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Quantum hash function based 
on controlled alternate lively 
quantum walks
Penglin Hou , Tao Shang *, Yuanjing Zhang , Yao Tang  & Jianwei Liu 

Quantum hash function is an important area of interest in the field of quantum cryptography. 
Quantum hash function based on controlled alternate quantum walk is a mainstream branch of 
quantum hash functions by virtue of high efficiency and flexibility. In recent development of this kind 
of schemes, evolution operators determined by an input message depend on not only coin operators, 
but also direction-determine transforms, which usually are hard to extend. Moreover, the existing 
works ignore the fact that improper choice of initial parameters may cause some periodic quantum 
walks, and further collisions. In this paper, we propose a new quantum hash function scheme based on 
controlled alternate lively quantum walks with variable hash size and provide the selection criteria for 
coin operators. Specifically, each bit of an input message determines the magnitude of an additional 
long-range hop for the lively quantum walks. Statistical analysis results show excellent performance 
in the aspect of collision resistance, message sensitivity, diffusion and confusion property, and 
uniform distribution property. Our study demonstrates that a fixed coin operator, along with different 
shift operators, can effectively work on the design of a quantum hash function based on controlled 
alternate quantum walks, and shed new light on this field of quantum cryptography.

Hash function plays an important role in modern cryptography, which is considered a key component of almost 
all encryption schemes and many security applications, such as message authentication code, data integrity, 
data storage, and random number generation. In the classical context, hash function can map a message of 
arbitrary length to a fixed-size output. Generally, there are two types of hash functions in terms of security 
attributes. One is the collision-resistant hash function that has provable security reductions and the other is 
based on an iterated construction of compression functions. The former satisfies computational security but 
is too inefficient to be used in practice. Some provably secure examples can reduce to hard problems, such as 
the integer factorization problem1, the very smooth number nontrivial modular square root problem (VSSR)2, and 
the Knapsack problem3. The latter is easily designed and more efficient because the design of hash functions can be 
transformed into that of compression functions4. Meanwhile, cryptanalysis attacks also have gradually emerged 
in recent years, which poses a huge challenge to the security of such hash functions5.

With the development of quantum computing, more and more researchers have shown increasing interests 
in using quantum mechanisms to develop cryptographic algorithms with high security, especially the quantum 
hash function, which is one of the most important in cryptographic discussions6–23. There are two approaches of 
research on quantum hash functions. One is based on quantum one-way functions (QOWF)6–11, while the other 
one is based on quantum simulation, including discrete-time quantum walk (DQW)13–21,23, continuous-time 
quantum walk (CQW)22 and grouped coarse-grained boson sampling (GCGBS)12. The former has attempted 
to formally define the one-way and collision resistance property of quantum hash functions, which have been 
conclusively proved with a rigorous mathematical form. The latter constructs quantum hash functions by virtue 
of quantum mechanics, specifically, the chaotic characteristic of quantum walk or the irreversibility of GCGBS 
without formal security proof. Alternatively, one can evaluate such types of schemes through statistical analysis 
which can provide quantitative evidence. Moreover, QOWF-based quantum hash functions map a classical bit 
string to a quantum state whose lengths are positively related to the length of an input message. By contrast, 
DQW-based, CQW-based and GCGBS-based quantum hash functions generate a fixed-length classical hash 
value from a classical bit input. Of particular concern is QOWF-based schemes are only guaranteed to cor-
rectly distinguish the quantum hash states of two different input messages with a high probability by means of 
SWAP test, which means such schemes are non-deterministic with a one-side error. In addition, GCGBS-based 
quantum hash function could only be efficiently calculated through a linear optical network, but is awkward to 
perform on a classical computer due to high time complexity. In accordance with the above, the practical value 
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of DQW-based and CQW-based quantum hash functions are higher compared to those based on QOWF and 
GCGBS, because the former has deterministic outputs for fixed inputs and can be simulated classically before 
the advent of commercial quantum computers.

As we know, the construction of quantum walks based quantum hash function relies on different quantum 
walks procedures with various unitary evolution operators which can be generally decomposed into coin and 
shift operators. Such schemes begin with an initial quantum state, then the evolution of the system proceeds 
by repeatedly using different unitary operators controlled by the input bit string, it will then obtain a classical 
hash value by post-processing algorithm, i.e., modular and truncation arithmetic. Li et al.23 explored, for the 
first time, a brand-new perspective on the design of a dedicated hash function based on quantum walks. They 
presented a quantum hash function whose underlying model is one-dimensional two-particle controlled inter-
acting quantum walks (CIQW), and discussed the security and feasibility of the scheme. Over the past decade, 
more information has become available on the quantum hash functions based on quantum walks, particularly 
for the quantum hash functions based on controlled alternate quantum walks (CAQW)13,15–17,19, which are the 
improvement and extension of CIQW-based quantum hash functions21,23. Until now, almost all such schemes 
control the evolution of quantum walks by alternate coin operators, little attention has been paid to the role 
of shift or other operators besides coin operator. Recently, an extra operator called the direction-determine 
transform has been introduced in the work of Zhou et al.15, which can also be considered for a CAQW-based 
quantum hash function. In order to explore whether more operators are valid for designing a CAQW-based 
quantum hash function, we introduce lively quantum walks with variable liveliness parameters to construct a 
new CAQW-based quantum hash function.

The main contributions of this paper are described as follows: 

1.	 Construction of a novel quantum hash function with variable hash size based on controlled alternate lively 
quantum walks with variable liveliness parameters, named QHFL. Also, the conditions for a periodic quan-
tum walk are discussed, and used to design a secure CAQW-based quantum hash function.

2.	 Verification for feasibility and security of the proposed quantum hash function in both quantum and classical 
environments. Through theoretical analysis and statistical experiments, the results demonstrate the proposed 
scheme has an excellent performance and its scalability is better than that of an existing state-of-the-art 
CAQW-based quantum hash function15. Moreover, an efficient quantum circuit is given for implementation.

The rest of this paper has been organized in the following way: The “Preliminaries” introduces necessary prelimi-
naries about the notion of hash function and quantum walk. The “Methods” is concerned with the scheme named 
QHFL. In the “Security analysis” and the “Statistical performance analysis”, the security analysis and statistical 
performance of QHFL are discussed, respectively. In the “Computing complexity”, both classical and quantum 
computing Complexity is offered. In the “Advantage”, the advantages of QHFL is are briefly discussed. Finally, 
the “Discussion” gives a summary of this work and provides directions for further research.

Preliminaries
Cryptographic hash function.  A cryptographic hash function must satisfy three criteria: preimage resist-
ance, second-preimage resistance and collision resistance.

•	 Preimage resistance
	   A hash function is a one-way function. For any valid output, it is computationally infeasible to find the 

corresponding input. In particular, a function mapping f : {0, 1}∗ → {0, 1}∗ is a strong one-way function if 
it satisfies all of the following conditions:

	   Easy to calculate: f can be computed in polynomial time.
	   Hard to invert: A polynomial p(·) exists such that for any polynomial time adversary’s algorithm A, in the 

case of sufficiently large number n ∈ N , has 

 Given a message digest y, it is difficult to find its preimage x such that H(x) = y , instead, its inverse process 
is computable.

•	 Second-preimage resistance
	   Finding any two inputs that have the same output is computationally infeasible, i.e., given an input x, find 

its second preimage x′ such that H(x) = H(x′).
•	 Collision resistance
	   Finding two different inputs x and x′ such that their hash values are the same is computationally infeasible, 

i.e., H(x) = H(x′) . In fact, collision resistance implies second-preimage resistance but does not guarantee 
preimage resistance.

Lively quantum walk on an N‑length cycle.  Standard discrete-time quantum walk (DQW) is a quan-
tum analogue of classical random walk, taking place in the product space Hp

⊗
Hc in which a particle (walker) 

is placed at a vertex in a cycle and allowed to jump along the edges to adjacent vertexes. Here a particle starts 
from its initial state |x� ⊗ |c� , where the spatial degree of freedom {|x�, x ∈ ZN } spans the position space Hp , 
and the two-dimensional coin state {|c�, c ∈ {0, 1}} spans the coin space Hc.In DQW on an N-length cycle, each 
evolution of a system proceeds by a unitary operator, which is defined as U = S(IN ⊗ C) , where S is the shift 

(1)Prob[A(f (x), 1n) ∈ f −1(f (x))] <
1

p(n)
.
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operator updating the position chirality states of the particle, C is the coin operator on the coin space Hc deter-
mining the direction at each walking step, and IN is the N order identity matrix of Hp space.The shift operator 
is defined as follows:

then the evolution process of quantum walk can be defined in the situation by shift operator

Such operator implies that the particle moves from one vertex to the left or right corresponding to the coin 
quantum state |0� or |1� , respectively.

One-dimensional three-state quantum walks(or lazy quantum walks), the generalized Hadamard 
walks(DQW) with three inner coin states, were first proposed by Konno et al.24. In recent years, Sadows et al.25 
introduced a new family of quantum walks on cycles parametrized by their liveliness (named lively quantum 
walks). The introduced family contains lazy quantum walks, which can be considered as lively quantum walks 
with liveliness equal to zero.

Consistent with DQW, the process of a lively quantum walk on an N-length cycle occurs in Hilbert space 
Hp ⊗Hc , where Hp represents the position space, whose orthogonal basis is given by the label of each vertex on 
the N-length cycle, and defined as Hp = Span|x� , x ∈ ZN . Hc represents the three-dimensional coin space, which 
is defined as Hc = Span|c�, c ∈ {|0�, |1�, |2�} . Then, a formulation for the lively quantum walk can be defined.

The shift operator S of the lively quantum walk acting on each vertex x is given by

with a liveliness parameter τ ≤
[
N
2

]
([·] represents a ceiling function), which controls the particle to make an 

additional choice of hop. Thus, the entire evolution of the quantum system at each time step can be described 
by U = S(IN ⊗ C) ∈ Hp

⊗
Hc , with a usually used coin operator called Grover operator G. G = 2|sv��sv| − I , 

where |sv� = 1√
3
(|0� + |1� + |2�) , and we can obtain G =






− 1
3

2
3

2
3

2
3

− 1
3

2
3

2
3

2
3

− 1
3




.

Periodic quantum walk on a cycle.  Under certain conditions, some coin operators may give rise to peri-
odic quantum walks. Here, some necessary conditions for specific quantum walks with periodicity26–30 have 
been discussed. In particular, for the lazy quantum walk, Konno and Kajiwara29 studied the necessary condition 
that the coin operator to have a finite period. For a more general case, the periodicity phenomenon for lively 
quantum walks on cycles, generated by the combination of variable parameters of liveliness and generalized 
Grover coins, have been thoroughly studied. Sarkar and Mandal30 regarded the coin operator as a linear combi-
nation of orthogonal permutation matrices, extending the study of periodic lively quantum walk. Permutation 
matrices of this type are called Grover-type matrices, see A for details. According to Ref.27, the periodic quantum 
walk on a cycle can be defined as follows:

Periodic quantum walk on a cycle.  Define a set as N = {n ≥ 1 ∈ N : Un = I} , where N is the set of nature 
numbers, U is the evolution operator corresponding to the quantum walk on a cycle, and I is an identity matrix. 
If N  = ∅ , the period T of the quantum walk on a cycle is written as minN . Otherwise, for the case of N = ∅ , 
the quantum walk on a cycle has a period defined as ∞ and is called an aperiodic quantum walk. In particular, 
the periodicity for quantum walk on a cycle means that the particle returns precisely to its quantum initial state 
after a finite number of steps.

Methods
In this section, we introduce the controlled alternate lively quantum walk with variable liveliness on a cycle, then 
give the specific scheme for the quantum hash function based on it, named QHFL.

Controlled alternate lively quantum walk on an N‑length cycle.  The controlled alternate lively quan-
tum walk can be constructed by cleverly modifying lively quantum walk on an N-length cycle. Assume that the par-
ticle performs the lively quantum walk on an N-length cycle with liveliness parameter τ . At the t-th time step, the 
quantum state amplitude of a particle at the position x is given by 

∣
∣ψx,t

〉
=

[
a1x,t a2x,t a3x,t

]† =
∑

c a
c
x,t |c� ∈ Hc , 

where acx,t represents the quantum state amplitude of the particle in the coin register, so the state of the whole 
system can be defined as

(2)S =
∑

x∈ZN

|x + 1(mod N)��x| ⊗ |0��0| + |x − 1(mod N)��x| ⊗ |1��1| ,

(3)S(|x� ⊗ |0�) = |x + 1(mod N)� ⊗ |0�, S(|x� ⊗ |1�) = |x − 1(mod N)� ⊗ |0�.

(4)

S =
∑

x∈zN
|x + 1(mod N)��x| ⊗ |0��0|

+ |x − 1(mod N)��x| ⊗ |1��1|
+ |x + τ(mod N)��x| ⊗ |2��2|,

(5)|�(t)� =
∑

x∈zN
|x� ⊗

∣
∣ψx,t

〉
.
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For the initial state |�(t = 0)� with a unitary operator U to update the quantum state at each step, the time evo-
lution of the quantum state is defined as |�(t)� = Ut |�(t = 0)� . Thus, the transformation of amplitude for the 
particle at the position x can be obtained as follows

where Ci =
∑3

k=1 C̃i,k|i��k|, i ∈ {1, 2, 3}, C̃i,k is the element in the i-th row and k-th column of matrix C. Now we 
can introduce the controlled alternate lively quantum walk with liveliness on a cycle.

Specifically, given an input message msg, each bit {m1,m2, . . .mt} ∈ {0, 1}t of the message is a string of binary 
numbers, so the quantum walk evolution operator controlled by t bits message is Umsg = Um1Um2Um3 · · ·Umt , 
where Umj (1 ≤ j ≤ t) denotes the evolution operator of j-th step which can be designed with variable liveliness 
parameters given by Eq. (4). Accordingly, the final quantum state can be expressed as |��final = Umsg |�(t = 0)� . 
Then, after t steps, the probability of finding the particle being in the position x is given by

satisfying the condition 
∑3

c=1

∑

x∈ zN

∣
∣acx,t

∣
∣2 = 1 , where acx,t can be obtained by means of measuring the basis 

state |x, c�,

Quantum hash function based on controlled alternate lively quantum walks.  For an initial state 
|�(t = 0)� = |x� ⊗ |c� , where |c� = a1|0� + a2|1� + a3|2� , taking message msg as an input, the specific steps of 
QHFL can be described as follows: 

1.	 Select a set of initial parameters (N , l, s,C, a1, a2, a3) , where N is an integer, representing the number of 
vertexes in a cycle, l represents the amplification factor of the probability with the constraint 10l ≫ 2s , C is 
a coin operator selected from a set that meets the security requirement, a1, a2, a3 are the amplitudes of the 
three-state coin registers in the initial state, which satisfy |a1|2 + |a2|2 + |a3|2 = 1.

2.	 Apply Umsg to the initial state |�(t = 0)� and generate the final probability distribution for each position, 
denoted by P =

(
p0, p1, p2, · · · pN−1

)
 , wherepx(x ∈ zN ) is the probability of the particle in its final state 

finding at each vertex of the cycle given by Eqs. (7) and  (8).
3.	 Perform the post-processing algorithm on the obtained probability distribution to generate N × s hash 

values. In particular, perform 
⌊
px · 10l

⌋
mod 2s on px . Then concatenate these s-bits hx (x ∈ zN ) together to 

form the final hash valueh = h0�h1�h2� · · · �hN−1 .

Security analysis
In this section, we will discuss the security of the proposed scheme against the preimage attack, the force search 
attack and the force search attack.

Preimage resistance.  Hash functions should have one-wayness, which guarantees the security of plaintext 
information from malicious adversaries, i.e., the adversary cannot guess the original message through the hash 
value with a non-negligible probability. We define a message space M , quantum state space Q and hash space H . 
Function mapping f : M → Q → H firstly maps the message msg ∈ {0, 1}L to the quantum state of a quantum 
system, denoted by |��final , then to the hash space h ∈ {0, 1}m,m < L , which is a classical-classical mapping. 
Moreover, the inversion of this mapping is tough to accomplish with two shields. The first shield is using the 
post-processing algorithms to obtain the hash value by truncation arithmetic and modular arithmetic on the 
probability of vertexes, which obviously is a many-to-one mapping. The second shield is based on the irrevers-
ibility of quantum measurement on the final state, which breaks the linear relationship between the final state 
and the initial state, even if the adversary takes the hash value in hand and has a priori knowledge of initial state. 
For example, assume that the message length L is disclosed to the adversary, there is no efficient polynomial time 
algorithm A(f(x)) to try all of 2L guesses, which satisfies Eq. (1). Therefore, when the message space is sufficiently 
large, the adversary cannot backtrack the original message by hash value with a non-ignorable probability.

Force search attack resistance.  Cryptographic hash functions are designed to keep their output as short 
as possible, but it is still be difficult to find collisions. There is a powerful attack for hash functions acting on hash 
value, birthday attack31. The birthday attack can find the collision of the target hash h with a 50% probability of 
only having O(

√
sN) expected times. For classical computers, the general hash length of sN2 ≥ 128 can satisfy the 

condition of cryptographic security. Because of the extensibility of the hash length in our proposed scheme, we 
can easily construct hash functions that satisfy the security conditions.

Forgery attack resistance.  Here forgery attack means that a valid message-hash pair can be obtained 
from other message-hash pairs that are of equal or variant lengths. The forgery attack is closely related to the 

(6)
∣
∣ψx,t+1

〉
= C1

∣
∣ψx+1,t

〉
+ C2

∣
∣ψx−1,t

〉
+ C3

∣
∣ψx+τ ,t

〉
,

(7)px =
〈
ψx,t |ψx,t

〉
=

3∑

c=1

∣
∣acx,t

∣
∣2,

(8)
∣
∣
〈
x, c

∣
∣
(
Ut

∣
∣�(t = 0)

〉)∣
∣2.
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second-preimage resistance of the hash function. To demonstrate such attack on the original scheme, following 
procedure is introduced.

Periodic quantum walk on a cycle is defined above in definition Periodic  quantum   walk  on   a   cycle. If 
there is more than one quantum walk with a finite period, it will be easy to generate collisions in all DQW-based 
hash functions. Specifically, assume a quantum walk algorithm with a chosen evolution operator U1 (executed 
when the message bit is 1) has a finite period T. In that case, U1

T |�(t = 0)� = I|�(t = 0)� = |�(t = 0)� , so 
for a message msg = 10 . . . 10 , any nT , n ∈ {1, 2, 3 . . .} message bits can be inserted into the message string, then 
a collision can be formed as

Anyone can easily construct a collision at this point, making such algorithms no longer satisfy the collision resist-
ance property. Therefore, when designing a hash function based on quantum walks, proper parameters should 
be selected to avoid this situation. The coin operator of controlled alternate lively quantum walk on a cycle is 
selected from Grover type of matrix set in A, which will provide strict security and collision resistance. Conse-
quently, collisions may only be affected by computational precision or by truncation and modular operations.

Statistical performance analysis
It is difficult to evaluate the security of the proposed scheme by rigorous mathematical proof. So widely accepted 
statistical tests can be used to evaluate the performance and feasibility of the scheme. We take the same public 
arxiv Dataset as Ref.15 used and randomly select from about 2 million records as the input string. Note that 
since DQW-based hash functions are classical input and classical output, the hash value of a message in classical 
computation is usually generated and stored in ASCII format.

In “Force search attack resistance”, the security lower bound for the birthday attack of the hash function is 
given. To ensure the security of the scheme, we generate Len = sN > 256-bit hash values, i.e., Len ∈ {296, 264} . 
As with other existing DQW-based hash functions, two instances of QHFL share the same l value, and the 
remaining parameters are C = Grov , α1 = α2 = α3 = 1√

3
 . The statistical performance analyses include: Collision 

resistance, sensitivity, diffusion and confusion propertiy, uniform distribution. The test results will be compared 
mainly with the typical scheme QHFM15.

Collision resistance.  Collision resistance is an important property of cryptographic hash functions. Such 
property of hash functions can be quantified by collision test. In general, collision resistance is assessed by two 
types of tests, T1 and T2 . In the test T1 , a random input message is selected and computed to obtain an ASCII hash 
value h1 . In the test T2 , a random bit reversal is performed on the message in the test T1 , and the corresponding 
hash value h2 is also generated and stored in ASCII format by h1 = {b1, b1 . . . , bs} and h2 = {b′1,b′1 . . . , b′s} , 
respectively, where bi and b′i are the ith ASCII characters, and s = Len

8  represents the size of the hash value in 
ASCII format.

Moreover, we compare the number of characters of h1 and h2 with the same value at the same location, i.e., 
the number of hits, and calculate as follows:

where δ(x, y) =
{
1, x = y
0, x �= y

 indicates that bi and b′i are converted to the corresponding decimal values with T(bi) , 

T(b′i) ∈ {0, 1, 2, . . . , 255}.
Through J = 10000 times independent experiment of drawing records from the arxiv dataset and assum-

ing that the hash value distribution is uniform and random, the theoretical number of tests can be given by the 
binomial distribution formula:

where ω = 0, 1, . . . , s , Probt{ω} is the probability distribution of the theoretical number of hits (the probability 
distribution of the experimental number of hits is denoted by Probe{ω}) ), and the distance with the theoretical 
value can be measured by means of Kullback − Leibler relative entropy (KL divergence)32

The smaller D(Probt{ω}�Probe{ω}) is, the closer Wt(ω) and We(ω) are, which means that the hash function has 
the exceptional collision resistance property.

The collision resistance property can also be quantified by the absolute difference between two hash values 
(i.e., the distance between two hash values):

(9)
Umsg = U1U0 · · ·U1U0 = U1U0 · · ·U1· · ·U1

︸ ︷︷ ︸

I

· · ·U1U0.

(10)ω =
N∑

i

δ(T(bi),T(b
′
i)),

(11)Wt(ω) = J × Probt{ω} = J
s!

ω!(s − ω)!

(
1

28

)ω

(1−
1

28
)
s−ω

,

(12)D(Probt{ω}�Probe{ω}) =
s∑

ω=0

Wt(ω)

J
log2

(
We(ω)

J × Probt{ω}

)

.
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The experimental mean difference per byte of two hash values can be calculated by d, then obtain the absolute 
difference between it and its theoretical value is denoted by △d̄ = |d̄t − d̄e| . Since the spatial distribution of ASCII 
characters is independent and uniform, and d̄t can be calculated by the following equation33:

Lev = 256 is the number of levels. As the number of experiments increases, d̄e will converge to d̄t , which means 
better property of collision resistance. As we can see from Table 1, two instances of our scheme have a smaller 
D(Probt{ω}||Probe{ω}) and �d̄ compared with those in QHFM, which implies that our scheme has better per-
formance in the collision test.

So far this section has focused on collision test to assess the collision resistance. The main criterion for col-
lision resistance of a hash function is that the hash value has less number of hits when a random bit reversal 
is performed on the input message. When the discrete-time quantum walks perform on an even-length cycle 
starting in the position |0� after odd steps, then the probability at the even vertexes is zero, while the odd vertex 
is not zero. This periodic behavior is similar on lively quantum walk with an odd lively parameter on an even-
length cycle τ . The issue that emerges from these pattern is that the collision test can not pass. However, the 
lively quantum walks with even lively parameters τ do not show such periodic pattern for both even-length 
cycles and odd-length cycles. It can thus be suggested that the quantum hash function proposed in our paper 
can satisfy multi-level security, i.e., it can output variable-length hash values. By contrast, most quantum hash 
functions based on discrete-time quantum walks cannot satisfy this property, e.g., they cannot output a 256-bit 
hash value14–20.

Sensitivity.  An effective hash function needs to be extremely sensitive to the initial input, which means that 
any slight change in the input message will produce a hash value completely unrelated to the result of the original 
message. To verify the sensitivity of the proposed scheme, four experiments were designed and calculated with 
the following input information:

M1: Randomly draw a record from the dataset
M2: Randomly flip the bits of message M1 at a location
M3: Randomly insert a random bit at a location in message M1
M4: Delete a bit at a random location in message M1

The hash values corresponding to the above four input messages are HMj , j = 1, 2, 3, 4 . Taking the instance that 
the output hash value length is L = 296-bit, the hexadecimal format of the four hash values is described as follows:

HM1:D8CCADC2F92994BCBA291E6E790B848ED2ECF9A4D406D00DB40
084B7129C9CADB8BE6A504D
HM2:AD8E79F3A902AC2AA9C16FD35389ECA58C5ACAE9243EC67CB5F
1FF68576C5C2A5252F54B47
HM3:712DBD57C4300F84478C36FF9FAC6CF46DC2463EEA006FEA237
F1679FC93E019AA42FC017D
HM4:C8555E380EA9854F3F913CA2D30F86F1AA386748E0345E6F223
9FC84D1C986511F00F23AB0
The binary format of the hash values corresponding to the input messages M1–M4 is shown in Fig. 1, which 

demonstrates that even a slight change of the input message can also cause the new hash value to have a large 
deviation from the original hash value. This result further demonstrates that QHFL can satisfy the one-wayness 
well.

(13)d =
s∑

i

|T(bi)− T(b′i)|.

(14)d̄t = E
(
T(bi)− T

(
b′i

))
=

1

3
× Lev ≈ 85.3,

Table 1.   Collision resistance test results.

Instance

Numbers of hits ω

D(Probt {ω}�Probe{ω}) △d̄0 1 2 3 4

QHFL-296
We(ω) 8637 1278 81 4 0

0.00009977 0.15
Wt (ω) 8652 1255 89 4 0

QHFM-29615
We(ω) 8662 1250 85 2 1

0.00001848 0.13
Wt (ω) 8652 1255 89 4 0

QHFL-264
We(ω) 8784 1133 82 1 0

0.00024273 0.02
Wt (ω) 8788 1137 71 3 0

QHFM-26415
We(ω) 8853 1074 73 0 0

0.00072578 0.11
Wt (ω) 8788 1137 71 3 0
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Since the hash value of the proposed scheme is calculated by the probability distribution of each vertex in the 
final state on the cycle, the distance between the discrete probability distribution corresponding to the modified 
message and the original message, respectively, can also be used as an indicator to measure the sensitivity of 
DQW-based hash functions.

For two discrete probability distributions P = (p1, p2, . . . pN ) and Q = (q1, q2, . . . qN ) on a finite alphabet of 
size N, the distance between them can be measured by Jensen− Shannon divergence (JSD)34, which is denoted 
by JSD in the sensitivity test. Different from KL divergence, it is a symmetric function, defined everywhere, with 
values between 0 and 1. The larger JSD value indicates the farther distance between the two probability distribu-
tions. KL divergence can be modified slightly to obtain the JSD formula

where Mk denotes a modified message with a range of k ∈ {2, 3, 4} , and D(· � ·) denotes the KL divergence in 
Equation 12. After repeating 2048 independent sensitivity test experiments, as listed in Table 2, the QHFL scheme 
is more sensitive to messages in comparison with the QHFM scheme.

Diffusion and confusion property.  Diffusion and confusion methods, first introduced by Shannon35, can 
effectively impede the statistical analysis of encryption algorithms. In the context of a hash function, diffusion 
(often referred to as the avalanche effect) allows any slight impact on the original message and is propagated 
throughout the whole output, which means that the output hash is highly correlated with the input text. For the 
binary format of the input and output hash values, any change in the original message bit leads to a change in 
each bit of the hash value with a 50% probability. Confusion attempts to hide the input message and the relation 
between the key and the output hash value, which means that it is difficult for an adversary to break the security 
of the hash function by means of statistical analysis.

To evaluate the diffusion and confusion performance of QHFL, we independently repeat the following 
experiments J = 10, 000 times. In the ith experiment, the original message M1 generates its corresponding 
hash value h, and then randomly selects and flips a bit in M1 to obtain a new hash value h′ . The new L-bit 

(15)JSD(ProbM1 � ProbMk) =
1

2
D(ProbM1 � ProbMk)+

1

2
D(ProbMk � ProbM1),
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Figure 1.   Hash values in the binary format generated by QHFL-296. The symbol * represents a different bit 
between HM2 and HM2 −HM4.

Table 2.   JSD-sensitivity test results.

Instance M2 M3 M4

QHFL-296 0.0810050584976550 0.136948519786094 0.137304527477550

QHFM-296 0.0433801323884277 0.0578510007648174 0.0574491187555278
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hash value is then compared with the original message, and followed by calculating their Hamming distance 
Bi =

∑|h|
k=1 h(k)

⊕
h′(k) between the two hash values per experiment. Four statistical indicators can be further 

calculated to evaluate the diffusion and confusion property of the proposed hash function:

•	 Mean number of bits changed B̄ =
∑J

i=1 Bi
J  bit

•	 Mean probability of change per bit P = B̄
|h| × 100%

•	 Standard deviation of the changed bit number �B =
√

1
J−1

∑J
i=1 (Bi − B)2 bit

•	 Standard deviation of the mean change per bit probability �P =
√

1
J−1

∑J
i=1 (Pi − P)2 × 100%

The ideal values of B̄ and P(%) are L2 and 50% , respectively. Meanwhile, a smaller standard deviation of �B and 
�P(%) can also explain the stability of the diffusion and confusion effects. Comparison between QHFL and 
QHFM is listed in Table 3. It can be concluded from the results that the �B and �P(%) of QHFL are slightly less 
than or approximately equal to QHFM. In addition, it is obvious that B̄ and P(%) of QHFL are approximate to 
the ideal values, which are on the same level as QHFL.

Differential analysis exploits weaknesses in the diffusion and confusion property and is based on the analysis 
of the correlation between some input differences and the output differences. These differential attacks can pose 
a serious threat to the security of hash functions as well. If there is a strong correlation between different inputs 
and outputs, one can easily detect message collisions. Therefore, diffusion and confusion is a strong indicator 
for assessing the resistance of hash functions against the differential analysis attacks. Excellent diffusion and 
confusion property evaluated from tests indicate that the proposed scheme has robust resistance and reliability 
to differential analysis attack.

Uniform distribution.  In general, the uniform distribution of output hash values over the compression 
range is one of the most critical security features. When the output space of a hash function is uniformly distrib-
uted, the input message will hide the statistics of the original message after diffusion and confusion. As shown in 
Fig. 2, we count the number of tests to flip a hash bit at each location ,and the result is visually described in the 
form of a histogram, which proves that the QHFL scheme is able to resist statistical analysis attacks.

Table 3.   Results of diffusion and confusion tests.

Instance B̄ P(%) �B �P(%)

QHFL-296 148.19 50.06 8.55 2.89

QHFM-296 147.91 49.97 8.81 2.98

QHFL-264 132.03 50.01 8.11 3.07

QHFM-264 131.96 49.98 8.16 3.09

Figure 2.   Histogram of the 296-bit hash space.
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Computing complexity
For the case where QHFL with L bits input and O(N) bits output, it is easy to perform both in the quantum and 
classical computer, specifically, only up to O(LN) time complexity is required in the classical case, and at most, 
O(⌈log2 N⌉)-sized elementary gates along with memory are necessary for the quantum case. In the classical con-
text, it is trivial to obtain the time and space complexity of these schemes by analyzing the number of arithmetic 
operations performed during the entire hash process15. Such schemes can also be efficiently implemented under 
quantum computing models by performing controlled alternate lively quantum walks, such that we can give the 
design of quantum circuit for QHFL by some trivial alterations on the quantum circuit of DQW.

Classical time and space complexity.  The quantum evolution at each step of controlled alternate lively 
quantum walk on an N-length cycle is simulated by matrix multiplication. The quantum state at the t-th step can 
be denoted by |�(t)� =

∑

x∈zN acx,t |x, c� or in Eq. (5). Each step performs a quantum evolution via a unitary 
operator U1 = S1(IN ⊗ C) or U0 = S0(IN ⊗ C) controlled by message bits, where S1 and S0 represent the shift 

operators of different τ , C is the coin operator, denoted by 

[
C1

C2

C3

]

 . Where Ci =
∑3

k=1 Ci,k|i��k|,i ∈ {1, 2, 3} , Ci,k are 

the elements in the i th row and k th column of the matrix C. After combining Eqs. (5) and (6), the transforma-
tion of coin operator acting on 

∣
∣ψx,t

〉
 can be formulated as

where x + 1 , x − 1 , and x + τ are all calculated by modular arithmetic under modulus N. According to Eq. (16), 
the amplitude of the quantum state |�(t)� is given by

The calculation process of the QHFL scheme consists of two parts of arithmetic operations. The first part is to 
update the quantum state amplitudes, and the second is to use multiplication and modular arithmetic to obtain 
the final hash value. Since the liveliness parameter τ is controlled by each message bit, a QHFL with L steps has 
the same complexity as the controlled alternate lively quantum walk on an N-length cycle with message length 
L. Given the quantum state amplitude at the t − 1 th step and the position x, the new quantum state amplitude at 
the tth step can be updated by only 9 multiplications and 9 additions. For a cycle with N vertexes, each step will 
take O(N) basic arithmetic operations. Obviously, for an input message of L bits, the basic operations required 
for obtaining the value of amplitude only increase by O(LN). In addition, such computation needs 3N registers 
to store the amplitude values, so the space complexity is O(N). The time and space complexity of other existing 
schemes can be analyzed by using similar processes related to the length of the output hash value. As a result, 
QHFL has the same classical time and space complexity as its peers13–19,21,23 except Cao-19520.

Quantum circuit and resource consumption.  For the reason of exponential speedups, quantum imple-
mentations of the proposed scheme must scale logarithmically with graph scale on which it performs. As a struc-
ture with a high degree of symmetry, a small number of parameters can characterize the cycle36,37. QHFL, whose 
underlying model controlled alternate lively quantum walk on the N-length cycle can be regarded as the DQW 
proceeding around a slightly modified N-length cycle with additional connections for each transition, such that 
each vertex on the cycle has three adjacent edges. Then, we give an efficient quantum circuit to implement QHFL 
by referring to Ref.36.

There are three associated spaces: the vertex space, in which x lies, the coin space, in which c lies, the message 
space, in which msg lies. We firstly assign each vertex x a bit string in lexicographic order to encode the vertex 

(16)

|�(t + 1)� =
�

x∈zN
C1






�
a1x+1,t

�†

�
a2x+1,t

�†

�
a3x+1,t

�†




|x + 1, 0� +

�

x∈zN
C2






�
a1x−1,t

�†

�
a2x−1,t

�†

�
a3x−1,t

�†




|x − 1, 1�

+
�

x∈zN
C3






�
a1x+τ ,t

�†

�
a2x+τ ,t

�†

�
a3x+τ ,t

�†




|x + τ , 2�,

(17)

[
a1x+1,t a2x+1,t a3x+1,t

]† =
[
a1x+1,t a2x+1,t a3x+1,t

]† +
[
a1x,t−1 a2x,t−1 a3x,t−1

]†
C
1

[
a1x−1,t a2x−1,t a3x−1,t

]† =
[
a1x−1,t a2x−1,t a3x−1,t

]† +
[
a1x,t−1 a2x,t−1 a3x,t−1

]†
C
2

[
a1x+τ ,t a2x+τ ,t a3x+τ ,t

]† =
[
a1x+τ ,t a2x+τ ,t a3x+τ ,t

]† +
[
a1x,t−1 a2x,t−1 a3x,t−1

]†
C
2
.

· · ·
•
• •
• • • ×

(a) Increment gate

· · ·

×
(b) Decrement gate

Figure 3.   Increment and Decrement gates on n qubits.
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space, then use ⌈log2 3⌉ (rounded up to a nearest integer) additional qubits to encode the coin space, where the 
first three bit strings represent the three edges of each vertex. In the end, one qubit is required to encode the mes-
sage space, with each computational basis |0� and |1� representing the input message bits 0 and 1, respectively. The 
shift operator can be implemented by a cyclic permutation gate, which increases or decreases a vertex bit string 
value into its adjacent vertexes in Fig. 3, and the coin operator is the Grover operator defined on ⌈log2 3⌉ dimen-
sions. Such quantum circuit is made up of generalized CNOT gates, which O(⌈log2 N⌉) additional ancillary qubits 
and O(⌈log2 N⌉) elementary gates are also required. An example of the quantum circuit for the implementation 
of QHFL at per step controlled by per message bit is shown in Figs. 4 and  5.

Advantage
Through the above analysis, QHFL performs better in tests of statistical performance than other QW-based 
quantum hash functions. Furthermore, QHFL has some advantages than other CAQW-based quantum hash 
functions benefit from the structure of controlled alternate lively quantum walks on cycles.

Applying the controlled alternate lively quantum walk as an underlying algorithm for quantum hash functions 
presents several useful attributes. Firstly, simply changing the liveliness parameters, not just the coin operators 
of the controlled alternate lively quantum walk employed results in a totally different hash output. Without 
introducing an additional direction-determine operator as in QHFM, QHFL can implement different quantum 
hash functions for different purposes by setting unique liveliness parameters, for each purpose. Secondly, the 
structure of controlled alternate lively quantum walks can be modified, allowing for a longer hash output, simply 
by changing the cycles on which controlled alternate lively quantum walks perform. As described on the colli-
sion resist in previous section, QHFL performed on an even-sized cycle will not result in regular hash values. 
Consequently, differently from some CAQW-based quantum hash functions14–20, it can generate hash values 
with arbitrary length under suitable conditions.

Discussion
In this paper, we addressed to designing a new quantum hash function QHFL with variable output length, which 
is based on the controlled alternate lively quantum walks with variable parameters of liveliness. Its performance 
and security property are evaluated and compared with the existed state-of-art scheme. The selection criteria 
of coin operators was also discussed to guarantee the security conditions of QHFL, mainly to avoid collisions. 
The nature of DQW-based quantum hash functions are that different input messages correspond to completely 
divergent probability distributions of final quantum state. Thus we adopted an additional indicator JSD to evaluate 
the sensitivity of the probability distribution to a message. The analyses show that QHFL is with the near-ideal 
properties of collision resistance, sensitivity, diffusion and confusion property, and hash value uniform distri-
bution property. Moreover, the proposed QHFL is a compatible hash function that can perform efficiently on 

Figure 4.   Quantum circuit implementing QHFL with the liveliness parameter τ = 2 alone a 37-length cycle 
controlled by message bit 1.

Figure 5.   Quantum circuit implementing QHFL with the liveliness parameter τ = 0 alone a 37-length cycle 
controlled by message bit 0 per step.
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both a quantum and a classical computer. We also design an efficient quantum circuit implementation of QHFL, 
which only requires ancillary qubits and elementary quantum gates in logarithmic complexity scaling with cycle 
size. Remarkably, the proposed scheme has better flexibility than the scheme based on the controlled alternate 
quantum walks with memory, because it is easy to replace the underlying lively quantum walks by changing the 
liveliness parameters. Thus, such research can facilitate the construction of novel CAQW-base hash functions 
without restricting the use of controlled coins. Furthermore, QHFL is suited for various security levels required 
among different applications.

Research on QW-based quantum hash functions is still in progress. Despite some positive results in the design 
of quantum hash functions, questions remain. Firstly, all the processes on a classical computer of QHFL are 
realized by multiplication and addition/subtraction operations, there is abundant room for further progress in 
efficiency. Secondly, the collision resistance and differential analysis attack resistance of the proposed quantum 
hash function is analyzed only by some statistical tests. In future work, more efficient constructions of combining 
other different quantum walks and using a parallel realization are therefore required to explore. And to develop 
a full analysis of QW-based quantum hash function, additional studies will be needed to perform a rigorous 
mathematical proof for our scheme.

Data availability
The arXiv dataset analyzed in this paper is publicly available at https://​www.​kaggle.​com/​Corne​ll-​Unive​rsity/​arxiv. 
The preprocessed dataset and experimental results are available from the corresponding author on reasonable 
request.

A Periodicity of lively quantum walks on cycles
The set of Grover-type matrices30 can be represented as MGrov = { 23 J − P; P ∈ P } where J is a matrix whose ele-
ments are all one, P = {P1 = I , P2 = (123), P3 = (132), P4 = (23), P5 = (12), P6 = (13)} is the symmetric group 
S3 corresponding permutation matrices. Therefore, all parametric orthogonal matrices can be regarded as linear 
combinations of permutation matrices. The single-parameter orthogonal matrix group is described as follows:

then we have 

1.	 Xθ ∪Yθ , where 

2.	 Xθ ∪Zθ , where 

3.	 Xθ ∪Wθ,where 

4.	 P Oθ = X θ ∪Yθ ∪Zθ ∪Wθ

Without loss of generality, the necessary condition for the coin operators that satisfy the periodic lively quantum 
walks when C ∈ Xθ is given by
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Where lcm{·, ·} represents the least common multiple, and gcd(·, ·) represents the greatest common divisor. For 
example, we can consider two special coin operators in Xθ with parameters θ = π

2  and θ = 3π
2  , whose corre-

sponding coin operators are described as follows: 


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