/cm2, 50% duty cycle)
showed significant antibacterial outcomes against
both E.coli and S.a. (Fig. 2a and b, and Supple-
mentary Fig. S5). With the extension of US irra-
diation time, the survival rates of E.coli and S.a.
kept decreasing, and both of them were almost
completely eradicated after 20 min (Supplementary
Fig. S6), suggesting the US time dependence of
sonocatalytic therapy outcome. This indicated that
sonocatalytic therapy with C3N4 nanosheets can
efficiently deactivate bacteria in spite of bacterial
types, and the sonocatalytic therapy outcome can
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Figure 2. In vitro sonocatalytic hydrogen/hole-combined antibacterial and anti-biofilm performances of C3N4 nanosheets. Digital photographs of S.a.
bacterial colonies in the agar plate (a and c) and corresponding statistical analyses (n= 3 biologically independent samples) (b and d), three-dimensional
(3D) confocal images of S.a. biofilms (e), digital photographs of crystal violet stained S.a. biofilm (f) and corresponding statistical analysis (n = 3
biologically independent samples) (g). Con, control. P values were calculated by the one-way ANOVA method (∗∗∗∗P< 0.0001).

be maximized by adjusting the time duration of US
irradiation.

Furthermore, to determine the individual con-
tributions of sonocatalytically generated hydro-
gen molecules and holes, ascorbic acid (AA) and
Na2S4O6 (STT) were used as hole- and electron-
sacrificial agents to investigate the antibacterial
effect of only hydrogen molecules and holes, re-
spectively [34]. In the concentration range of
0−1000μM, neither AA nor STTaffected the activ-
ity of S.a. and E.coli bacteria (Supplementary Figs S7
and S8), so the concentration of 1000μMwas cho-
sen for subsequent experiments. From Fig. 2c and d,
and Supplementary Fig. S9, both individual hydro-
gen therapy (C3N4 + AA + US) and hole therapy
(C3N4 + STT + US) displayed distinct antibacte-
rial capability to a certain extent, but hydrogen/hole-
combined therapy (C3N4 + US) demonstrated
remarkably higher antibacterial outcomes at the
same particle concentration and power density, in-
dicating the hydrogen/hole-combined antibacterial
effect.

Considering higher significance of anti-biofilm
compared to anti-bacteria in clinic, the sonocatalytic
anti-biofilm performance of C3N4 nanosheets was

further evaluated by live/dead and crystal violet
staining methods. Similar to the above antibac-
terial results, live/dead and crystal violet staining
results consistently suggested that sonocatalytic
therapy with C3N4 + US had the hydrogen/hole-
combined anti-biofilm effect against both E.coli
and S.a. biofilms (Fig. 2e, and Supplementary
Figs S10−S13). In order to observe the destruction
of biofilm more intuitively, three-dimensional
(3D) confocal imaging was used to evaluate the
anti-biofilm performance of C3N4 nanosheets
against E.coli and S.a. biofilms. From Fig. 2e, Sup-
plementary Figs S10 and S11, neither C3N4 nor
US affected the structure of biofilm and biofilm
bacterial activity, but hydrogen or hole therapy
alone can induce biofilm bacterial death to a certain
extent (Fig. 2f and g, Supplementary Figs S12 and
S13). However, hydrogen/hole-combined therapy
caused remarkably higher anti-biofilm effect as it
killed almost all the biofilm bacteria, and also made
the biofilm structure become defective. In brief,
hydrogen/hole-combined therapy with C3N4 +US
had high efficacies of anti-bacteria and anti-biofilm,
killing biofilm bacteria and destroying biofilm
structure.
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The mechanism of
hydrogen/hole-combined anti-biofilm
It is well known that the previously reported pho-
tocatalytic/enzymocatalytic antibacterial effect is
mainly due to the oxidative damage of catalytically
generated ROS to bacterial membrane, which lim-
its the anti-biofilm outcomes [6–12].The effect and
pathway of hydrogen/hole-combined anti-bacteria
and anti-biofilm have not been reported. Therefore,
the synergistic anti-biofilm mechanism of sonocat-
alytically generated hydrogen molecules and holes
was further investigated here (Fig. 3).

First, STTwas used only to sonocatalytically gen-
erate holes (C3N4 + STT + US) to investigate
the antibacterial mechanism at the oxidation end.
The total carbohydrate and NADH contents within
the E.coli and S.a. biofilms were detected using the
corresponding kits. From Fig. 3a and Supplemen-
tary Fig. S14, the total carbohydrate content in the
C3N4 + STT + US treated biofilm was significantly
less than the other control groups, probably due to
the oxidation of polysaccharides within the bacte-
rial wall by sonocatalytically generated holes. Cor-
respondingly, it was clearly visible that bacterial cy-
toplasm flew out only in the C3N4 + STT + US
group (Fig. 3b, and dashed circle in Supplemen-
tary Fig. S15), indicating that the bacterial wall was
damaged by holes rather than by C3N4 and by US
[35,36]. Meanwhile, the NADH content in the S.a.
biofilm bacteria treated with C3N4 + STT+USwas
significantly reduced due to the oxidation of holes
(Fig. 3c and Supplementary Fig. S16a). AsNADH is
an important hydrogen/electron carrier in the elec-
tron transport chain, a significant decrease ofNADH
meant the depression of cellular respiration by holes,
which was further confirmed by down-regulation of
OCR levels in the C3N4 + STT+US group (Fig. 3e
and Supplementary Fig. S16c).

Second, AA was used to sonocatalytically only
produce H2 to investigate the antibacterial mech-
anism at the reducing end. Previous researches in-
dicated that hydrogen molecules can regulate the
mitochondrial aspiration of damaged and cancer-
ous cells [34,37–41], so we further investigated
whether H2 can affect the ATP level in biofilm bac-
teria in this work. Surprisingly, we found that sono-
catalytically generated H2 (C3N4 + STT + US)
can significantly downregulate the ATP level in the
S.a. biofilm bacteria (Fig. 3d and Supplementary
Fig. S16b), consequently depressing bacterial en-
ergy metabolism (Fig. 3e). Taken together, sono-
catalytically generated H2 and holes jointly inhib-
ited bacterial energy metabolism by the ATP and
NADH pathways, respectively (Fig. 3e and Supple-
mentary Fig. S16c). Based on the above pathway

analysis, we concluded the mechanism of sonocat-
alytic hydrogen/hole-combined anti-biofilm, as il-
lustrated in Fig. 3g and Supplementary Fig. S17.

The diffusion of H2 is an important factor for
destroying the internal structure of biofilm, so we
further explored the permeation of H2 in bac-
terial biofilm under confocal microscope imag-
ing taking advantage of our newly-developed ra-
tiometric fluorescent hydrogen nano-probe (NDI-
N3/Pd@MSN-PEG)[42].Thenano-probewasuni-
formly dispersed and fixed into S.a. bacterial biofilm,
and then saturated hydrogen-rich water was added
on the biofilm followed by confocal microscope
tomoscan imaging. From Fig. 3f, only 2 min af-
ter addition of hydrogen-rich water, the ratiomet-
ric fluorescencewithin thewhole biofilmwas rapidly
lightened, indicating that H2 can quickly diffuse
into the interior of the biofilm. With the increase
of time, the fluorescence of the biofilm became
stronger and stronger (Supplementary Fig. S18),
suggesting increasing amounts ofH2 penetrated into
the biofilm. These results confirmed the hypoth-
esis of hydrogen/hole-combined ‘inside/outside-
cooperation’ anti-biofilm (Fig. 3g).

Infected diabetic wound healing and
in vivo antibacterial effects
Based on the above excellent in vitro anti-biofilm
outcomes of sonocatalytic therapy, in vivo anti-
biofilm performance and its effect on infected
wound healing were further evaluated on a biofilm
infecteddiabeticwoundmodel.AC3N4 nanosheets-
encapsulated gelatin gel (C3N4@Gel) was designed
for the treatment of the biofilm infected diabetic
wound model because the gelatin gel has high
biocompatibility [43–45], can fix C3N4 nanosheets
on the surface of the wound and also play a role
as US couplant. The diabetic mouse model was
first induced by injecting streptozotocin (STZ)
every day for five days, and a 1-cm full-thickness
excisional wound was established and infected by
coating with S.a. three weeks after the fasting blood
glucose of mice stabilized at >20 mM (Fig. 4a and
Supplementary Fig. S19) [46]. After one day, the
diabetic wound was coated with the C3N4@Gel
hydrogel and then locally irradiated by US irradi-
ation (1 W/cm2, 50% duty ratio, 8 min for twice).
From Supplementary Fig. S20, such a dosage of US
caused only a slight increase in body and wound
temperature whichmaintained within the safe range
(<42◦C), minimizing the influence of sonother-
mal effect on anti-biofilm and wound healing. In
addition, C3N4 nanosheets in a wide concentration
range of 0−200 μg/mL did not exhibit obvious
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Figure 3. The mechanism of sonocatalytic hydrogen/hole-combined anti-biofilm. Total carbohydrate level in the S.a. biofilms with different treatments
(n= 3 biologically independent samples) (a), SEM images of S.a. biofilms (scale bars, 1μm) (b), NADH level (n= 3 biologically independent samples) (c),
ATP level (n= 3 biologically independent samples) (d) and respiration rates (n= 3 biologically independent samples) (e) of biofilm bacteria, schematic
diagram of confocal microscope tomoscan and the ratiometric fluorescence with and without addition of saturated hydrogen-rich water (scale bars,
10μm) (f), and schematic illustration of the sonocatalytic hydrogen/hole-combined anti-biofilmmechanism (g). P values were calculated by the one-way
ANOVA method (∗∗P< 0.01, ∗∗∗∗P< 0.0001; ns, no significant difference).

cytotoxicity to normal cells, human fibroblasts
(HSF) and human immortalized keratin-forming
cells (HaCaT), meaning high biocompatibility of
C3N4 nanosheets (Supplementary Fig. S21).

From Fig. 4b and Supplementary Fig. S22, the
bacteria infected diabetic wounds took as long as
23 days to heal completely without any treatment.
Gel, C3N4@Gel and Gel + US had a weak healing-
promoting effect, possibly due to the fact that the
gelatin Gel used can provide amoist environment in
favor of wound healing. By comparison, the wounds
in theC3N4@Gel+USgroup completely healed af-
ter treatment for 17 days, reducing the infected dia-
betic wound healing time by 26%. It indicated that

the in vivo sonocatalytic hydrogen/hole-combined
anti-biofilm based on C3N4@Gel + US had an
important pro-healing effect on the repair of in-
fected diabetic wounds. In addition, the microstruc-
tural changes of new skin during the wound heal-
ing process were investigated using hematoxylin-
eosin (H&E) and Masson’s staining methods. As
shown in Supplementary Fig. S23, the wounds in
the control group always remained larger with ob-
vious inflammatory infiltration and necrotic tissue
fragments, and the wounds in the Gel, C3N4@Gel
and Gel + US groups were slightly reduced at the
same time points. In contrast, the C3N4@Gel+US
group showed a remarkable decrease in the wound
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the treatment procedure with C3N4@Gel + US (a), the digital images of diabetic wounds at different treatment stages (b).
Filled color in the inset of figure b corresponds to the percentage of wound healing size. The inside and outside diameters of
the circular silicone ring used to fix the skin around the wound were 1 cm and 2 cm, respectively.

margins, a significant reduction in inflammatory re-
action, and a large amount of new granulation tissue
under the epidermis, which indicated that sonocat-
alytic hydrogen/hole-combined anti-biofilm treat-
ment significantly promoted diabetic wound repair.

In order to confirm the contribution of anti-
bacteria to infected diabetic wound repair, the bac-
terial amount at the wound was monitored in real
time during treatment. As illustrated in Fig. 5a, the
exudate at the wound was collected at fixed time
points and then diluted 105 times with saline, fol-
lowed by culture for 16 h on an agar plate. From
Fig. 5b and c, diabetic mice cannot effectively elimi-
nate infection by themselves, but sonocatalytic ther-
apy with C3N4@Gel + US can significantly and
gradually reduce the number of bacteria at the
wound since day one and received a 97% antibac-
terial efficacy after treatment for 17 days. At the
same time, the systemic inflammation/infection de-
gree was determined by measuring the contents of
neutrophils (NEUT), lymphocytes (LY) and white
blood cells (WBC) in the blood of mice. From
Fig. 5d, sonocatalytic therapywithC3N4@Gel+US

can significantly reduce their contents to normal
levels, reflecting outstanding in vivo antibacterial
outcome.

In addition, in order to verify the biosafety of
sonocatalytic therapy with C3N4@Gel+US in vivo,
blood sampleswere collected at the endof treatment
for biochemical tests. FromSupplementary Figs S24
and S25, all the indicators of the blood samples were
maintained within the normal range, suggesting a
high biosafety of sonocatalytic therapy. Meanwhile,
the mice were humanely euthanized and their main
organs including heart, liver, spleen, lung and kid-
ney were extracted and stained by H&E. From Sup-
plementary Fig. S26, all the experimental groups did
not cause obvious damage to these major organs,
further indicating that the C3N4@Gel dressing had
high biosafety.

CONCLUSION
In summary, on account of the pathological char-
acteristics and the special microenvironment
of the diabetic wound, we developed the C3N4
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Figure 5. In vivo antibacterial performance of sonocatalytic therapy. Schematic diagram of in vivo bacterial collection for
in vitro culture (a), digital pictures of bacterial colonies from diabetic wounds at different time points (b) and corresponding
histogram of bacterial colonies (n = 3 biologically independent samples) (c), and the contents of blood inflammatory cells
after treatment for 23 days (n = 3 biologically independent samples) (d). P values were calculated by the one-way ANOVA
method (∗P< 0.1, ∗∗∗P< 0.001, ∗∗∗∗P< 0.0001).

nanosheets-encapsulated hydrogel as a sono-
catalytic hydrogen/hole production catalyst for
synergistic anti-biofilm and promotion of diabetic
foot wound healing. Owing to high transmembrane
capability, H2 was able to penetrate deep into the
dense biofilm and efficiently disrupt the biofilm
from inside by modulating the bacterial energy
metabolism. Meanwhile, the in situ generated holes
with high oxidative capability facilitated in damaging
the surface structure of biofilm and, simultaneously,
also affected the electron transport chain.Therefore,
the sonocatalytic hydrogen/hole-combined therapy
enabled the realization of efficient diabetic wound

healing by eradicating biofilm completely from both
inside and outside of the biofilm, providing a safe
and promising strategy for treatment of deep-seated
biofilm and bacteria-infected diabetic foot ulcers.

METHODS
The details about the synthesis, characterizations
andbiological performances ofC3N4 nanosheets are
in the Supplementary data.

SUPPLEMENTARY DATA
Supplementary data are available atNSR online.
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