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Abstract
Protein domains that emerged more recently in evolution have a higher structural disorder and greater clustering of 
hydrophobic residues along the primary sequence. It is hard to explain how selection acting via descent with modi
fication could act so slowly as not to saturate over the extraordinarily long timescales over which these trends persist. 
Here, we hypothesize that the trends were created by a higher level of selection that differentially affects the reten
tion probabilities of protein domains with different properties. This hypothesis predicts that loss rates should 
depend on disorder and clustering trait values. To test this, we inferred loss rates via maximum likelihood for animal 
Pfam domains, after first performing a set of stringent quality control methods to reduce annotation errors. 
Intermediate trait values, matching those of ancient domains, are associated with the lowest loss rates, making 
our results difficult to explain with reference to previously described homology detection biases. Simulations confirm 
that effect sizes are of the right magnitude to produce the observed long-term trends. Our results support the hy
pothesis that differential domain loss slowly weeds out those protein domains that have nonoptimal levels of dis
order and clustering. The same preferences also shape the differential diversification of Pfam domains, thereby 
further impacting proteome composition.

Key words: clade selection, protein evolution, Cope’s rule, intrinsic structural disorder, protein folding, phylostrati
graphy, gene families.
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Introduction
The possibility that evolution could result in long-term dir
ectional change over time has enduring appeal, but there 
are few well-documented examples. It has proven difficult 
to rigorously assess purported universal tendencies toward 
increases in complexity and size over time (McShea 1991; 
Gregory 2008). Perhaps, the best-documented example of 
a long-term trend is that some taxonomic groups show a 
tendency toward increasing body size over time, aka 
“Cope’s rule” (Cope 1885; Payne et al. 2009; Heim et al. 
2015). Interestingly, this trend does not seem to be caused 
by directional selection slowly exerting a preference for lar
ger individuals but rather by the differential diversification 
of larger body size clades (Heim et al. 2015). This is unsur
prising, because directional selection among individuals of 
the same species works quickly, making it an unlikely ex
planation for such a slow directional trend.

New examples of long-term trends were recently ob
served in the properties of protein domains (e.g., intrinsic 
structural disorder [ISD]) as a function of how much time 
has elapsed since their birth, with considerable work per
formed to exclude artifactual explanations (Foy et al. 
2019; James et al. 2021). We find it more plausible that 
some bias in the evolutionary process is responsible for 

these trends, rather than that the external environments 
shaping birth have moved in such a consistent direction 
over such long timescales. One hypothesis is that, regardless 
of the time of birth, all domains were born with properties 
biased toward promoting de novo gene birth (Wilson et al. 
2017), and since then have had different amounts of time to 
evolve away from that starting point toward properties that 
are more optimal for correct folding (Bucciantini et al. 2002; 
Debès et al. 2013; Chiti and Dobson 2017). This hypothesis is 
supported by the fact that the amino acid frequencies char
acteristic of newborn animal domains also make the expres
sion of a random peptide more benign in Escherichia coli 
(Kosinski et al. 2022). But it is very hard to explain why dir
ectional selection on amino acid frequencies has been so 
slow to take full effect. We know that the evolution of ami
no acid frequencies can be rapid, as it is able to keep pace 
with the rapid evolution of nucleotide composition (Brbić 
et al. 2015).

Here, we consider the possibility that differential reten
tion versus. loss of protein domains with different proper
ties might be responsible for long-term trends as a 
function of age. We hypothesize that domains are born 
with a wide range of biochemical properties. From this ini
tial diversity, “fitter” domains, that is, those that duplicate 
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more often and/or are lost less often, are more likely to 
have descendants in extant organisms and thus to appear 
in the older domain age classes.

Unlike other hypotheses, this causal hypothesis predicts 
that a protein property that shows a long-term trend with 
age will also be an indicator of loss rate. One observed 
trend, extending all the way back to the last universal com
mon ancestor, is that younger domains tend to have “clus
tered” rather than interspersed hydrophobic acids along 
their primary sequence (Foy et al. 2019; James et al. 
2021). A second trend, restricted to the evolutionary his
tory of animals, is that younger domains tend to have a 
higher level of ISD, primarily due to trends in the frequen
cies of the 20 amino acids (James et al. 2021). Here, we test 
whether and how ISD and hydrophobic clustering are re
lated to the loss rate of a domain.

What we are proposing is that the relevant level of selec
tion may not be the one that selects among alternative alleles 
of the same gene (fig. 1, top), but instead the level that selects 
among alternative domains capable of fulfilling the same cel
lular functions as genes duplicate, differentiate, and are lost 
(fig. 1, bottom). Rapid loss of recently born protein-coding 
genes has previously been postulated (Tautz and 
Domazet-Lošo 2011; Palmieri et al. 2014; Schlötterer 2015). 
The number of domain copies also appears to be surprisingly 
changeable, with fairly extreme expansions and contractions 
observed even over short evolutionary timescales (Hahn et al. 
2007; Moore and Bornberg-Bauer 2012), leaving plenty of 
scope for differential diversification and retention to be a bio
logically significant influence.

We focus on protein domains rather than on complete 
genes. We take domain annotations from the Pfam data
base (El-gebali et al. 2019) and refer to domains simply 
as Pfams. Protein-coding domains are sometimes thought 
of as functional units of the protein sequence that are able 
to fold independently (Ponting and Russell 2002). 
However, Pfams are annotated by HMMER3 on the basis 
of evolutionary rather than functional relatedness (Finn 
et al. 2011) and as such are fundamental units of protein 
sequence homology. This makes them easier to work 
with than genes, which commonly contain multiple differ
ent Pfams of a variety of ages (Bagowski et al. 2010; 
Bornberg-Bauer and Albà 2013).

We infer loss rates by maximizing the likelihood of the 
observed presence/absence of at least one Pfam instance 
across all species in a phylogeny. As well as this central focus 
on total loss rates, leading to differential retention over 
time (fig. 1, bottom), we perform a complementary analysis 
of differential diversification (fig. 1, middle) by taking the 
mean number of distinct instances of Pfams within a spe
cies. Both presence/absence data and number-of-instances 
data are vulnerable to both false positives and false nega
tives during homology detection. Our previous age assign
ment procedure (James et al. 2021) used a keyword-based 
approach to remove Pfams that were likely incorrectly an
notated in the focal genome due to contamination 
(Salzberg 2017; Lu and Salzberg 2018; Breitwieser et al. 
2019), a problem that if uncorrected will result in nonsens
ical loss rates for affected Pfams. James et al. (2021) also 
removed Pfams that exhibited an implausible phylogenetic 

FIG. 1. Alternative mechanisms/levels of directional selection over evolutionary time. Directional evolution in a trait with cohort age, represented 
by a change from dark to pale, can occur either via (top) descent with modification during which selected (pale) alleles replace other alleles, or 
(bottom) differential retention in which an initial diversity of Pfams is differentially retained. Differential diversification (middle) combines ten
dencies for duplication and tendencies for loss. Note that this is a level of selection situation; a Pfam is a clade of protein-coding sequences and 
their component alleles, and the same figure could be interpreted with individual interests in lieu of allele interests and clade interests in lieu of 
Pfam interests.
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distribution, which could have resulted from either con
tamination or horizontal gene transfer. Here, we go further, 
reducing the rate of false negatives by checking all six read
ing frames of contigs for unannotated Pfam instances and 
then reconsidering whether the phylogenetic distribution 
of the Pfam is implausible. Secondly, we infer total loss rates 
jointly with a rate of false positive hits. Finally, we consider 
the hypothesis of homology detection bias while interpret
ing results.

We ask whether and how ISD and clustering scores are re
lated to the rate of total loss of a Pfam in a lineage and also to 
the number of Pfam instances per species. We analyze animal 
lineages only, because the ISD trends as a function of Pfam 
age found by James et al. (2021) were specific to animals.

Results
We used the phylostratigraphy data set of James et al. 
(2021), restricted to the 6,841 Pfams annotated in at least 
2 out of our 343 animal species and already subjected to a 
number of filters used by James et al. (2021). We scanned 
all six reading frames of intergenic regions to find species 
that contained unannotated instances of these Pfams. 
We also performed additional quality controls to remove 
likely viral or other contaminants on the basis of incoher
ent distribution across the tree (see Materials and 
Methods), resulting in a data set of 6,700 Pfams. We 
then estimated the rate of total loss of each Pfam over 
the animal species in our data set (see Materials and 
Methods). During this maximum likelihood (ML) proced
ure, we iteratively removed Pfam presence data for clades 
(mostly single species) where they are more likely to be 
false positive hits or horizontal gene transfer events.

The median inferred loss rate of a Pfam in the animal phyl
ogeny was 0.0009/My (first and third quartiles of 0.00021 and 
0.0035), that is 0.9 losses per 100,000 years. Note that this is 
not the rate at which a single instance of a Pfam is lost, but 
rather the rate at which all instances of a Pfam are lost from a 
lineage. Unsurprisingly, Pfams with a higher mean number of 
instances per genome tend to have a lower rate of total loss 
(supplementary fig. S1, Supplementary Material online, ad
justed R2 = 0.30, P < 1e−16).

Pfams With a Mean ISD of 0.18 Are Least Often Lost
Pfams with high ISD have high loss rates (adjusted R2 = 0.023, 
slope = 1.35, P = 4e–36; data and loess regression shown in 
fig. 2A). This is the predicted direction in order for their rela
tionship to explain the animal phylostratigraphy trend 
(fig. 3A). Note that the Box–Cox transformation of loss rates 
makes the units of the slope in these linear models hard to 
interpret. Interestingly, this relationship is not just nonlinear, 
but also non-monotonic (loess regression in fig. 2A). A regres
sion model that includes a breakpoint at ISD = 0.18 (95% 
confidence interval [CI]: 0.15–0.21), representing the min
imum loss rate, explains substantially more of the variance 
in loss rate among Pfams (adjusted R2 = 0.030, slopes 
−2.00 and 3.86), and fits the data significantly better than 

a model without a breakpoint (P = 6e−12), better than a 
model with zero slope for ISD values higher than the break
point (P = 1e−45) and better than a model with zero slope 
for ISD values lower than the breakpoint (P = 0.0002).

The existence of a breakpoint rather than a monotonic 
relationship contradicts predictions from the homology 
detection bias hypothesis. That hypothesis expects an 
overestimation of loss rates for high ISD Pfams whose 
homologs are more difficult to detect. While this could 
drive the overall relationship, we found in which Pfams 
with high ISD have high loss rates, it cannot explain why 
loss rates also rise with low ISD <0.18.

Our results are instead consistent with selection acting to 
preferentially remove Pfams at either end of the spectrum 
of ISD. In further support of this, there is less variability in 
ISD within older Pfam cohorts (fig. 4A, slope = −4.1 to 5 
ISD/My, adjusted R2 = 0.88, P = 3e−22, using linear regres
sion weighted by the number of Pfams per age cohort) 
than within younger Pfam cohorts. Ancient Pfams (those 
born over 2,000 Ma) that are still around today have a 
mean ISD of 0.21 (median 0.20), at the upper edge of the 
95% CI for the breakpoint representing minimum loss 
rate. These two observations further support the hypothesis 
that differential retention drives the long-term trend in ISD 
as a function of evolutionary age observed in James et al. 
(2021) and Foy et al. (2019). The fact that ancient Pfams 
may have ISD a little above the breakpoint might be noise 
in the data or it might indicate that the trend of falling 
ISD with age (shown in fig. 4A) has not yet fully saturated.

Pfams With Moderately Interspersed Hydrophobic 
Residues Are Least Often Lost
The hydrophobic residues of younger domains are more 
clustered (i.e., have higher clustering) than those of old do
mains (James et al. 2021). This directional trend could be 
explained most simply if Pfams with higher clustering 
were differentially lost. However, as with ISD, our data 
strongly support a non-monotonic relationship between 
clustering and loss rate (fig. 2B, losses/My is two-parameter 
Box–Cox transformed prior to analyses). The best-fitting 
linear model for clustering incorporated a breakpoint 
with a clustering value of 0.81 (95% CI: 0.77–0.85) corre
sponding to the lowest loss rate. This model has an ad
justed R2 of 0.020 and fits the data significantly better 
than a model without a breakpoint (P = 1e−25), than a 
model with zero slope for the lower clustering values 
(P = 8e−28), and than a model with zero slope for the 
higher clustering values (P = 2e−29). Clustering is not 
known to affect homology detection, but, even if it did, 
it is again not clear how homology detection bias could 
produce a non-monotonic relationship.

A clustering value of 1 corresponds to a random 
distribution of hydrophobic residues, while the optimal 
clustering value of 0.81 represents the interspersion of 
hydrophobic residues. Similar to the ISD results, this break
point value corresponds closely to the average clustering 
score of the most ancient Pfams (over 2,000 My old), which 
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have mean and median clustering scores of 0.89 and 0.88, 
respectively. The fact that this is higher than the upper end 
of our 95% CI for the breakpoint suggests that the trend in 
clustering values with age has not yet saturated. The 
y-intercept of figure 3B shows that Pfams are born with 
clustering scores a little above 1. Because Pfams tend to 
be born with relatively random amino acid placement cor
responding to a clustering score of approximately 1 that is 
so much higher than the optimum value of 0.81, differen
tial Pfam retention can explain the progressive drop in 
clustering scores with Pfam age. In further support of the 
hypothesis that differential loss is responsible for the trend 
in clustering with age, there is more variability in clustering 
within younger Pfam cohorts (fig. 4B, slope of standard de
viation in clustering with age = −5.5 × 10−5, adjusted R2 =  
0.60, P = 2e−10, using linear regression weighted by num
ber of Pfams per age cohort).

Results Are Robust to Pfam Age as a Confounding 
Factor
When ascertaining the causal effects of ISD and clustering 
on loss rates, Pfam age has the potential to be a 

confounding factor in our analyses, for two reasons. 
Firstly, if older Pfams also have lower ISD and less clustered 
hydrophobic amino acids (James et al. 2021) for reasons 
other than differential loss due to these properties, this 
could potentially drive a spurious relationship between 
Pfam properties and loss rates. As expected, we 
observe lower loss rates for older Pfams in our data (ad
justed R2 = 0.050, P = 2e−76, supplementary fig. S2, 
Supplementary Material online). Secondly and more sub
tly, Pfams of identical age share the same speciation events, 
which enable Pfam losses to be observed. This results in 
phylogenetic structure in the data. A further complication 
is that the fact that older Pfams have survived to be ob
served might create ascertainment bias toward estimated 
loss rates that are lower than the true loss propensity.

To control both for any confounding properties of Pfams 
and for phylogenetic structure, we used mixed-effect linear 
regression models, including age as a random rather than a 
quantitative effect. Note that each branch of the tree corre
sponds to a possible Pfam age, making age a discrete quan
titative variable. Empirically, we found that random effects 
models are better-supported model choices: for example, 
for models of loss rate and ISD, R2 = 0.33 if we include age 

FIG. 2. Pfam loss rates and copy number depend, often non-monotonically, on ISD and clustering values. The lowest loss rates are seen for Pfams 
with a mean ISD of 0.18 (A) and mean clustering value of 0.85 (B). Pfams with a low ISD have a higher number of instances per genome, in a more 
monotonic relationship (C ). Pfams with a mean clustering value of 0.85 have the highest number of instances per genome. Each point represents 
a Pfam. Violin plots are a visual guide only, based on dividing the data into groups of equal range of ISD (A, C ) or clustering (B, D). Loess regression 
curves are shown in dark, with 95% CIs shown as shading. In (A) and (B), horizontal bands of points near the bottom represent 0, 1, 2, etc. ob
served loss events, while in (C ) and (D) horizontal bands represent Pfams present in only a single copy per genome. In (B) and (D), for better 
visualization, the x-axis has been truncated at 2.5.
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as a random effect, and R2 = 0.058 if we include age as a lin
ear predictor, where R2 here is the conditional R2 describing 
the variance explained by the entire model. Akaike informa
tion criterion (AIC) scores for the respective models are 
23,580 and 24,432. Similarly, for models of loss rate and clus
tering, a model that includes age as a random effect model 
has R2 = 0.34, while a fixed effect model has R2 = 0.05. AIC 
values are 23,603 and 24,476, respectively.

The non-monotonic relationship between loss rate and 
ISD remains statistically supported in the random effect 
model (P = 0.0003), with the model having a marginal 
R2, which represents the variance explained in loss rate 
just by the fixed effect of ISD, of 0.0030, and a slope of 
−1.17 for values of ISD below 0.18, and 0.64 for values 
above. The non-monotonic relationship with clustering 
also remained supported in the random effect model 
(P = 0.02), with a marginal R2 of 0.00054, with a slope of 
−0.24 for values of clustering below 0.81 and 0.097 for va
lues of clustering above 0.81. While controlling for Pfam 
age causes marginal R2 values to drop dramatically, the 
causal direction is unclear. That is differences in ISD and 
clustering might drive changes in loss rates as a function 

of Pfam age, in which case controlling for age would re
move a good portion of the genuine biological effect. 
However, the statistical significance we find indicates 
that Pfam age alone is insufficient to be the sole driver 
of the dependence of loss rates on ISD and clustering.

Differences in Loss Rates Are Small Enough to 
Produce Slow Change
Even without controlling for phylogenetic structure/age, 
the effect sizes for loss and clustering on ISD are clearly 
small. In most contexts, this would cast doubt on their bio
logical relevance. However, our motivating question is to 
discover what mechanism might have a small enough ef
fect size such that its steady action could continue for bil
lions of years before saturating. We, therefore, next use 
simulations to ask whether the effects of ISD and cluster
ing on loss are of approximately the right magnitude to ex
plain the relationship between these variables and Pfam 
age, as observed in James et al. (2021).

We simulate a set of Pfams initialized with the distribu
tion of ISD or clustering values observed in young animal 

FIG. 3. Observed phylostratigraphy trends in ISD (A) and Clustering (B) values occur on similar timescales as in our simulations of differential loss 
rates (C and D). In (A) and (B), each box represents all Pfams of a particular age category, with the widths of the boxes proportional to the square 
root of the number of Pfams in the group. Boxplots show the median, upper, and lower quartiles of the data, while the whiskers represent the 
largest and smallest data value above and below the interquartile range multiplied by 1.5. Grey points show the values for individual Pfams. The 
dark line is the loess regression slope of the effect of age on ISD (A) and clustering (B), with the 95% CI shown as shading. In (C ) and (D), we plot 
the mean of ISD (C ) and clustering (D), with error bars showing the standard deviation. Timepoints all use the same simulations and so are not 
independent, that is, the number of domains in our simulations decreases with time. Dashed lines indicate the values of ISD and clustering cor
responding to the lowest loss rates. Loss rates for the simulations are those inferred from piecewise linear regression from figure 2A and B.
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Pfams and subject them to differential loss at rates given 
by our fitted regression models with breakpoints. This 
produces directional trends in ISD and clustering on 
the pertinent timescale (fig. 3C and D). The relationship 
between ISD (fig. 3A) and clustering (fig. 3B) is visually ex
tremely similar to that generated in our simulations (fig. 
3C and D). Our simple single-branch single loss event 
simulation ignores many complexities of the actual 
phylogenetic tree but is sufficient to show that the effect 
sizes of ISD and clustering on loss rates are of approxi
mately the right magnitude to explain phylostratigraphy 
trends.

ISD and Clustering Are Related to the Mean Number 
of Pfam Instances
The mean number of instances of the Pfam per genome is an 
alternative metric of evolutionary success. Not only is it likely 
an indirect proxy of total loss rate (supplementary fig. S1, 
Supplementary Material online), but it also shapes proteome 
composition in its own right, independently of its effect on 
total loss rate (fig. 1, middle vs. bottom). The addition of sub
stantially novel protein features through domain duplication 

followed by significant divergence (Nasir et al. 2014) is sub
sumed within our metric of instance number.

Unfortunately, the mean number of instances per gen
ome is expected to depend on genome annotation quality, 
which is likely to vary across the animal species in our data 
set. We have at least partly addressed this problem by re
stricting analyses to genomes deemed “Complete.”

In agreement with our loss rate results, Pfams with a 
higher mean number of instances per genome have lower 
levels of ISD (fig. 2C, R2 = 0.0069, P = 7e−11). Pfams with a 
higher mean number of instances per genome also have 
low levels of hydrophobic clustering (adjusted R2 =  
0.0013, P = 0.0017). A nonlinear model for the effect of 
ISD on mean number instances is only marginally sup
ported over a linear model (P = 0.049 in model compari
son with linear relationship, breakpoint = 0.57, 95% CI: 
0.42, −0.73), unlike the clear case for a nonlinear relation
ship with loss rates. However, for hydrophobic clustering, 
we again find support for a nonlinear relationship (fig. 
2D, adjusted R2 = 0.0099), with a highly supported break
point at the same value of clustering (0.85, 95% CI: 0.79– 
0.90). A model with a clustering breakpoint fits the data 
significantly better than one without (P = 1e−13).

FIG. 4. Younger Pfam cohorts have higher variance within their ISD (A) and clustering (B) distributions, a trend whose timescale is captured in 
our simulations (C, D). (A) and (B) Point size is scaled by n = number of Pfams in that category. Lines show the weighted linear regressions 
(weighted by number of observations per category), and their 95% CIs. In (A), for ISD, weighted R2 = 0.60, P = 2e−10. In (B), for clustering, 
weighted R2 = 0.60, P = 2e−10. In (C) and (D), the standard deviation of ISD (C ) and clustering (D) values are plotted for cohorts of simulated 
Pfams.
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Discussion
The persistence of trends in biochemical properties of pro
tein domains (ISD and hydrophobic clustering) over such 
strikingly long timespans has been an unresolved puzzle. 
We hypothesized that at birth, Pfam domains have a 
wide range of properties and are then differentially re
tained versus lost as a function of these properties. Our 
empirical results provide a striking confirmation of the 
predictions of this hypothesis. Specifically, optimal reten
tion is achieved with somewhat low ISD values close to 
0.18, and with interspersion of hydrophobic amino acids 
corresponding to a clustering value of 0.8. The oldest co
hort of Pfams has mean ISD and clustering close to these 
values, and there is less variance within old Pfam cohorts 
than within young Pfam cohorts. Simulations show that 
the effect sizes of differential retention as a function of 
ISD and clustering are of the right order of magnitude 
(i.e., small enough) to explain how phylostratigraphy 
trends can persist for such long evolutionary times with
out saturating. Conditional on retention, similar values 
of ISD and clustering are associated with a higher mean 
number of domain instances per genome, magnifying 
the impact of these biases on proteome-wide composition.

This study implements high-throughput phylostratigra
phy; while we implemented a number of novel measures 
to reduce the frequency of false positive and false negative 
homologs, our data set will not be free of error. We focus 
on Pfam domains, for which homology detection is per
formed using the more sensitive program HMMER rather 
than BLASTP (Finn et al. 2011; El-gebali et al. 2019). 
Concerns about homology detection bias usually focus 
on its potential for causing some rapidly evolving Pfams 
to be annotated as too young (Moyers and Zhang 2017; 
Weisman et al. 2020). However, Pfam age is not a central 
focus of our analysis. The potential issue here is rather 
that homology detection bias might explain why Pfams 
with high ISD appear to be lost more often and have fewer 
instances per genome (a similar bias for clustering has not 
been documented). However, the known difficulty in de
tecting homology given higher ISD cannot explain our ob
served non-monotonic dependence of loss rates and 
instance number on ISD.

To detect as many true homologs as possible, instead of 
relying on existing genome annotations, we scan all six 
reading frames for hits. Each Pfam was as a result included 
in a mean of 7.35 and a median of 4 new animal species, 
out of 343. However, HMMER can produce false positives 
(Pearson et al. 2017); while the use of curated Pfam seeds 
might reduce this problem, it will not completely eliminate 
it. We minimized impact by co-inferring false positive (or 
horizontally transferred) hits, with a higher rate for those 
found in our 6-frame scan, at the time of our inference 
of loss rate. Overall, these data quality measures resulted 
in a substantial decrease in the estimated mean loss rate 
of approximately 14%. Another key quality control was 
to remove some Pfams altogether as potential contami
nants not from the genomes under study. Our data set 

and methodology represent a new standard for work on 
protein domain evolution, which, while imperfect, has re
sulted in a higher-quality data set for further analysis. 
Nevertheless, given the residual likely presence of false 
positive and false negative Pfam hits, we expect our results 
on the total loss of a Pfam to be more robust to genome 
annotation issues than the number of Pfam instances 
per genome. However, we note that our instance number 
and loss rate results qualitatively agree.

While protein domains no doubt experience idiosyn
cratic selection pressures associated with their specific 
structures and functions within organisms, our findings 
suggest a more general statistical tendency for Pfams 
with ISD and clustering values close to the “optimum” 
to be differentially retained in the long term. A candidate 
cause for this tendency stems from the fact that the same 
biophysical properties that promote correct folding also 
promote toxic aggregation, posing a trade-off dilemma 
for proteins in general (Bucciantini et al. 2002; Chiti 
and Dobson 2017). Foy et al. (2019) proposed that young 
genes tend to address this dilemma via a more “primitive” 
strategy, with high ISD representing a sacrifice of folding 
but safety from misfolding. The slow evolution of hydro
phobic interspersion was proposed to eventually provide 
an alternative method for avoiding toxic aggregation that 
allows for tighter protein folds (Foy et al. 2019). Our find
ings suggest that the emergence of a tight protein fold 
might instead depend on good luck in the properties of 
the newborn protein sequence from which it derives. 
This idea is supported by lattice protein simulations de
signed to capture frustration between folding and aggre
gation, in which there is an abundance of lower fitness 
peaks and where sequences born with high hydrophobi
city (the lattice protein equivalent of low ISD) are more 
likely to find a high fitness peak (Bertram and Masel 
2020).

The current study provides evidence in support of the 
predictions made by the differential retention hypothesis. 
These predictions are not made by the hypothesis of direc
tionality in descent with modification, but nor is this hy
pothesis ruled out by our findings. Biased descent with 
modification might be operating simultaneously, in either 
the same or the opposite direction to the forces documen
ted here. While the evolution of amino acid frequencies 
can be rapid enough to keep pace with changes in nucleo
tide composition (Brbić et al. 2015), epistatic effects might 
lead to significant deceleration beyond a certain point 
(Vieira-Silva and Rocha 2008). Vertebrate species with 
higher effective population size tend to evolve higher 
ISD (Weibel et al. 2020), which is the opposite direction 
to what would be needed to produce the phylostratigra
phy trends under the assumption that most ancestral 
lineages had high population size. While ISD was not dir
ectly assessed, long-term directional trends in amino acid 
frequencies via descent with modification have been in
ferred during early evolution (Groussin et al. 2013), as 
well as during the more recent evolution of cold tolerance 
(Fontanillas et al. 2017; Lecocq et al. 2021).
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However, while selection among alternative alleles of the 
same domain (i.e., descent with modification) is often the 
default explanation for molecular evolution trends (fig. 1, 
top), we provide evidence for selection acting on a higher 
level, among protein domains, highlighting the importance 
of differential retention and diversification of domains as 
an evolutionary force in protein sequence evolution 
(fig. 1, middle and bottom). Selection acting on multiple 
different levels to affect a trait does not necessarily result 
in conflict between the levels (Lewontin 1970). This higher 
level is analogous to the dependence of speciation and ex
tinction rates on the traits of species (see, e.g., Aguilée et al. 
2018). An interesting parallel to our findings is the work of 
Heim et al. (2015), who found that long-term trends do not 
seem to be caused by directional selection, but rather by 
the differential diversification of certain clades. Here, we 
find that the same broad category of explanation applies 
to long-term trends in protein properties as a function of 
age since they originated.

The study of long-term directional change in evolution, 
and the level of selection at which it occurs, has historically 
focused on species-level traits such as morphology. But 
there are several advantages of conducting such studies 
on proteins. Firstly, because Pfam domains are easily iden
tified using HMMER, they are highly tractable for use in the 
study of higher levels of selection. In particular, it is easier 
to count how many instances there are of a Pfam in a gen
ome than it is to identify all species in a clade.

Secondly, it is impossible to distinguish between, for ex
ample, high extinction rates versus low speciation rates 
from observations of extant species distributions alone 
(Louca and Pennell 2020). An inherent difficulty is that 
we cannot observe extinct species once they are gone; fossil 
data are required to provide additional information 
(Mongiardino Koch et al. 2021). However, when a domain 
undergoes complete loss in one lineage, we can directly infer 
that loss through comparison to other lineages in which it 
was not lost. Sophisticated methods developed to study 
speciation and extinction rates (Fitzjohn 2012) could be 
adapted to take advantage of this during the study of do
main duplication and loss rates. Future studies could exam
ine not just how loss rates depend on trait values but also 
account for systematic variation in duplication and loss 
rates among clades, or over time. The study of protein do
main diversification and loss is interesting not only to ad
vance our understanding of the evolution of the 
proteome but also as a powerful new study system for those 
interested more broadly in the causes of long-term direc
tional trends in evolution, and in levels of selection.

Materials and Methods
Pfam Selection
We begin with the Pfam phylostratigraphy data set of 
James et al. (2021). Briefly, for a species to be included in 
this data set, a “Complete” annotated genome had to be 
available from the National Center for Biotechnology 

Information (NCBI), and the species had to be present in 
Timetree (Hedges et al. 2006). We further restricted this 
data set to those Pfams that were present in a minimum 
of 2 animal species, and for which both ISD and clustering 
scores could be calculated, resulting in a data set of 6,841 
Pfams, and their distributions over a phylogenetic tree of 
343 animal species. These Pfams had previously been sub
ject to two quality control filtering steps: a keyword-based 
screening designed to exclude possible contaminants and 
an additional z-score screen to exclude Pfams with species 
distributions indistinguishable from chance. Genes and 
Pfams annotated as mitochondrial were also already ex
cluded from our starting database.

Pfam ages were initially taken from James et al. (2021), 
based on a species tree of 435 eukaryote species, with add
itional resolution among the two most ancient Pfam co
horts taken from Weiss et al. (2016). While we calculate 
loss rates only within the animal species tree, our analysis 
includes Pfams that originated prior to animals and that 
are, therefore, also found in other taxa.

False Negatives
To detect potentially missing Pfam instances in unanno
tated genes, including those missed due to frameshift se
quencing errors, we translated all regions not annotated 
as coding sequences (CDS) in all six frames. For this pur
pose, we downloaded annotated genomes of the 343 ani
mal species in our data set from NCBI, with access dates by 
species varying between May and July 2019. We removed 
sequences annotated as “CDS” and any sequences of “N” 
more than 3 nucleotides long. We then translated the re
sulting nucleic acid sequences in all six reading frames, not 
requiring a start codon for initiation but ending each poly
peptide at stop codons, similar to the procedure imple
mented by Deutekom et al. (2019), and ran amino acid 
sequences through InterProScan version 5.33–72.0. We re
cord all novel Pfam hits for each species. This resulted in 
each Pfam being included in a mean of 7.35 and a median 
of 4 new animal species. Although this six-frame search 
procedure generates false positives at an elevated rate rela
tive to annotated Pfams, these false positive rates remain 
modest (see below). To avoid inflation of mean in
stances/genome by pseudogenes, we only correct putative 
false negatives in cases where the species in question 
would otherwise have zero instances of the Pfam.

False Positives
Excluding Contaminant Pfams
As in James et al. (2021), we exclude any Pfam that was 
both present in fewer than half the species in the original 
data set (i.e., not restricted to animals) and had a species 
distribution that was indistinguishable from chance. 
Such Pfams are likely to be contaminants. Briefly, for 
each number of species n, we performed 20,000 simula
tions in which we placed Pfams in n randomly selected spe
cies. We then inferred the number of total losses by 
parsimony and used the mean and variance for the 
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resulting distribution of simulated numbers of total losses 
to calculate z scores for each empirically observed distribu
tion of n Pfam instances. To remove Pfams with species 
distributions indistinguishable from chance, James et al. 
(2021) excluded Pfams with z scores < −2. Here, we used 
an additional screen where we excluded any Pfams that 
had z scores < −2 either with or without the intergenic 
hits flagged as possible false negatives as described above. 
This resulted in the further removal of 141 Pfams, leaving a 
data set of 6,700 Pfams.

Excluding False Positive Pfam Presence While Estimating Loss 
Rates by Maximum Likelihood
We jointly estimate the total loss rate of each Pfam by ML, 
together with the identity of false positive or horizontally 
transferred hits/instances. First consider the case of no 
false positive or horizontally transferred hits. Using branch 
lengths obtained from Timetree, we assume that loss 
events are independent, making the probability of loss of 
Pfam i with loss rate λi per My on branch j of length tj equal 
to 1 − exp(−tiλj). The likelihood that Pfam i is completely 
lost on branches j and retained in at least one copy on 
branches k, given the total loss rate λi, is:

Lλ(λi) =
􏽙

k

exp(−tkλi)
􏽙

j

(1 − exp(−tjλi)) (1) 

We first provisionally assign losses by assuming a Pfam arose 
on the branch basal to the monophyletic clade that includes 
all species with the Pfam and is lost on the branches that ex
plain the current distribution with the fewest number of 
losses, that is we use Dollo parsimony (see fig. 5). We then 
use Newton’s method to find the loss rate that maximizes 
the log likelihood, initialized at the loss rate calculated as 
the number of losses/total branch length of the Pfam tree. 

Because multiple loss events can occur on the same branch, 
the estimated ML loss rate estimate is generally very close but 
not identical to the initialization value (parsimony mean and 
median: 0.0058, 0.00088, ML mean and median: 0.0067, 
0.00094). Occasionally, false positives/horizontal transfer 
events that are not yet accounted for trigger runaway infer
ence of absurdly high ML loss rates at this stage. When the 
ML loss rate > 1 per My, we, therefore, reset the loss rate 
to the initialization value originally estimated under parsi
mony, with associated likelihood, prior to proceeding.

Next, to remove false positive/horizontally transferred 
Pfam presence data, we use a recursive empirical 
Bayesian procedure. We calculated two prior probabilities: 
fc, that the annotated presence of a Pfam in a species or 
clade is a false positive, and fi, that a Pfam presence discov
ered only by our six reading frame scan of intergenic se
quences is a false positive. These were initialized at 10−6 

and 0.2, respectively.
If PC is the set of species annotated as having the 

Pfam from CDS observations, and Pi is the set of species 
annotated as having the Pfam only by us from the 
InterProScan intergenic search, the likelihood of observing 
the data if the species sets FC and Fi are false positives is:

L = Lλ(λi)f
|FC|
C (1 − fC)|PC−FC|f |Fi|

i (1 − fi)|Pi−fi| (2) 

where λi is re-estimated by ML for each species set FC and 
Fi, and absolute magnitude notation indicates the number 
of species in the set.

To find the sets FC and Fi that maximize the likelihood, 
we first group Pfam presence observations into the largest 
possible monophyletic clades where all species putatively 
possess at least one copy of the Pfam of interest. We then 
begin by “flipping” each such monophyletic clade, that is 
designating all species in a clade as being false positive 
hits or horizontal transfer events, and determining whether 
the likelihood improves. The false positive designation that 
improves the likelihood the most is kept, and then the pro
cess is repeated. In these subsequent iterations, we also test 
whether flipping a false positive back to a true positive im
proves likelihood. The process ends when no single flip im
proves the likelihood. After applying this process to all 
Pfams, we use the resulting set of false positive exclusion 
to estimate the two false positive probabilities. Using this 
as a revised empirical prior, we then repeat the procedure 
until no further change in the false positive rates is observed. 
Our method rapidly converges within four iterations, to a 
false positive rate of 0.00021 for Pfams previously annotated 
as coding and 0.031 for Pfams annotated here by us based 
on the presence in putatively intergenic regions. We calcu
late the mean number of Pfam instances per animal species 
within the set of species annotated as true positives at the 
end of the procedure described above.

Our procedures to include presence data when Pfams 
were previously unannotated, and to exclude presence 
data as described above, had a noticeable quantitative im
pact on our data. The combined effect of these quality 
control measures caused the mean and median loss rate 

FIG. 5. Inferring loss events for a Pfam by Dollo parsimony. Dollo par
simony assumes a Pfam arose exactly once, on the branch basal to 
the monophyletic clade that includes all species with the Pfam, 
and is lost on the branches that explain the current distribution 
with the fewest number of losses. Species with at least one instance 
of the Pfam are indicated with checks and those without by crosses. 
We initialize the Pfam loss rate as 1/sum of unshaded branch lengths, 
that is, all unshaded branches are counted by index k, whereas the 
most basal-shaded branch is counted by index j in equation (1). 
We then refine this coarse Dollo parsimony-based estimate through 
ML techniques that allow for false positive/horizontally transferred 
instances (eq. 2).
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to fall from 0.0075 and 0.00091 to 0.0065 and 0.00090. The 
mean and median number of Pfam instances per species 
rose from 5.9 and 2.2 to 6.2 and 2.4.

For some young Pfams (appearing after divergence with 
plants), our procedures to reduce false negative and false 
positive errors in presence annotation within the animal 
species tree led us to re-estimate Pfam age.

Intrinsic Structural Disorder
We calculated predicted ISD using IUPred 2 (Dosztányi 
et al. 2005; Mészáros et al. 2018), which scores each amino 
acid between 0 and 1, with a low score indicating low dis
order. In order to obtain a single estimate for each specific 
Pfam instance, we averaged over all amino acids. Per Pfam 
scores were then calculated by finding the mean over all 
copies of the Pfam in our data set (i.e., animal species 
with more Pfam instances had higher weight).

Clustering
Briefly, we calculated clustering as a kind of normalized index 
of dispersion: the variance in the number of the most hydro
phobic amino acids (Leu, Ile, Val, Phe, Met, and Trp) among 
blocks of six consecutive amino acids compared to the 
mean number, normalized so as to be comparable across 
Pfams of different lengths and hydrophobicities. If the length 
of a Pfam was not a multiple of 6, we took the average of all 
possible amino acid frames of 6, truncating the ends appropri
ately. For more detail, see Foy et al. (2019) and James et al. 
(2021). A clustering value of 1 indicates the random distribu
tion of hydrophobic residues, with higher values indicating 
that hydrophobic residues tend to be arranged in clusters 
along the sequence and lower values indicating that hydro
phobic residues are more evenly distributed along the se
quence than would be expected by chance. As for ISD, per 
Pfam scores were then calculated as the mean over all in
stances of each Pfam in our animal data set.

Statistics
All plotting and statistical analyses were performed in 
R. Linear regression models that incorporate breakpoints 
were implemented using the segmented package. We 
used the packages lme4, MuMIn, and segmented to con
duct models, and ggplot2 to create plots. Prior to linear re
gression, we transformed the loss rate using an optimized 
two-parameter Box–Cox transform (λ = 0.0054, λ2 = 6.1e 
−06) calculated using the R package geoR. We trans
formed the mean instance number using a Box–Cox trans
form (λ= −0.61). We transform after rather than before 
taking the mean because the natural units for scoring im
pact on the proteome (fig. 1 middle) are linear. Histograms 
comparing the distribution of untransformed versus trans
formed loss rates, in addition to Q–Q plots illustrating the 
requirement for transformation in our linear regression 
models with ISD, are shown in supplementary figure S3, 
Supplementary Material online.

Throughout this work, we report the adjusted R2 values 
for our linear regression model results, as implemented in 

the programming language R, which uses the Wherry for
mula (Wherry 1931). This R2 accounts for the number of 
explanatory variables included in the model. Nested mod
els were compared using the anova function in base R. We 
conducted mixed effects models in R using the lmer pack
age and calculated corresponding pseudo R2 values using 
the R package MumIn. This package returns marginal R2 

values, which can be interpreted as the variance explained 
by fixed effects in the model, and conditional R2 values, 
which can be interpreted as the variance explained by 
both the fixed and random effects in the model 
(Nakagawa and Schielzeth 2013).

Simulations
We performed simulations to assess the biological relevance 
of our inferred loss rates. We initialize these simulations by 
sampling, with replacement, the Pfams that we estimate to 
be younger than 100 My old, to produce an initial set of 
5,000 Pfams, each represented by its ISD and clustering va
lues. We then assign each Pfam the loss rate predicted from 
either its ISD value, or its clustering value, on the basis of our 
corresponding regression model. For each Pfam, we then 
sample the time to a single loss from an exponential distri
bution, with scale parameter = 1/loss rate. We then track 
the mean and standard deviation of the population of sur
vivors over time.

Supplementary Material
Supplementary data in the form of three supplementary 
figures are available at Molecular Biology and Evolution on
line. Pfam loss rate and age data, R scripts required to rep
licate data anlaysis, and python simulation code are all 
available at https://github.com/j-e-james/DomainLossRate.
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