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Abstract

Motivation: Quality assessment (QA) of predicted protein tertiary structure models plays an important role in
ranking and using them. With the recent development of deep learning end-to-end protein structure prediction
techniques for generating highly confident tertiary structures for most proteins, it is important to explore
corresponding QA strategies to evaluate and select the structural models predicted by them since these models have
better quality and different properties than the models predicted by traditional tertiary structure prediction methods.

Results: We develop EnQA, a novel graph-based 3D-equivariant neural network method that is equivariant to
rotation and translation of 3D objects to estimate the accuracy of protein structural models by leveraging the
structural features acquired from the state-of-the-art tertiary structure prediction method—AlphaFold2. We train and
test the method on both traditional model datasets (e.g. the datasets of the Critical Assessment of Techniques for
Protein Structure Prediction) and a new dataset of high-quality structural models predicted only by AlphaFold2
for the proteins whose experimental structures were released recently. Our approach achieves state-of-the-art
performance on protein structural models predicted by both traditional protein structure prediction methods and the
latest end-to-end deep learning method—AlphaFold2. It performs even better than the model QA scores provided
by AlphaFold2 itself. The results illustrate that the 3D-equivariant graph neural network is a promising approach to
the evaluation of protein structural models. Integrating AlphaFold2 features with other complementary sequence
and structural features is important for improving protein model QA.

Availability and implementation: The source code is available at https://github.com/BioinfoMachineLearning/EnQA.

Contact: chengji@missouri.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Predicting the structures of proteins from their sequences is crucial
for understanding their roles in various biological processes. Various
computational methods have been developed to predict protein
structure from sequence information (Arnold et al., 2006; Baek
et al., 2021; Hou et al., 2019; Jumper et al., 2021; Senior et al.,
2020; Xu, 2019; Yang et al., 2020). However, some predicted struc-
tures are still far from the true structure, especially for some proteins
lacking critical information such as homologous structural templates
or residue–residue co-evolution information in their multiple se-
quence alignments. Besides, many computational methods produce
multiple outputs for one input sequence. Thus, it is important to ac-
quire a precise estimation of the model accuracy (EMA) for the pre-
dicted tertiary structurals, that is, their similarity or discrepancy
with the native but unknown structure. Such estimation can help se-
lect the best models from the predicted candidates and identify erro-
neous regions in the models for further refinement.

Many methods for model quality assessment (QA) have been
developed. For example, PCONS (Wallner et al., 2007) and
ModFOLDclustQ (McGuffin and Roche, 2010) use the comparison
between 3D models to evaluate their quality. VoroMQA
(Olechnovic and Venclovas, 2017) computes confidence scores
based on the statistical potential of the frequencies of observed atom
contacts. SBROD (Karasikov et al., 2019) uses a smooth
orientation-dependent scoring function with a ridge regression
model. Deep learning-based QA methods have been reported.
DeepQA (Cao et al., 2016) uses a deep belief network and different
agreement metrics. ProQ4 (Hurtado et al., 2018) uses the partial en-
tropy of the sequence characteristics with a Siamese network config-
uration. GraphQA (Baldassarre et al., 2021) tackles the QA protein
with graph convolutional networks based on geometric invariance
modeling. Ornate (Pagès et al., 2019) and DeepAccNet (Hiranuma
et al., 2021) are based on voxelized spatial information of the pre-
dicted models and 2D/3D convolution networks. DeepAccNet is
one of the best-performing methods in the QA category of the
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Critical Assessment of Techniques for Protein Structure Prediction
(CASP14) competition (Kwon et al., 2021).

The pioneering development of the end-to-end deep learning

method for protein structure prediction—AlphaFold2 (Jumper et al.,
2021) generated highly confident 3D structures for most protein tar-
gets in CASP14 as well as the recent release of a similar approach—
RoseTTAFold (Baek et al., 2021) presents notable improvements in
structure prediction and brings new challenges for the model QA
task because traditional QA methods developed for evaluating struc-
tural models predicted by traditional methods may not work well
for the models predicted by the new methods such as AlphaFold2

(Kwon et al., 2021). Since the software of the end-to-end approach,
such as AlphaFold2 has been publicly released and is becoming
the primary tool for tertiary structure prediction, it is important
to develop corresponding QA methods to evaluate their models.
Furthermore, since AlphaFold2 generates structural models with a
self-reported per-residue local distance difference test (lDDT)
(Mariani et al., 2013) quality score, new QA methods should out-
perform (1) the consensus evaluation of a predicted model by com-

paring it with the reference models predicted by AlphaFold2 and (2)
the self-reported per-residue lDDT score for models provided by
AlphaFold2. And it would be interesting to investigate if and how
various information extracted from AlphaFold2 predictions can be
used to enhance the QA of 3D tertiary structural models. Finally, it
is important to leverage the latest deep learning techniques of ana-
lyzing 3D objects.

The concept of rotation and translation equivariance in neural
networks is useful for the analysis of rotation/translation-invariant
properties of 2D and 3D objects in multiple domains, including 2D
images (Cohen and Welling, 2016; Worrall et al., 2017), quantum
interactions (Schütt et al., 2017) and 3D point clouds (Fuchs et al.,
2020; Satorras et al., 2021; Thomas et al., 2018). For equivariant
networks, applying rotation and translation to the input results in
a corresponding equivalent transformation to the output of the
network. Invariance is a special case of equivariance, in which the
same output is generated from the networks when the function
returns scalar values such as distance or energy. Because the qual-
ity of a protein structural model is invariant to rotation and trans-

lation, it is desirable to use equivariant networks to predict model
quality. As the locations of residues in a protein model can be rep-
resented as point clouds in 3D space, it is natural to represent a
protein model as a graph, which can be equivariant to its rotation
and translation. For example, the refinement step in RoseTTAFold
(Baek et al., 2021) uses an equivariant SE(3)-transformer architec-
ture to update the 3D coordinates. GNNRefine uses a graph con-
volution network with invariant features for protein model

refinement.
In this work, we present EnQA, a 3D equivariant graph network

architecture for protein model QA. We evaluate the performance of
our method on three different test datasets: the CASP14 stage2 mod-

els, the models of the Continuous Automated Model EvaluatiOn
(CAMEO) and a collection of AlphaFold2 predictions for recently
released protein structures in the Protein Data Bank (PDB). EnQA
achieves state-of-the-art performance on all three datasets. It can
distinguish the high-quality structural models from other models
and performs better than the self-reported lDDT score from
AlphaFold2. To the best of our knowledge, our method is the first
3D-equivariant network approach to the problem of model QA. It

can effectively evaluate the quality of the models predicted by the
current high-quality protein structure prediction methods such as
AlphaFold2 that previous QA methods cannot.

2 Materials and methods

In this section, we first describe the training and test datasets and
data processing procedure. Then, we define the input features to rep-
resent protein tertiary structures. Finally, we introduce the EnQA
architecture and the implementation details.

2.1 Datasets
2.1.1 CASP model QA dataset

We use structural models from server predictions for CASP8-14 pro-
tein targets (Stage 2 models if available) (Kwon et al., 2021; Moult
et al., 1995) as one dataset, which can be downloaded from https://
predictioncenter.org/download_area/. Models are first filtered by
removing those with missing or inconsistent residues with respect to
the corresponding experimental structure. The models from CASP8-
12 are used for training. The models from CASP13 are used to valid-
ate the neural network and select its hyperparameters. The models
from CASP14 are used as the benchmark/test dataset. The details of
the data preparation are available in Supplementary Notes 1.1. As a
result, there are 109 318 models of 477 CASP8-12 targets used for
training, 12 118 models of 82 CASP13 targets used for validation
and 9501 models of 64 CASP14 targets for the final benchmark/test,
respectively. The models in the CASP dataset were generated by
traditional protein structure prediction methods during the CASP
experiments between 2008 and 2020. The average quality of the
models is much lower than the models predicted by the state-of-the-
art method—AlphaFold2.

2.1.2 Alphafold2 model QA dataset

To create a QA dataset containing protein structural models pre-
dicted by the latest end-to-end prediction method—AlphaFold2, we
first collect protein targets with sequence length �50 in the
AlphaFoldDB Protein Structure Database (Tunyasuvunakool et al.,
2021) with corresponding experimental structures in PDB (https://
www.rcsb.org/) (Berman et al., 2000; Burley et al., 2021) released
after the cutoff date (April 30, 2018) of the structures on which
AlphaFold2 was trained. In total, there are 4209 protein targets col-
lected after filtering out identical ones. For each of these targets, we
generate five structural models using AlphaFold2 with the model
preset of ‘full_dbs’, restricting templates only to structures available
before CASP14 (i.e. max_template_date ¼ ‘2020-05-14’) to make
sure the AlphaFold2 models of the targets are generated with only
the information available before their experimental structures were
released (see the details in Supplementary Note S1.2). The
AlphaFold2 models of the targets are combined with the training
dataset from CASP8-12 as a training data (CASP_AF_train). None
of these targets in CASP_AF_train has above 30% sequence identity
with any target in the CASP14 test/benchmark dataset consisting of
CASP14 Stage 2 models (CASP14_test).

We also create another dataset that contains only protein struc-
tural models already available in the AlphaFoldDB with sequence
length �50 and true structures available in PDB. In total, 6229
structural models for 6229 unique single-chain proteins with known
Structural Class Of Proteins (SCOP) representative family domains
(Andreeva et al., 2014, 2020) are selected. The targets for testing are
chosen from the data by two criteria: (1) their corresponding true
structures were released after the start date of CASP14 (May 14,
2020) and (2) not sharing any SCOP representative family domains
(Steinegger and Söding, 2017) with any target in the remaining data,
resulting in 56 test targets in the test dataset (AlphaFold2_test).
The remaining 6173 structural models are split into the training
dataset (AlphaFold2_train) and validation dataset (AlphaFold2_val)
according to the 80–20% ratio for training and optimizing the deep
learning models. This data split strategy guarantees that the
AlphaFold2_test dataset does not share the same protein family with
the AlphaFold2 training dataset and validation dataset.

2.1.3 CAMEO model QA dataset

To create an additional benchmark dataset, we use the recent mod-
els from CAMEO (Robin et al., 2021). We download the protein
structural models registered between September 4, 2021, to
November 27, 2021, which include predictions from the latest pre-
dictors from different groups, such as RoseTTAFold (Baek et al.,
2021). Models are filtered by removing submissions containing only
a partial sequence of the corresponding target. In total, 38 targets
with 945 structural models are selected for benchmarking
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(CAMEO_test). The preprocessing procedure for the CAMEO data-
set is described in Supplementary Note S1.2.

2.2 Features
We use a graph to represent a protein structural model, which con-
tains node features and edge features. The node feature describes the
information of each residue, while the edge feature describes the in-
formation for each pair of residues. We briefly describe each type of
feature below.

2.2.1 Node features

For an input protein chain with length L, the node features are cre-
ated as follows. (1) One-hot encoding of amino acids (L, 20) is used.
(2) Following the spherical convolutions on molecular graphs
(Igashov et al., 2021), we use the following three types of features to
characterize the geometric property for each residue: the solvent-
accessible surface area (L, 1), the size of Voronoi cell (L, 1)
(Olechnovi�c and Venclovas, 2014) and the shortest topological dis-
tance to nearby solvent-accessible residues, which is also known as
‘buriedness’ (L, 1).

For models trained for CASP14 and CAMEO datasets, we lever-
age the information from AlphaFold2 predictions made for the pro-
tein sequence of each model to generate the quality features for the
model. AlphaFold2 predictions used for feature generation are made
with the template database curated before the release date of the ex-
perimental structure of any target in the PDB. The lDDT score of
each residue computed with respect to an AlphaFold2 prediction for
the same target (called a reference model) is used as a residue-level
feature (L, 5). The AlphaFold2 self-reported lDDT score for each
residue in the reference model is also used as a feature measuring the
confidence of the reference model (L, 5). The final shape of the node
features for each residue is (L, 33).

For the deep learning models trained and tested on the
AlphaFold datasets (AlphaFold2_train and AlphaFold_test), no fea-
tures from reference structures are used. Instead, we use the self-
reported lDDT score (i.e. b-factor value) in the input PDB structural
model generated by AlphaFold2 (L, 1). The final shape of the node
features for each residue is (L, 24). Therefore, the deep learning
models trained on AlphaFold data are a single-model QA method
that only requires an input structural model as input to evaluate its
quality.

2.2.2 Graph edge features

For the deep learning models trained on the CASP_AF_train dataset,
we first extract the logits from the distogram representation of the
Alphafold2 predictions for a protein target, which represents the
probability of the beta carbon (Cb) distance between two residues
falling into pre-defined 64 distance bins, which has a shape (L, L,
64). From the 64-bin distogram, we then compute the probability of
the distance error between two residues in a structural model falling
into the nine distance bins defined by lDDT as follows:

di
error ¼

di
upper þ di

lower

2
� dmodel; (1)

Pn ¼
X64

i¼1
Pi

distoIdi
error 2binn

; (2)

where di
error is the distance error (difference) between the

AlphaFold2-predicted distance and an input model for the i-th dis-
tance bin of AlphaFold2 and di

upper and di
lower are the upper and

lower bound of the i-th bin of the distogram, respectively. dmodel is
the distance between any two residues in the input model. Pn is the
probability of the distance error between two residues falling into
the n-th distance bin defined by lDDT (Mariani et al., 2013). Pi

disto is
the softmax-normalized probability of the i-th distance bin from
AlphaFold2 distogram. I is an indicator function which equals 1 if
di

error falls into the range of the n-th bin defined by lDDT and 0
otherwise. The details of generating the pairwise distance error fea-
tures of a model with respect to the distogram prediction of

AlphaFold2 are available in Supplementary Note S2.1. Since we use
five AlphaFold2 distogram predictions for each target and nine dis-
tance bins according to the definition of lDDT, this results in pair-
wise edge features with a shape (L, L, 45) for each pair of residues
in a structural model. We also create contact probability maps by
summing up all probabilities in AlphaFold2 distograms that fall into
the bins with middle point �15 Å. The final binary contact map is
the average from all five AlphaFold2 predictions to produce an add-
itional edge feature with a shape (L, L, 1).

For the deep learning models trained on the AlphaFold2_train
dataset, since no reference structural model is used, we do not
include edge features from the agreement between the AlphaFold
distograms and the model. Instead, we use the binary contact map
computed from the input structural model with a cutoff of 15 Å. In
addition, we use the representation from the transformer protein
language models (Rives et al., 2021) as protein sequence embedding.
We choose the attention weights (L, L, 120) from the last layer of
model ‘esm2_t6_8M_UR50D’ as the input feature.

2.2.3 Spherical graph embedding edge features

We generate rotation-invariant graph embeddings following the
Spherical Graph Convolutions Network (Igashov et al., 2021) to use
spatial information as spatial edge features. We first build the local
coordinate frame for each residue in a structural model. We define
the normalized Ca–N vector as the x-axis, the unit vector on the C–
Ca–N plane and orthogonal to the Ca–N vector as the y-axis. The
direction of the y-axis is determined by the one that has a positive
dot product with the Ca–C vector. Naturally, the z-axis is the cross-
product of x and y. We compute the spherical angles h and u of the
vector between the Ca of each residue and that of any other residues
with respect to this local spherical coordinate system. Figure 1 illus-
trates the local spherical coordinate system used in this work.

The spherical angles h and u are transformed into real spherical
harmonics with the following formula:

Ym
l h; uð Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2l þ 1ð Þ

4p
l �mð Þ!
l þmð Þ!

s
Pm

l coshð Þeimu; (3)

Ym
l ¼

�2Im Y
mj j

l

h i
if m < 0

Y0
l if m ¼ 0

2Re Y
mj j

l

h i
if m > 0

:

8>>><
>>>:

(4)

Fig. 1. The illustration of the local spherical coordinate system. Different colors in-

dicate atoms from different residues. Here, h, u and r are spherical angles and the

radial distance for the vector between the alpha carbons (Ca) of two residues (blue

and red)
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Here, Ym
l h; uð Þ: S2 ! C is a function defined on the surface of

the unit sphere with degree l and order m, Ym
l : R! C transform the

complex spherical harmonics into their real forms. Pm
l coshð Þ is the

associated Legendre polynomials (Hobson, 1931). For spherical har-
monics with degree l, there are 2lþ1 orders in total. We choose
spherical harmonics with degrees from 0 to 4 in the graph embed-
dings, resulting in 25 orders for each pair of spherical angles h and
u. The final graph embeddings have shapes (L, L, 25) and are con-
catenated with the pairwise edge distance features as model input.
The structural information of the protein models is incorporated
while preserving the rotation/translation invariance property by
using such embeddings from the local spherical coordinate frame.

2.3 3D-equivariant model architecture
The overall architecture of our method is depicted in Figure 2. The
processed 1D features (node features) are first processed with 1D
convolutions to generate hidden node features. Then 2D features
(both distance and graph embedding edge features) and the 2D tiling
of the 1D hidden features are processed with a residual architecture
with 5 blocks and 32 channels similar to the DeepAccNet
(Hiranuma et al., 2021). The goal is to predict an initial distance
error as a classification task with nine bins. The distance error is
converted into an initial quality estimation using the binary contact
map described in Section 2.2.2. The equation for the n-th residue in
input with length L is the following:

scoren ¼
XL

i¼1

pni

p
error� 0:5Å

þ p
error� 1Å

þ p
error�2Å

þ p
error�4Å

4

� �
:

(5)

Here, pni is the probability of the beta carbon distance between
n-th and i-th residue in the binary contact map. perror is the sum of
the probability of the multi-class error prediction from the residual
layers below different distance cutoffs. This score is combined with
the other 1D node features as the node features for the following
3D-equivariant graph network. The 3D coordinates of Ca atom of
each residue from the input model are updated by the graph network
in a 3D-equivariant manner. The initial input coordinates and the
updated coordinates are used to compute the final real valued dis-
tance error, which is used as an auxiliary output. The input graph
for the 3D-equivariant graph network is constructed by connecting
any residue pairs with distance �15 Å with an edge. The edge fea-
tures for the graph network are the concatenation of the multi-class
error prediction and a separate output of the residual layers for the
pairs of the residues.

We use a variant of the E(n) Equivariant Graph Neural
Networks (EGNN) (Satorras et al., 2021) to process the node and
edge features from the input graph and predict the final model qual-
ity score. Given a graph G ¼ ðV; EÞ with nodes vi 2 V and edges
eij 2 E. Our 3D-equvariant network has a node-level module and
an edge-level module. In the node-level module, the hidden node

features hi 2 R
n and alpha carbon (Ca) coordinates

xi 2 R
3 associated with each of the residues are considered. The

equation of the EGNN layers is the following:

mij ¼ ue hl
i; hl

j; xl
i � xl

i

��� ������ ���2; aij

� �
; (6)

xlþ1
i ¼ xl

i þ
1

N

X
j2NðiÞ

xl
i � xl

j

� �
ux mijð Þ; (7)

mi ¼
X

j2NðiÞ
mij ; (8)

hlþ1
i ¼ uhðhl

i; miÞ: (9)

Here, hl
i and hl

j are the node features at layer l, aij is the edge fea-

ture and xl
i and xl

j are the alpha carbon coordinates. ue; ux and uh

are multi-layer perceptron operations. mij and mi are the intermedi-

ate messages for edges and nodes, respectively. The Ca coordinates
are updated through each step so that its pairwise distance can re-
flect the distance map in the native PDB model and can be used to
compute the final real value-based distance error when subtracting
the distance map from the initial coordinates of the model.

For the edge-level EGNN module, inspired by the geometric
transformer (Morehead et al., 2021), we use edges in the original
graph as nodes, and define the new node features as the original
edge features. Unlike the edges in the node-level module, we use the
k-nearest neighbors approach to define the edges in the edge-level
module with k set to 3 to accommodate the memory limit for edge-
level graphs. The coordinates of the edges are the midpoint of two
ends and are always determined by node coordinates rather than
updates from the edge-level module. Finally, we use the distances be-
tween the midpoints as the new edge attributes. The whole architec-
ture can be trained end-to-end from the input features to the final
lDDT score prediction. In addition to the EGNN-based graph layer,
we also implemented a variant of the network by replacing the
EGNN layers with a graph convolution network with kernels regu-
larized by spherical harmonics functions as described in the SE(3)-
transformer (Fuchs et al., 2020) for comparison.

We use 6 Nvidia Tesla V100 32G GPUs on the Summit supercom-
puter and Horovod/Pytorch to train the method. The batch size is set
to 1 for each GPU, resulting in an effective batch size of 6. We use the
stochastic gradient descent optimizer with learning rate 1e�6, momen-
tum 0.9 and weight decay 5e�5. We use the categorical cross-entropy
as the loss function for initial distance error and the mean-squared
error (MSE) loss for predicted lDDT scores as well as the final distance
errors. The weight of the loss for predicted lDDT set to 5, while the
weight of the other two errors is set to 1. We set the number of training
epochs to 60 with early stopping when there are no improvements in
validation loss for five consecutive epochs. Under our testing

Fig. 2. The illustration of the overall architecture of EnQA. The 1D/2D features from the input model are first converted into hidden node and edge features for the 3D-equivar-

ant graph module. The spatial coordinates of Ca atoms of the residues are also used as an extra feature. The node and edge network modules update the graph features

iteratively. In the end, the final per-residue lDDT score and distance errors of residue pairs are predicted from the updated node/edge features and spatial coordinates by the

3D-equivariant network
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environment, the deep learning model can handle proteins with length
up to 850 residues. Structural models with sequence length longer than
850 are cropped into segments of length up to 800 and the final results
are rebuilt with the concatenation of all the segments.

3 Results

3.1 Model QA on the AlphaFold2 and other datasets
To compare the performance of EnQA with other state-of-the-art
QA methods, we first evaluate it on generally high-quality
AlphaFold2 structural models. We compare it with DeepAccNet
(Hiranuma et al., 2021), VoroMQA (Olechnovic and Venclovas,
2017) and ProQ4 (Hurtado et al., 2018), which are all publicly
available. We train EnQA, EnQA-SE(3) and EnQA-MSA that use
the representations from transformer protein language models as
extra features on AlphaFold2_train dataset without using reference
structures to generate input features at all. Therefore, they are
single-model QA methods. They are blindly evaluated on the
AlphaFold2_test dataset (Table 1). The evaluation metrics used in-
clude residue and model-level MSE, mean absolute error (MAE) and
Pearson correlation coefficient between the predicted lDDT scores
and ground truth lDDT scores of the models. The average of the pre-
dicted per-residue lDDT scores for each model is calculated as the
predicted global quality score of the model. The per-residue metrics
are first computed for each model and are then averaged across all
models. The self-reported lDDT scores of AlphaFold2 are used as
the baseline method for comparison (named AF2-plddt).

The results show that EnQA-MSA outperforms all other methods
on all residue- and model-level metrics. For instance, the per-model
correlation of EnQA-MSA is 0.9001, higher than 0.8376 of AF2-
plddt, 0.4966 of DeepAccNet and 0.34 of VoroMQA. Compared with
AF2-plddt, both EnQA-MSA and EnQA achieve significantly better
per-residue and per-model MSE/MAE/correlation (P<0.01, paired
t-test). The better performance than AF2-plddt shows that an inde-
pendent QA method can evaluate AlphaFold2 models better than
AlphaFold2’s built-in quality scores. All our three methods, including
EnQA-SE(3) uses SE(3)-transformer architecture with the same fea-
tures as EnQA-MSA, perform substantially better than the previous
QA methods (DeepAccNet and VoroMQA) on this test dataset, clearly
demonstrating the need of developing new QA methods for evaluating
AlphaFold2 models.

In addition, we also evaluate all methods on CASP14_test data-
set (Supplementary Table S1) and CAMEO_test dataset
(Supplementary Table S2). For these datasets consisting of non-AF2
models, we additionally use five reference AlphaFold models pre-
dicted for each CASP14 target as reference to evaluate the CASP14
models. The average lDDT score between a CASP14 model and the
five AlphaFold2 models is used as the predicted quality score of the
model. This method is called AF2Consensus. Our method trained
on the combination of CASP8-12 models and AlphaFold2 models
(EnQA-Full) outperform all the other methods on both residue and
model-level metrics, except its per-residue MAE and ranking loss of
GDT-TS is slightly worse than AF2Consensus. Compared with
AF2Consensus, EnQA achieves significantly better per-residue MSE/
correlation, and per-model MSE/MAE, with P<0.01 (paired t-test),

indicating the effectiveness of our method in scenarios with a wide
range of model qualities.

3.2 Analysis of the performance on AlphaFold2-

predicted models
We first examine the distribution of model quality of the models in
the AlphaFold2_test dataset (Fig. 3). The average true lDDT score
for all models is 0.8034, with 79.82% above 0.7. The distribution
of model quality of the CASP and CAMEO datasets is provided in
Supplementary Figures S1 and S2. The results indicate that the struc-
ture models in the AlphaFold2 test dataset have much higher aver-
age quality than the CASP and CAMEO test datasets.

We further investigate the characteristics of the predictions of
EnQA-MSA and the AlphaFold2 self-reported lDDT score on the
AlphaFold2_test dataset (Fig. 4). The predicted scores of EnQA-
MSA have a higher correlation with the true lDDT scores than
AlphaFold2 self-reported quality scores. At both the residue and
model level, the AlphaFold2 self-reported score tends to systematic-
ally overestimate the quality of the models, but EnQA-MSA sub-
stantially reduces the overestimation bias (Fig. 5). There is a
significant difference between the true lDDT scores and AF2
reported scores (P<0.01, paired Wilcoxon signed-rank test), but
there is no significant difference between EnQA predictions and the
true lDDT scores (P¼0.3545, paired Wilcoxon signed-rank test).
This may partially explain why an independent QA method like
EnQA-MSA can evaluate AlphaFold2-predicted structures better
than AlphaFold2’s quality scores. It is also worth noting that the
overestimation by AlphaFold2’s self-reported pLDDT score may not
always be an error since there is also some error in experimental
structures and AlphaFold2-predicted structures may be more accur-
ate than them in some cases.

3.3 Analysis of the impact of features
We examine the impact of different input features on the prediction
performance of our QA model. We calculate the residue-level
Pearson’s correlation coefficient between predicted lDDT scores and
true lDDT scores on the AlphaFold2_test dataset (Fig. 5). We use
EnQA-MSA as the baseline model and report the prediction per-
formance when each type of feature (sequence, solvent-accessible
surface area, volume of Voronoi cell, buriedness and AlphaFold2
self-reported score) is excluded during model training. A larger
change in Pearson correlation coefficient indicates a higher impact.
The detailed metrics of all models used in feature importance ana-
lysis are listed in Supplementary Table S3. The analysis shows that
the AlphaFold2 self-reported confidence score (AF2 plddt) is the
most important feature as its exclusion causes the largest drop in the
Pearson’s correlation coefficient (P<0.01, paired t-test). However,
the performance of the deep learning model without using the confi-
dence score from AlphaFold2 still outperforms the other QA meth-
ods (DeepAccNet and of VoroMQA) by a large margin, indicating

Table 1. Results on AlphaFold2 test dataset (AlphaFold2_test)

Method Per-residue Per-model

MSE MAE Cor MSE MAE Cor

AF2-plddt 0.0173 0.0888 0.6351 0.0105 0.0802 0.8376

DeepAccNet 0.0353 0.1359 0.3039 0.0249 0.1331 0.4966

VoroMQA 0.2031 0.4094 0.3566 0.1788 0.4071 0.3400

EnQA-MSA 0.0090 0.0653 0.6778 0.0027 0.0386 0.9001

EnQA 0.0093 0.0723 0.6691 0.0031 0.0462 0.8984

EnQA-SE(3) 0.0102 0.0708 0.6224 0.0034 0.0434 0.8926

Bold numbers denote the best results.

Fig. 3. The distribution of lDDT scores of AlphaFold test models. The x-axis

denotes the targets ordered by the mean lDDT of their models in increasing order.

The red dots indicate the position of the median and the bars indicate the upper and

lower ranges of model quality of each target
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the effectiveness of the model architecture. Excluding sequence in-
formation also results in a significant decrease in the model perform-

ance (P<0.01, paired t-test). The results also show that one hand-
crafted feature (buriedness) has almost no impact on the prediction

accuracy, while the other two hand-crafted features (the solvent-
accessible surface area and the volume of Voronoi cell) have some
minor impact. Thus, we experiment with a simplified model without

these three features, which yields slightly lower performance than
EnQA-MSA (Fig. 6). The best performance of EnQA-MSA using

multiple features demonstrates the importance of integrating mul-
tiple complementary features to improve the prediction perform-
ance, which also partially explain why it performs better than

AlphaFold2 self-reported confidence score.

4 Conclusion

In this article, we introduce EnQA, a novel 3D-equivariant network

method for protein QA. Our approach utilizes both the geometric

structural features of an input model and the features extracted
from AlphaFold2 predictions. The network is developed as an equiv-
ariant framework with the node and edge features passing through
the node and edge-level graph networks. Performed computational
experiments on diverse structural model datasets prove that EnQA
achieves the state-of-the-art performance of protein QA. More pre-
cisely, on both CASP14 and recent CAMEO protein structures,
EnQA outperforms all other methods on most evaluation metrics,
including using AlphaFold2 predictions as reference to evaluate
models. Furthermore, our method performs better than the self-
reported lDDT score of AlphaFold2 in evaluating high-quality
AlphaFold2 models. On all the test datasets, EnQA performs sub-
stantially better than the previous QA methods, demonstrating the
value of using 3D-equivarnant architecture and AlphaFold2-based
features. Also, we show that the input features extracted from struc-
tural models have a complementary effect with the information
extracted from AlphaFold2 predictions, especially for those models
on which EnQA performs better.

The huge success of AlphaFold2 and its self-reported quality
score in protein structure modeling raised the question of the useful-
ness of EMA methods (Kwon et al., 2021). However, even with
AlphaFold2, in many cases, there are still predicted structures far
from the true structures (Chakravarty and Porter, 2022), especially
when there is no critical information such as good multiple sequence
alignments or homologous structural templates available. The
results in this work show that there is still room of improvement for
evaluating AlphaFold2-predicted structures. There is a need to de-
velop EMA methods to effectively rank AlphaFold2 models or to
identify the potential regions of the models with low quality. As
AlphaFold2 has become the standard tool for protein structure pre-
diction, the next-generation EMA methods should focus mostly on
AlphaFold2-predicted structures that have much higher average
quality than structures predicted by traditional protein structure pre-
diction methods. Therefore, the training and test data for the new
EMA methods need to evolve accordingly as shown in this work.

To the best of our knowledge, our method is the first 3D-equiv-
ariant network approach to leveraging information from
AlphaFold2 predictions to improve model QA. It may be further
expanded for other 3D protein structure prediction tasks such as
protein structure refinement and quaternary structure evaluation by
using task-specific training datasets.
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Sections 3.1 and 3.2). r, Pearson correlation coefficient; q, Spearman correlation co-

efficient. The lDDT scores predicted by EnQA-MSA have higher correlation with

the true lDDT scores than AlphaFold2 self-reported scores

Fig. 5. The distribution of estimation error between the predicted and true lDDT

scores on AlphaFold2_test dataset. The difference between AF2_plddt scores and

true pLDDT scores (green) is significant (P< 0.01), but the difference between

pLDDT scores predicted by EnQA-MSA and true pLDDT scores (red) is not signifi-

cant (P¼0.117)

Fig. 6. The comparison of residue-level Pearson’s correlation coefficient when differ-

ent features are randomly permuted for model QA. The red dots indicate the pos-

ition of the median
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Schütt,K.T. et al. (2017) SchNet: A continuous-filter convolutional neural

network for modeling quantum interactions. In: Proceedings of the 31st

International Conference on Neural Information Processing Systems.

Curran Associates Inc., Long Beach, CA, USA, pp. 992–1002.

Senior,A.W. et al. (2020) Improved protein structure prediction using poten-

tials from deep learning. Nature, 577, 706–710.
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