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Abstract
Dissecting genetic variation of local breeds is important for the success of conservation. In this research, we investigated 
the genomic variation of Colombian Creole (CR) pigs, with a focus on the breed-specific variants in the exonic region of 34 
genes with reported effects on adaptive and economic traits. Seven individuals of each of the three CR breeds (CM, Casco 
de Mula; SP, San Pedreño; and ZU, Zungo) were whole-genome sequenced along with 7 Iberian (IB) pigs and 7 pigs of each 
of the four most used cosmopolitan (CP) breeds (Duroc, Landrace × Large White, and Pietrain). Molecular variability in CR 
(6,451,218 variants; from 3,919,242, in SP, to 4,648,069, in CM) was comparable to that in CP, but higher than in IB. For 
the investigated genes, SP pigs displayed less exonic variants (178) than ZU (254), CM (263), IB (200), and the individual 
CP genetic types (201 to 335). Sequence variation in these genes confirmed the resemblance of CR to IB and indicates that 
CR pigs, particularly ZU and CM, are not exempt from selective introgression of other breeds. A total of 50 exonic variants 
were identified as being potentially specific to CR, including a high-impact deletion in the intron between exons 15 and 
16 of the leptin receptor gene, which was only found in CM and ZU. The identification of breed-specific variants in genes 
related to adaptive and economical traits can bolster the understanding of the role of gene-environment interactions on local 
adaptation and points the way for effective breeding and conservation of CR pigs.
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Introduction

Current pig production is based on highly cosmopolitan 
selected lines that are managed under intensive production 
systems. Still, there is a growing interest in the conserva-
tion of local breeds in favour of biodiversity (Ciobanu et al., 

2001) and, in particular, as a source of adaptive variation 
against climate change disturbances. The three officially rec-
ognized Colombian Creole (CR) pig breeds (ZU, Zungo; 
CM, Casco de Mula; and SP, San Pedreño) are a good 
example of environmental adaptation, with pigs living in 
areas from around sea level to 3000 m of altitude (Ocampo-
Gallego, 2019; Suárez-Mesa et al., 2021). Similar to other 
local breeds (Kušec et al., 2015), the census of CR pigs has 
been continuously declining in recent decades as intensive 
farming has replaced traditional production systems. Lat-
est reports indicate that the three CR pig breeds are at high 
risk of extinction, with only 138 CM, 99 SP, and 128 ZU 
censed individuals (FAO, 2018). Currently, most of these 
individuals are maintained in three independent nucleus 
farms, one per breed, which are managed by the Colombian 
Agricultural Research Corporation (AGROSAVIA). In each 
nucleus farm, pigs are distributed in family groups and sub-
jected to a circular mating system for maintaining genetic 
variability (Ocampo-Gallego, 2019). These pigs are amongst 
the few available individuals that can be used to investigate 
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whether CR pigs harbour specific genetic variants that merit 
conservation.

Conservation of local breeds depends on their utility 
and prospects as a research, social, or economic resource 
(Barker, 1999). The Iberian pig, the most likely ancestor of 
CR pigs (Burgos et al., 2013), can be referred to as a model 
of how a local breed, previously at risk, is now abundantly 
used for producing premium pork products (García-Gudiño 
et al., 2021) and in genetic research (Crespo-Piazuelo et al., 
2020). The identification of breed-specific polymorphisms in 
genes related to adaptive and performance traits (Bovo et al., 
2020) can be a useful first approach to enhance the genetic 
value of local breeds (Herrero-Medrano et al., 2013; Muñoz 
et al, 2018). However, this has not yet been done in CR pigs. 
As in many other local breeds, the first attempts to geneti-
cally characterize CR local breeds were based on a small set 
of neutral markers such as microsatellites (Oslinger et al., 
2006; Gélvez et al., 2015), but their relationship with rel-
evant traits is not straightforward (Kirk & Freeland, 2011).

Next-generation DNA sequencing empowers geneticists 
to identify genetic variants at higher resolution than previ-
ously. Whole-genome sequencing has already been used in 
some European endangered local breeds (D’alessandro et al., 
2019; Herrero-Medrano et al., 2014), but not in CR, where 
only a few variants associated with meat quality and fertility 
have been studied (Hernández et al., 2008; Pardo, 2016). In 
order to ensure the continuity of CR breeds, a more profound 
assessment of their genetic diversity is needed. In particular, 
CR breeds may carry breed-specific variants of genes related 
to adaptive and economic traits, such as those reported to 
affect relevant morphological, reproductive, growth, disease 
resilience, or meat quality traits. Thus, this research aims at 
identifying and characterizing the genetic variation in genes 
with potential effects on adaptive and economic traits in CR 
breeds through whole-genome sequencing.

Material and methods

Animals

Seven representative individuals from each of the three CR 
breeds (ZU, CM, and SP) were randomly sampled across 
available families (one per family to ensure representative-
ness) from the AGROSAVIA germplasm breeding nucle-
uses of La Libertad (Department of Meta), for CM, El Nus 
(Department of Antioquia), for SP, and Turipaná (Department 
of Córdoba), for ZU, from April to July 2019 (Suárez-Mesa 
et al., 2021). In addition, 7 Iberian (IB) and 21 cosmopolitan 
(CP) pigs (7 Duroc, 7 Pietrain and 7 Landrace × Large White) 
from the UdLGIM (University of Lleida) biobank (Estany 
et al., 2014) were also randomly sampled. The IB and CP pigs 
were chosen for being, respectively, the most likely ancestors 

of CR pigs and the current most representative transboundary 
genetic types. Finally, to better estimate the allele distribu-
tion across genetic types, the genotypes of 101 additional pigs 
from the Iberian trunk (IT; 53 IB and 48 Alentejano) and 194 
CP (2 Pietrain, 151 Duroc, and 41 Landrace × Large White) 
for the 44 preselected markers (see below) were retrieved 
from either public data (Muñoz et al., 2018) or the UdLGIM 
biobank.

Isolation of genomic DNA and whole‑genome 
sequencing

Genomic DNA isolation was performed from blood samples. 
Briefly, blood samples were washed with TE buffer, then 
lysed in the presence of proteinase K, and DNA was purified 
by phenol:chloroform extraction, followed by ethanol precipi-
tation. Finally, the DNA was resuspended and stored in TE 
buffer. The quantification and estimation of the quality and 
purity of the genomic DNA were done by spectrophotometer 
(NanoDrop N-1000, Thermo Fisher Scientific, Wilmington, 
USA). The integrity of the DNA was tested by electropho-
resis on a 0.8% agarose gel and visualized by staining with 
ethidium bromide under UV illumination. Following the 
requirements of the National Center for Genomic Analysis 
(CNAG-CRG, Barcelona, Spain), all samples had a minimum 
concentration of 50 ng/µl. The concentration was estimated in 
a fluorometer (Qubit 4, Thermo Fisher Scientific).

The short-insert paired-end libraries for the whole-
genome sequencing were prepared with a PCR-free protocol 
using the KAPA HyperPrep kit (Roche, Basel, Switzerland), 
with some modifications. In short, depending on the starting 
DNA available, 0.4 to 1.0 µg of genomic DNA was sheared 
on a Covaris™ LE220-Plus (Covaris, Brighton, UK) in order 
to reach the fragment size of ~ 400 bp. The fragmented DNA 
was size-selected for the fragment range of 220–550 bp with 
AMPure XP beads (Agencourt, Beckman Coulter, Nyon, 
Switzerland). The size-selected genomic DNA fragments 
were end-repaired and adenylated, and adaptors with unique 
dual indexes and unique molecular identifiers compatible 
with the Illumina platform (Integrated DNA Technologies, 
Leuven, Belgium) were ligated. The libraries were quality-
controlled on an Agilent 2100 Bioanalyzer with the DNA 
7500 assay (Agilent, Madrid, Spain) for size and quantified 
by KAPA Library Quantification Kit for Illumina platforms 
(Roche). The libraries were sequenced on a NovaSeq6000 
(Illumina, San Diego, CA, USA) platform in paired-end 
mode with a read length of 2 × 151 + 17 + 8 bp following the 
manufacturer’s protocol for dual indexing. Image analysis, 
base calling, and quality scoring of the run were processed 
using the manufacturer’s software Real Time Analysis (RTA 
3.4.4, Illumina) and followed by generation of FASTQ 
sequence files. A minimum of 20 Gb of sequencing data 
was generated per sample.
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Sequence data processing and variant discovery

The sequence reads were pre-processed using Trim-
momatic (Bolger et  al., 2014) to remove the adapters 
from the sequences DNA. The reads were aligned to the 
reference genome Sscrofa11.1 (GenBank accession: 
GCA_000003025.6) using the BWA-MEM algorithm (Li, 
2013). Duplicates were marked for exclusion with Picard 
(http://​broad​insti​tute.​github.​io/​picard/). Single nucleotide 
polymorphisms (SNPs) and short insertions and deletions 
(indels) were identified with the variant caller GATK Haplo-
typeCaller (GATK 3.8.0) (DePristo et al., 2011; Poplin et al., 
2017) using default settings. The average realized sequenc-
ing coverage was 7.9 × (SD 2.4 ×). Variant discovery with 
GATK HaplotypeCaller was performed separately for each 
individual and then the individuals in each population were 
jointly genotyped by extracting the variant positions from 
all the individuals. We retained all biallelic variants for fur-
ther analyses with VCFtools (Danecek et al., 2011). Variants 
with minor allele frequency below 0.01 (jointly considering 
the sequenced individuals from all genetic types) or with a 
genotyping rate below 90% were removed using PLINK 1.9 
software (Chang et al., 2015). This software was also used 

to perform a principal component analysis of genomic data 
to investigate population structure.

Genetic variants in candidate genes

We preselected 44 SNPs in 34 genes with reported effects 
on morphological, reproductive, and response to disease-
related traits (Table 1) and on growth, fatness, and meat and 
fat quality traits (Table 2) in pigs. The alleles for all variants 
are described based on the positive strand of the Sscrofa11.1 
pig genome assembly. The genotypes of the sequenced pigs 
for these 44 SNPs were retrieved from the whole-genome 
sequence data, and the frequency of each allele in each breed 
was calculated.

In addition, we also called all the variants along the exonic 
regions of the genes in Tables 1 and 2 that are annotated in 
the Sscrofa11.1 assembly of the pig genome (27 of 34 genes). 
These variants were grouped according to whether they were 
common (i.e. called in all genetic types) or breed-specific (i.e. 
called in only one breed or group of breeds, in particular to 
CR) and to their predicted impact using the Ensembl Variant 
Effect Predictor (VEP) tool (McLaren et al., 2016).

Table 1   Investigated genetic variants in genes with reported effects on morphological, reproductive and adaptive (i.e. response to disease) traits

Variant Gene SSC Position (bp) Refer-
ence 
allele

Alter-
native 
allele

Trait Reference

ACTN1_1 ACTN1 7 92,555,961 T C Fertility, piglets born alive Wimmers et al. (2005)
ADIPOQ_1 ADIPOQ 13 124,643,017 G A Morphology, fatness Zhang et al. (2014)
AHR_1 AHR 9 86,550,830 G T Litter size Bosse et al. (2014)
AHR_2 AHR 9 86,549,936 A C Age at puberty Zhang et al. (2020)
AHR_3 AHR 9 86,551,088 T C Female age at puberty Zhu et al. (2017)
FUT1_1 FUT1 6 54,079,560 T C Diseases resistance Wang et al. (2012)
GBP5_1 GBP1 4 127,301,202 G T Early host response to PRRS virus Kommadath et al. (2017); Jeon et al. 

(2021)
HSP70_1 HSP70 7 23,925,510 C A Sperm concentration, sperm motility Huang et al. (2002)
HSP70_2 HSP70 7 23,914,842 C A Sperm concentration, sperm motility Huang et al. (2002)
HSP70_3 HSP70 7 23,914,955 T C Sperm concentration, sperm motility Huang et al. (2002)
HSP70_4 HSP70 7 23,925,859 T C Sperm concentration, sperm motility Huang et al. (2002)
KIT_1 KIT 8 41,488,472 C T Coat colour Johansson et al. (2005); Fontanesi 

et al. (2010)
MC1R_1 MC1R 6 181,461 T C Coat colour Kijas et al. (1998); Kijas et al. (2001)
MC1R_2 MC1R 6 181,697 A G Coat colour Kijas et al. (1998); Kijas et al. (2001)
MC1R_3 MC1R 6 181,818 C T Coat colour Kijas et al. (1998); Kijas et al. (2001)
MC1R_4 MC1R 6 181,825 A G Coat colour Kijas et al. (1998); Kijas et al. (2001)
MC1R_5 MC1R 6 181,905 C T Coat colour Kijas et al. (1998); Kijas et al. (2001)
MUC4_1 MUC4 13 134,226,654 C G Resistance to colibacteriosis Schroyen et al. (2012)
NR6A1_1 NR6A1 1 265,347,265 A G Number of vertebrae Fontanesi et al. (2014)
PPARD_1 PPARD 7 31,281,804 G A Ear size Ren et al. (2011)
TAS2R39_1 TAS2R39 18 7,068,883 T G Growth Ribani et al. (2017)

http://broadinstitute.github.io/picard/
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Results

Number of the called variants

We present here the first whole-genome sequence data 
of CR pig breeds (Fig. 1A). The total number of genetic 
variants called across all sequenced types was 7,971,714. 
Of them, 6,451,218 were called in CR, which was in line 
with the number of variants found in CP (6,575,953). 
The number of variants in each CR breed ranged from 
3,919,242, in SP, to 4,648,069, in CM, which was higher 
than in IB (3,346,025) and similar to CP types (from 
3,723,941, in Duroc, to 5,068,938, in Landrace × Large 

White). As expected, the number of variants per chro-
mosome increased with chromosome size. The CR pigs 
presented a higher average variant density (20.4 vari-
ants/Mb) than the CP pigs (14.8 variants/Mb) (Fig. 1B). 
Despite the limited number of pigs per breed, sequence 
data revealed a sensible population structure. As can 
be seen from the outcome of the principal component 
analysis of the so-called variants, pigs of the same breed 
get clustered together (Fig. 2). The first principal com-
ponent clearly differentiated white types (Pietrain and 
Landrace × Large White) from ZU, while the second 
principal component distinguished the other four breeds, 
particularly CM from SP.

Table 2   Investigated genetic variants in genes with reported effects on growth, fatness, and meat and fat quality traits

Variant Gene SSC Position (bp) Refer-
ence 
allele

Alter-
native 
allele

Traits affected Reference

ACACA_1 ACACA​ 12 3,862,4687 G A Carcass fatness, meat quality, fat 
composition

Muñoz et al. (2013)

CAPNS1_1 CAPNS1 6 45,514,212 A C Meat quality Gandolfi et al. (2011a)
CAST_1 CAST 2 103,299,934 G A Meat quality (tenderness) Meyers & Beever (2008)
CAST_2 CAST 2 103,327,456 G A Meat quality Gandolfi et al. (2011b)
CTSK_1 CTSK 4 98,393,909 G A Carcass fatness, meat quality 

(IMF)
Fontanesi et al. (2010)

CYB5A_1 CYB5A 1 149,737,752 G T Meat quality (boar taint) Peacock et al. (2008); Lin et al. 
(2005)

CYP2E1_1 CYP2E1 14 141,702,809 A G Meat quality (boar taint) Lin et al. (2006)
FADS2_1 FADS2 2 9,667,336 C T Fat composition Gol et al. (2018)
FASN_1 FASN 12 926,299 G A Carcass fatness, meat quality, fat 

composition
Muñoz et al. (2007)

FTO_1 FTO 6 31,460,242 A T Growth, carcass fatness Dvořáková et al. (2012)
LEP_1 LEP 18 20,111,759 A G Growth, carcass fatness, feed 

intake
Kennes et al. (2001)

LEPR_1 LEPR 6 146,829,589 G A Growth, fatness, meat quality 
(IMF), feed intake

Óvilo et al. (2010); Óvilo et al. 
(2005)

MC4R_1 MC4R 1 160,773,437 G A Feed intake, growth, carcass 
fatness

Kim et al. (2000)

MSTN_1 MSTN 15 94,629,248 C T Growth, carcass fatness Tu et al. (2014)
MTTP_1 MTTP 8 120,821,998 G A Meat quality, fat composition Estellé et al. (2009)
PCK1_1 PCK1 17 57,932,233 A C Growth, carcass fatness, meat 

quality (IMF)
Latorre et al. (2016)

PHKG1_1 PHKG1 3 16,830,320 C A Carcass fatness, meat quality (pH) Ma et al. (2014)
PLIN1_1 PLIN1 7 55,250,707 C T Growth Gol et al. (2016)
PLIN2_1 PLIN2 1 203,694,497 A G Growth, carcass fatness Gol et al. (2016)
PPARGC1A_1 PPARGC1A 8 17,867,068 A T Meat quality Gandolfi et al. (2011a)
PRKAG3_1 PRKAG3 15 120,863,537 C T Meat quality (pH) Ciobanu et al. (2001); Milan et al. 

(2000)
RYR1_1 RYR1 6 47,357,966 T C Growth, carcass fatness, meat 

quality (pH)
Roberts et al. (2001); Fujii et al. 

(1991)
SCD_1 SCD 14 111,461,751 C T Fat composition Estany et al. (2014)



Tropical Animal Health and Production (2023) 55:154	

1 3

Page 5 of 14  154

Allele frequency of preselected variants 
from candidate genes

The frequency of the alternative allele (as annotated in 
the reference genome Sscrofa11.1) for each of the 44 
SNPs in Tables 1 and 2 is given in Tables 3 and 4, respec-
tively. The CR pigs showed relatively high frequencies for 

some of the alternative alleles. As a result, the number of 
variants that were fixed (i.e. only one of the two alleles 
of the variant was present in the sample of pigs used for 
this study) was lower in CR (6) than in IT (13), although 
higher than in CP (4). There was also variability in the 
alternative allele frequency of the preselected variants 
across CR breeds. Twenty-eight of them were fixed in at 
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Fig. 1   Total number of the so-called variants by breed (A) and chro-
mosome (B) in Colombian Creole (CR, n = 21, with CM, Casco de 
Mula; ZU, Zungo; SP, San Pedreño), Iberian (IB, n = 7), and cosmo-

politan (CP, n = 21) pigs. A number of the so-called variants in the 
individual CP genetic types were 3,723,941 in Duroc, 5,068,938 in 
Landrace × Large White, and 4,391,019 in Pietrain

Fig. 2   Scatter plot of the two 
first principal components (PC1 
and PC2, in parenthesis the 
variance explained) for genome 
sequence in Colombian Creole 
(CM, Casco de Mula; SP, San 
Pedreño; and ZU, Zungo), Ibe-
rian (IB) and Cosmopolitan pig 
breeds (PI: Pietrain; DU: Duroc; 
and LDxLW: Landrace × Large 
White). Each circle represents 
a subject
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least one CR breed, with SP having the largest number of 
fixed variants (21), ZU the fewest (10), while CM had an 
intermediate number (16). Ten of the 13 variants (from 
8 of 34 genes) that were fixed in IT were also fixed in 
SP, including AHR_2, AHR_3, LEPR_1, MC4R_1, and 
SCD_1, but only 6 (from 5 genes) and 3 (from 3 genes) in 
ZU and CM, respectively. Interestingly, the maximum dif-
ferences in allele frequency across genetic types occurred 
for LEPR_1, where the frequency of the alternative allele 
ranged from values lower than 0.3, in CP, CM, and ZU, to 
1.00, in IT and SP, and for AHR polymorphisms, where 
the frequency of the alternative allele was much higher in 
CR and IT pigs (0.71–1.00) than in CP pigs (0.32–0.36). 
The other three fixed variants in IT (CAST_2, PLIN2_1, 
and GBP5_1) segregated in all three CR breeds, except 
for PLIN2_1 in ZU, for which the same allele as in IT was 
fixed. In general, the alleles fixed in CR segregated at a 
very high frequency in IT.

Additional variants in preselected candidate genes

In annotated genes (Table 5), exonic sequence variation in 
CR (334 variants; Supporting Table S1) was greater than 
in IB (200 variants) but lower than in CP (369 variants). 
The SP pigs had less exonic variants (178) than the two 
other CR (254, for ZU, and 263, for CM), IB (200), and 
CP breeds (201, for Pietrain, to 335, for Landrace × Large 
White). A total of 106 of these variants were common to 
all breeds, while 50 of them were specific to CR (Fig. 3). 
As compared to CR, the number of specific variants was 
similar in IB (53 variants) and higher in CP (83 variants). 
However, CR breeds shared less variants with IB that were 
not called in CP (4) than variants with CP that were not 
called in IB (143). Variants were categorized according to 
their predicted impact over mRNA transcription and pro-
tein translation and functionality (Table 6). In CR, ZU had 
the highest number of breed-specific variants (16), of low 

Table 3   Frequency of the 
alternative allele in the 
investigated variants for 
morphological, reproductive 
and adaptive (i.e. response to 
disease) traits in Colombian 
Creole, Iberian trunk and 
cosmopolitan pig breeds

Bold type indicates allele fixation. 1Colombian Creole breeds (CM, Casco de Mula; SP, San Pedreño; ZU, 
Zungo; CR, all three Colombian Creole breeds); IT, Iberian trunk pigs (60 Iberian and 48 Alentejano); and 
CP, cosmopolitan breeds (9 Pietrain; 158 Duroc; and 48 Landrace × Large White). 2See Table 1 for variant 
description

Variant2 Alternative
allele

Breed1

Colombian Creole

CM
n = 7

SP
n = 7

ZU
n = 7

CR
n = 21

IT
n = 108

CP
n = 215

ACTN1_1 T 0.29 0.79 0.33 0.47 0.58 0.41
ADIPOQ_1 A 0.21 0.57 0.21 0.33 0.03 0.13
AHR_1 T 0.75 1.00 0.79 0.85 0.94 0.33
AHR_2 C 0.71 1.00 0.86 0.86 1.00 0.36
AHR_3 C 0.79 1.00 0.86 0.88 1.00 0.32
FUT1_1 C 0.50 0.36 0.93 0.60 0.94 0.75
GBP5_1 T 0.07 0.36 0.64 0.36 0.00 0.19
HSP70_1 A 0.43 0.21 0.00 0.21 0.60 0.38
HSP70_2 C 0.00 0.50 0.50 0.33 0.75 0.63
HSP70_3 A 0.00 0.00 0.00 0.00 0.17 0.01
HSP70_4 C 1.00 1.00 0.50 0.83 0.88 0.76
KIT_1 T 0.07 0.00 0.00 0.02 0.00 0.00
MC1R_1 T 0.00 0.14 0.29 0.14 0.01 0.00
MC1R_2 C 1.00 1.00 1.00 1.00 1.00 0.67
MC1R_3 G 1.00 1.00 1.00 1.00 1.00 0.67
MC1R_4 T 1.00 0.86 0.79 0.88 0.76 0.67
MC1R_5 G 0.00 0.14 0.21 0.12 0.01 0.00
MUC4_1 G 0.00 0.00 0.07 0.02 0.03 0.29
NR6A1_1 G 0.07 0.00 0.00 0.02 0.14 0.00
PPARD_1 A 0.00 0.00 0.50 0.17 0.02 0.01
TAS2R39_1 G 1.00 1.00 1.00 1.00 0.96 0.79
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(11) or moderate (5) predicted impact. These variants were 
located in the ACTN1, FADS2, FTO, FUT1, PHKG1, PLIN2, 
PRKAG3, and TAS2R39 genes. The breed-specific variants 
found in CM (13) were in another set of genes (ADIPOQ, 
CAPNS1, CAST, FTO, KIT, LEPR, and PPARGC1A) and 
were of low (9) or moderate (4) predicted impact. The SP 
breed presented only 4 breed-specific variants, 3 in the 
ACACA​ gene and 1 in the FADS2 gene, all of them of low 
predicted impact.

In total, there were 18 variants with high predicted impact 
in CR (Supporting Table S1). Nine of them were shared 
amongst CR breeds and all but one (in MC1R and segregat-
ing in CM) were in ZU. Six genes (ACTN1, ADIPOQ, LEPR, 
PCK1, PRKAG3, and TAS2R39) harboured the other 8 high-
impact variants. The three high-impact variants in ACTN1 
were not observed in SP and only one of the two that were 
identified in PCK1, PRKAG3 and ADIPOQ were observed 
in CM. The high-impact variants in LEPR and TAS2R39 
were found in CM and ZU but not in SP. Of all high-impact 

variants, only the splice-donor polymorphism located in the 
LEPR gene was specific to CR. High-impact variants were 
mostly frameshift indels (Table 6).

Discussion

The few analyses of genetic variation carried out so far 
in CR pigs were limited to a small set of neutral markers 
(Vargas et al., 2016). Whole-genome sequencing provides 
a more comprehensive resolution of the genetic variation 
within and across populations across all genomic regions 
(Ros-Freixedes et al., 2022). Here, we focused on a set of 
34 candidate genes with reported effects on adaptive or eco-
nomic traits (Tables 1 and 2). Six of the preselected variants 
in these genes were not observed in CR (CTSK_1, HSP70_3, 
MC1R_2, MC1R_3, RYR1_1, and TAS2R39_1), and 
seven were only seen in one of the CR breeds (CYB5A_1, 
HSP70_4, KIT_1, MUC4_1, NR6A1_1, PHKG1_1, and 

Table 4   Frequency of the 
alternative allele in the 
investigated variants for growth, 
fatness and meat and fat quality 
traits in Colombian Creole, 
Iberian trunk and cosmopolitan 
pig breeds

Bold type indicates allele fixation. 1Colombian Creole breeds (CM, Casco de Mula; SP, San Pedreño; ZU, 
Zungo; CR, all three Colombian Creole breeds); IT, Iberian trunk pigs (60 Iberian and 48 Alentejano); and 
CP, cosmopolitan breeds (9 Pietrain; 158 Duroc; and 48 Landrace × Large White). 2See Table 2 for variant 
description

Variant 2 Alternative
allele

Breed1

Colombian Creole

CM
n = 7

SP
n = 7

ZU
n = 7

CR n = 21 IT
n = 108

CP
n = 215

ACACA_1 A 0.57 0.50 0.79 0.62 0.57 0.36
CAPNS1_1 C 0.71 0.50 0.93 0.71 0.48 0.52
CAST_1 A 0.21 0.50 0.43 0.38 0.83 0.35
CAST_2 A 0.21 0.14 0.43 0.26 0.00 0.35
CTSK_1 A 0.00 0.00 0.00 0.00 0.00 0.08
CYB5A_1 T 0.00 0.00 0.43 0.14 0.48 0.07
CYP2E1_1 G 0.57 0.07 0.79 0.48 0.79 0.40
FADS2_1 T 1.00 0.36 0.93 0.76 0.92 0.55
FASN_1 A 0.50 1.00 0.29 0.60 0.75 0.73
FTO_1 T 0.50 0.36 0.21 0.36 0.67 0.37
LEP_1 G 0.93 0.64 0.29 0.62 0.20 0.89
LEPR_1 A 0.21 1.00 0.29 0.50 1.00 0.23
MC4R_1 A 0.79 0.00 0.07 0.29 0.00 0.26
MSTN_1 T 0.50 0.50 0.71 0.57 0.88 0.54
MTTP_1 A 0.36 0.64 0.93 0.64 0.33 0.43
PCK1_1 C 0.36 0.00 0.43 0.26 0.03 0.55
PHKG1_1 A 0.00 0.00 0.14 0.05 0.02 0.10
PLIN1_1 T 0.93 0.64 0.79 0.79 0.59 0.44
PLIN2_1 G 0.79 0.21 1.00 0.67 1.00 0.81
PPARGC1A_1 T 0.29 0.64 0.79 0.57 0.14 0.64
PRKAG3_1 T 0.07 0.29 0.33 0.23 0.67 0.25
RYR1_1 C 1.00 1.00 1.00 1.00 1.00 0.83
SCD_1 T 0.57 1.00 0.93 0.83 1.00 0.80
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PPARD_1). The variants in the MC1R, NR6A1, PPARD, 
and TAS2R39 genes are missense mutations that might have 
been selected for environmental adaptation.

The MC1R gene has a great impact in the determination 
of coat colour due to its key role regulating the synthesis of 
eumelanin (black/brown) and phaeomelanin (yellow/red) in 
the melanocytes (Barsh, 1996; Fang et al., 2009). At least 
six haplotypes, tagged by 5 SNPs (MC1R_1 to MC1R_5, 
Table 1) and one deletion (g.182126CC > *), have been 
described in this gene (Muñoz et al., 2018). In CR, we only 

found three of these six haplotypes (Supporting Table S2), 
the so-called MC1R*2 (GCGCA**), MC1R*3 (GCATG**), 
and MC1R*6 (GCA​TGC​C), all of which are associated with 
black coat or spotting. The predominance of MC1R*3 in 
SP (frequency of 85.7%) and in ZU (frequency of 71.4%) 
is consistent with IB (likely, Lampiño) origin (Ocampo-
Gallego and Abuabara-Pérez, 2021), since this haplotype 
is fixed in old black-coated and hairless IB strains such as 
Lampiño (Alves et al., 2007; Fernández et al., 2004). How-
ever, MC1R*3 was residual in CM, where MC1R*6 was the 

Fig. 3   UpSet plot of the vari-
ants found in the investigated 
genes (Table 5). Set size is the 
total number of variants in each 
breed (CM, Casco de Mula; ZU, 
Zungo; SP, San Pedreño; IB, 
Iberian; and CP, Cosmopolitan 
breeds). Interaction size repre-
sents the number of variants in 
the intersections of the breeds 
as indicated by the black dots 
below the bars

Table 6   Number of exonic 
variants by breed and 
predicted impact over mRNA 
transcription and translation

Bold type indicates totals. 1Colombian Creole breeds (CM, Casco de Mula; SP, San Pedreño; ZU, Zungo; 
CR, all three Colombian Creole breeds); IB, Iberian; and CP, cosmopolitan breeds (7 Pietrain; 7 Duroc; 
and 7 Landrace × Large White). 2Predicted impact using the Ensembl Variant Effect Predictor (VEP). 
3Duroc: 223 exonic variants in total; Landrace × Large White: 335; Pietrain: 201

Breed1

Predicted impact2 Colombian Creole

CM n = 7 SP
n = 7

ZU
n = 7

CR
n = 21

IB
n = 7

CP n = 21

High 15 12 17 18 14 20
Frameshift indel 11 10 12 13 12 14
Splice acceptor 1 1 1 1 1 2
Splice donor 2 - 2 2 1 2
Start lost 1 - 1 1 - 1
Stop lost - 1 1 1 - 1
Moderate 83 57 82 106 55 124
In-frame deletion 3 2 3 3 2 4
Missense variant 80 55 79 103 53 120
Low 165 109 155 210 131 225
Splice region 37 21 33 45 18 47
Synonymous 128 88 122 165 113 178
Total 263 178 254 334 200 3693
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predominant haplotype (frequency of 85.7%), as happens 
in current commercial IB strains (Muñoz et al., 2018). The 
presence of the MC1R*2 in SP (frequency of 14.3%) and 
ZU (frequency 21.4%), which has been previously detected 
in Large Black, provides evidence of introgression of black 
alleles from Asian origin into these two breeds. Likewise, 
CM does not seem to be completely free of introgression 
from transboundary breeds, as indicates the presence of the 
T allele in the KIT_1 variant (belted phenotype), which is 
absent in IT breeds (Muñoz et al., 2018). The absence of the 
MC1R*4 (ATGTG**) haplotype in CR pigs indicates that 
they have not been crossbred with Duroc.

The TAS2R39 gene is a member of the bitter-taste receptor 
family that has been related to fatness (Ribani et al., 2017). 
In agreement with findings in European local breeds (Muñoz 
et al., 2018), the G allele at TAS2R39_1 is fixed in the three 
CR breeds, thereby suggesting a selective pressure towards 
defensive bitter taste. The A allele at NR6A1_1 was fixed in 
SP and ZU but not in CM. This allele increases the vertebrae 
number in pigs, resulting in longer carcasses (Mikawa et al., 
2007). This could imply that CM pigs could have been less 
intensively selected for body size than SP and ZU. On the 
other hand, PPARD_1, as well as CBY5A_1 and HSP70_4, 
only segregated in ZU and at intermediate frequencies. Since 
the ZU pigs are found in the Atlantic coastal area, where the 
weather is especially hot, it is worth exploring whether these 
three variants might be related to heat resistance, as it has 
been described before. For instance, the missense mutation 
PPARD_1 (A allele; Table 1) increases ear size in pigs (Ren 
et al., 2011), with implications on skin homeostasis and fat 
deposition. The A allele is found in Asian but not in Euro-
pean breeds. The fact that the A allele segregated in ZU at 
a frequency of 50% adds evidence of Asian introgression 
into this breed, which, on the other hand, is characterized 
by having large and droppy ears (FAO, 1992). The T allele 
at CYB5A_1 has been associated with low fat and andros-
tenone levels (Peacock et al., 2008; Lin et al., 2005). While 
this may be desirable to reduce the risk of boar taint in car-
casses from entire ZU males, it may jeopardize reproduction 
success. The HSP70 variants have also been related to male 
reproduction. In particular, the T allele at HSP70_4 has been 
associated to larger ejaculates and semen quality. In a previ-
ous research we showed that CR boars produced less normal 
and motile sperm per ejaculate than CP boars (Suárez-Mesa 
et al., 2021). Allele frequency patterns of HSP70 variants 
across breeds do not provide further evidence for an associa-
tion of these markers with male fertility.

The rest of variants that appeared as fixed in a single 
CR breed were mostly found in SP. These variants were 
also either fixed or at very high frequency in IT (AHR_1 
to AHR_3, LEPR_1, MC4R_1, PCK1_1, and SCD_1). 
The fatty nature of these breeds is consistent with the pres-
ence of the A allele at LEPR_1 (Table 2), which has been 

documented to increase feed intake and fatness and to impair 
reproductive and maternal abilities (Ros-Freixedes et al., 
2016; Solé et al., 2021). This allele co-segregated with the T 
allele at AHR_1, which has a negative impact on prolificacy 
(Bosse et al., 2014). The joint presence of these two fixed 
alleles in SP can compromise the reproductive outcome of 
this breed. Given the sample size per breed, no clear-cut pat-
tern can be inferred from the allele frequency of MC4R_1, 
PCK1_1, and SCD_1 across breeds, except that, amongst 
CR, SP was the closest to IT and CM the most differenti-
ated. The CM pigs showed higher frequencies of the alleles 
associated with increased fatness (A allele at MC4R_1; Kim 
et al., 2004; and C allele at PCK1_1; Latorre et al., 2016) 
and saturated fatty acid abundance (C allele at SCD_1; 
Estany et al., 2014).

A total of 27 of the studied genes are annotated in the 
Sscrofa11.1 assembly of the pig genome. Therefore, in a 
second step, we went further to search for new variants 
into the coding region of these genes using whole-genome 
sequence data. In CR, we found 18 variants of high impact 
on mRNA sequence and protein translation. Only one of 
them was specific to CR. This is a splice-donor variant in 
LEPR that consists of a 7-bp deletion extending upstream 
on intron between exons 15 and 16 (LEPR_2: SSC6:146,
829,573–146,829,580 bp) that affects the three transcripts 
of the gene. This deletion was only observed in CM and 
ZU (frequency of 7.1% and 28.6%, respectively) and was 
fully linked to the G (non-fatty) allele in LEPR_1, but not 
vice versa. Since these two variants are separated by only 
9 bp, we can hypothesize that the 7-bp deletion appeared 
later from a haplotype with the G allele at LEPR_1. No 
homozygous individuals for the deletion allele were found, 
even though the probability of sampling at least one in ZU 
was around 45%. Apart from LEPR_1, other seven vari-
ants of moderate impact were detected in CR for LEPR 
(Table 5; Supporting Table S3). In line with results for 
LEPR_2, SP pigs did not show the alternative allele in 
these variants (LEPR_3: SSC6:146,831,558 bp, frequency 
of 57.1%, only in CM; LEPR_4: SSC6:146,838,276 bp, 
frequency of 7.1%, in CM, and 50.0%, in ZU; LEPR_5: 
SSC6:146,838,380 bp, frequency of 21.4.0%, only in ZU; 
LEPR_6: SSC6:146,847,237 bp, frequency of 21.4%, only in 
CM; LEPR_7: SSC6:146,861,093 bp, frequency of 42.9%, 
only in CM; LEPR_8: SSC6:146,861,094 bp, frequency of 
42.9%, only in CM; and LEPR_9: SSC6:146,861,105 bp, 
frequency of 64.3%, in CM, and 14.3%, in ZU). Interestingly, 
for LEPR_1 to LEPR _9, the same allele was fixed in SP and 
IB. However, considering all LEPR variants in Table 5, we 
can infer that, in SP, all of these variants reside in a sin-
gle haplotype of 35,019 bp (from SSC6:146,826,086 bp to 
SSC6:146,861,105 bp), while, in IB, they are inherited in 
two haplotypes due to a specific in-between missense vari-
ant at SSC6:146,830,356 bp (frequency of 54.2%). More 
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detailed studies are needed to decipher the connection 
between LEPR variants and their effects on phenotypes. 
Nevertheless, findings so far provide further evidence on 
the IB origin of SP and give clues about the role that LEPR, 
as a key element of the endocrine control of energy bal-
ance (Friedman, 2019), may have played in the adaptation 
of CR breeds to different geographical locations and dietary 
regimes.

Besides those in LEPR, we identified 12 more missense 
mutations. Three of them were present in more than one 
CR breed and affected genes involved in coat colour (KIT, 
in the three CR breeds, and MC1R, in SP and ZU). The 
remaining 9 were observed in CM and ZU (FASN) or only 
in CM (ADIPOQ, CAST, and PPARGC1A) or ZU (FADS2, 
FUT1, ACTN1, and PRKAG3). No breed-specific missense 
mutations were found in SP, a result that would confirm that 
molecular variability is lower in this breed as compared to 
CM and ZU. As a whole, our findings support that genome-
wide characterization is a useful tool to identify patterns of 
genetic variation between and within CR breeds.

Conclusions

This is the first study that characterizes genetic variation at 
the whole-genome sequence level in CR pigs. The molecu-
lar variability of the three CR breeds is comparable to CP 
breeds, although higher in ZU and CM than in SP. Despite 
the limited sample size per breed, the sequence variation of 
the 34 investigated genes would confirm the relationship 
between CR and IB pigs, but also that they are not exempt 
from selective introgression of transboundary breeds, par-
ticularly ZU and CM. Differential allele distribution across 
breeds provides evidence to understand the genetic makeup 
of the CR breeds for body size, fatness, skin colour, ear size, 
and boar taint. The identification of 50 sequence variants 
that are potentially specific to CR points the way forward for 
further research and adds new data to inform breed develop-
ment and conservation decisions. The discovery of a novel 
variant of LEPR in CM and ZU can give new clues on the 
role of LEPR-environment interactions on local adapta-
tion. Our findings reinforce the need for ad hoc phenotyp-
ing schemes in order to experimentally validate in silico 
predictions of the impact of such variants on adaptive and 
economical traits and to develop effective breeding and con-
servation programmes for CR breeds.
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