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Abstract

Statistical mediation analysis is used in the social sciences and public health to uncover potential 

mechanisms, known as mediators, by which a treatment led to a change in an outcome. Recently, 

the estimation of the treatment-by-mediator interaction (i.e., the XM interaction) has been shown 

to play a pivotal role in understanding the equivalence between the traditional mediation effects 

in linear models and the causal mediation effects in the potential outcomes framework. However, 

there is limited guidance on how to estimate the XM interaction when the mediator is latent. 

In this paper, we discuss eight methods to accommodate latent XM interactions in statistical 

mediation analysis, which fall in two categories: using structural models (e.g., latent moderated 

structural equations, Bayesian mediation, unconstrained product indicator method, multiple-group 

models) or scoring the mediator prior to estimating the XM interaction (e.g., summed scores 

and factor scores, with and without attenuation correction). Simulation results suggest that finite-

sample bias is low, type 1 error rates and coverage of percentile bootstrap confidence intervals and 

Bayesian credible intervals are close to the nominal values, and statistical power is similar across 

approaches. The methods are demonstrated with an applied example, syntax is provided for their 

implementation, and general considerations are discussed.
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Researchers in the social sciences and public health use the statistical mediation model 

to uncover potential intermediate mechanisms, known as mediators [M], that explain 

how a treatment [X] led to a change in the outcome [Y]. In the past decades, the 

development of the potential outcomes framework has been revolutionary because it 

clarifies the assumptions needed to interpret mediated effects as causal effects and provides 

nonparametric mediation effect definitions (Imai et al., 2010; Pearl, 2001; 2014; Valeri 

& VanderWeele, 2013; VanderWeele, 2015). However, social science and public health 

researchers have been slow to adopt these methods (MacKinnon et al., 2020; Nguyen et al., 

2020).

corresponding author: ogonza13@unc.edu. 

HHS Public Access
Author manuscript
Multivariate Behav Res. Author manuscript; available in PMC 2024 July 01.

Published in final edited form as:
Multivariate Behav Res. 2023 ; 58(4): 659–674. doi:10.1080/00273171.2022.2119928.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Demonstrating the links between the traditional and causal effects of mediation promotes 

the adoption of the potential outcomes framework to test for mediation. MacKinnon et al. 

(2020) showed that in models linear in their parameters, observed and continuous M and 

Y, and XM interaction, there is a correspondence between the traditional mediated effect 

estimates and the estimates from the potential outcomes framework. A mediation model 

with observed variables and an XM interaction can be estimated using OLS regression 

models (MacKinnon, 2008), which makes testing for the XM interaction a relatively simple 

task. However, in many applied settings, mediators have random measurement error which 

can bias the relations in the statistical mediation model if ignored (Albert et al., 2016; 

Gonzalez & MacKinnon, 2021; Hoyle & Kenny, 1999; Fritz et al., 2016; le Cessie et al., 

2012; Muthén & Asparouhov, 2015; VanderWeele et al., 2012). Furthermore, measurement 

error in variables propagates to interaction terms, which leads to detrimental effects on their 

reliability and power to detect an effect (Aiken & West, 1991; Bohrnstedt & Marwell, 

1978; Busemeyer & Jones, 1983; Kenny & Judd, 1984; McClelland & Judd, 1993). 

Latent variables can be used to adjust the mediator for measurement error (Gonzalez & 

MacKinnon, 2021), which makes the XM interaction a latent interaction. Traditionally, the 

estimation of latent interactions has been considered complex and impractical (Cortina et al., 

2021; Edwards, 2009), and there is limited guidance on the estimation of mediation models 

in the presence of latent interactions (Cheung & Lau, 2017).

In this paper, we evaluate eight approaches to handle latent XM interactions in mediation 

models with linear effects, binary randomized X, continuous M, and continuous Y, which are 

models common in prevention research (MacKinnon, 2008). First, we provide background 

on statistical mediation and the link between the traditional and causal estimators. Then, we 

discuss eight approaches to estimate the XM interaction when M is latent. Next, we present 

simulation results on the estimation properties of the mediated effect across those eight 

methods. Lastly, we illustrate the methods and provide syntax for their implementation. The 

goal of this paper is to provide guidance and recommendations for applied researchers on 

how to estimate mediation effects and latent XM interactions in both the traditional and the 

potential outcomes framework.

Statistical mediation model from the traditional perspective

In intervention settings, the single mediation model with linear relations and continuous 

outcomes can be represented in the following equations (MacKinnon, 2008):

M = iM + aX + gC + eM (1)

Y = iY + c′X + bM + fC + ℎXM + eY . (2)

In this case, a is the relation between X (here, a randomized treatment/control indicator) and 

M (adjusting for confounder C), g is the relation between C and M (adjusting for X), b is the 

relation between M and Y at X = 0 (adjusting for C), c’ is the relation between X and Y at M 

= 0 (adjusting for C), f is the relation between C and Y (adjusting for X and M), and h is the 

relation between the XM interaction and Y (adjusting for the main effects of X, M, and C). 
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Also, iM, iY, eM, and eY are the intercepts and residuals for the corresponding equations. In 

practice, measured confounders, such as C, are included in Eq. 1 and 2 to improve the causal 

interpretation of the effects (Imai et al., 2010; VanderWeele & Vansteelandt, 2009).

When the h-path is zero, the mediated effect, which is the influence of X on Y through 

M, is defined by the product of a and b (MacKinnon, 2008). As such, the traditional 

mediation approach is often referred to as the product-of-coefficients approach. If the h-path 

is nonzero, then the b-path in the model varies as a function of X (i.e., there would 

be group-specific b-paths, bg) or the c’-path varies as a function of M. As such, simple 

mediated effects for the treatment and the control group are defined by abg (MacKinnon 

et al., 2020). Finally, methods to construct intervals for the mediated effect include using 

the distribution of the product of two random variables (Tofighi & MacKinnon, 2011), the 

percentile bootstrap (MacKinnon et al., 2004), or the posterior distribution of ab in Bayesian 

mediation (Yuan & MacKinnon, 2009).

Also, there are several assumptions that must be met so that the mediated effect is ascribed 

with a causal interpretation. Some of them include specifying the correct functional form 

and temporal precedence among variables in the model, along with reliable and interpretable 

scores for those variables (MacKinnon, 2008). Furthermore, there are four no-unmeasured-

confounding assumptions needed to identify the direct and indirect effects (Imai et al., 

2010; Pearl, 2001; 2014; VanderWeele, 2015): (1) no unmeasured confounders in the X-Y 

relation conditional on covariates, (2) no unmeasured confounders in the M-Y relation 

conditional on covariates, (3) no unmeasured confounders in the X-M relation conditional 

on covariates, and (4) no measured or unmeasured confounders of the M-Y relation affected 

by X conditional on covariates. Assumptions 1 and 3 are typically satisfied when X is 

randomized, but assumptions 2 and 4 are not satisfied even if X is randomized because 

individuals self-select their values on M (i.e., M is not randomized). Consequently, all paths 

except the a-path do not have causal interpretations. Violations of assumptions 2 and 4 could 

lead to biased parameter estimates of the noncausal paths and misleading conclusions about 

mediated effects. In this case, sensitivity analyses can be used to study the effect of violating 

assumptions 2 and 4 on the noncausal paths (e.g., Cox et al., 2013; Fritz et a., 2016; Liu & 

Wang, 2021).

Potential outcomes mediation model and links with the traditional 

perspective

In the potential outcomes framework, mediated effects are defined based on differences 

of counterfactual conditions, or potential outcomes (Valeri & VanderWeele, 2013). A 

counterfactual condition refers to the conditions in which individuals did not serve in (e.g., 

Mi(1) is the mediator value for respondent i if they had served in the treatment group, and 

Mi(0) is the mediator value for the same respondent i if they had served in the control 

group). For our model, there are four causal mediation effects of interest. The total natural 

indirect effect (TNIE) refers to the effect of X on Y by M while holding X constant at the 

treatment group value (X=1), E[Yi (1, Mi (1)) – Yi (1, Mi (0))]. The pure natural indirect 

effect (PNIE) refers to the effect of X on Y by M while holding the X constant at the 
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control group value (X=0), E[Yi (0, Mi(1)) – Yi (0, Mi(0))]. The total natural direct effect 

(TNDE) refers to the effect of X on Y while fixing each person’s mediator value to the 

value that naturally would have been observed if they had been in the treatment group, E[Yi 

(1, Mi(1)) – Yi (0, Mi(1))]. The pure natural direct effect (PNDE) refers to the effect of 

X on Y while fixing each person’s mediator value to the value that naturally would have 

been observed if they had been in the control group, E[Yi(1, Mi(0)) – Yi(0, Mi(0))]. Another 

important relation studied in the potential outcomes framework is the mediated interaction, 

which is defined as TNIE – PNIE or TNDE – PNDE. Note that the effect definitions of 

the potential outcomes model differ from the definitions used in the product-of-coefficients 

approach because they do not refer to a statistical model to define the effect (e.g., in the 

product-of-coefficients approach, the mediated effect is ab, which is based on conditional 

linear associations rather than differences in potential outcomes). As such, the definitions 

of the causal mediated effects are more general and extend to non-additive or non-linear 

models (Pearl, 2014).

Although theoretically different, MacKinnon et al., (2020) showed that estimates from 

the potential outcomes framework and the product-of-coefficients (from Eq. 1 and 2) 

are equivalent in the single mediator model with an XM interaction, linear effects, and 

continuous M and Y. In this case, the PNIE is equivalent to ab and analogous to the simple 

mediated effect in the control group, TNIE is equivalent to ab + ah and analogous to the 

simple mediated effect in the treatment group, PNDE is equal to c’+hiM and analogous to 

the simple direct effect in the control group, and TNDE is c’ + ah + hiM, and analogous 

to the simple direct effect in the treatment group. Although not discussed in the traditional 

approach, the mediated interaction can be estimated by ah (MacKinnon et al., 2020). If h = 

0, then ah is zero, and PNIE = TNIE = ab and TNDE = PNDE = c’. In the supplement (part 

1), we show how to derive these relations.1

Latent M and accommodating a latent XM interaction

When researchers want to adjust for measurement error in the mediator, they might fit a 

latent variable model, such as a linear factor model,

mij = τj + λjMi + eij (3)

In this case, mij is the score of respondent i on mediator item j, M is the latent level of the 

mediator assessed by the measure, τj is the item intercept, λj is the factor loading, and eij 

is the unique score of respondent i on item j that is independent of M. Note that M and 

eij are often assumed to be normally distributed, but they do not have to be. As such, we 

can extend the relations shown in Eq. 1 and 2 as if M were a latent variable. Recall that 

in the model of interest, X is a randomized binary treatment/control indicator that is free 

of error. Therefore, the XM interaction is an observed-by-latent interaction (although we 

refer to it as a latent XM interaction throughout the paper; see Figure 1). As mentioned 

above, a benefit of estimating the single mediation model with a latent XM interaction is 

1When X is centered, these expressions must be adjusted. This case is also shown in the supplement (part 1)
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the computation of causal mediation effects based on the potential outcomes framework. 

Below we discuss two general ways to proceed: score M and then compute an observed XM 

interaction or use structural models. A complication of the estimation procedures of latent 

interactions is their reliance on distributional assumptions of the latent variables and the 

observed indicators, which can bias estimates and inflate type 1 errors when normal theory 

standard errors are used (e.g., Brandt et al., 2021; Cham et al., 2012). In this paper, we focus 

on the distributional assumptions of the observed indicators, but not on the distribution of 

the latent variables.

Scoring M and computing an observed XM interaction

To avoid estimating a latent XM interaction, one could obtain scores for M and compute 

an observed XM interaction. A problem with scoring M is that the scores ignore random 

measurement error, which propagates to the XM interaction (Aiken & West, 1991) and 

attenuates the relations among variables (Cole & Preacher, 2014; Hoyle & Kenny, 1999). In 

these situations, we can conduct procedures to adjust for measurement error based on the 

reliability of the scores. Below, we describe two procedures that ignore measurement error 

and then two procedures to adjust for measurement error.

Summed scores for M.—A commonly used score of M is a summed score Ms, which 

involves unit-weighing the item responses and aggregating into a score. After obtaining 

Ms, the XM interaction is represented as XMs and we estimate the single mediator model 

from Eq. 1 and 2 using OLS regression. Summed scores are arguably the most common 

practice used by researchers when handling mediators (e.g., MacKinnon et al., 2008). 

Regarding distributional assumptions, parameter estimates from OLS are largely robust to 

the nonnormality of M and Y, but standard errors might be negatively biased (Preacher, 

2015).

Factor scores for M.—Factor scores are weighted scores of the observed item responses, 

and the weights (i.e., the scoring matrix) are derived from the parameters of a well-fitting 

linear factor model to the mediator items, as in Eq. 3. In this paper, we estimate Bartlett 

scores (Bartlett, 1937) for M, Mf. 2 The scoring matrix for Bartlett scores, Bw, can be 

estimated using,

Bw = (λ′Θe
−1λ)−1λ′Θe

−1 . (4)

In this case, λ is a j x 1 matrix of the factor loadings, and Θe is a j x j covariance matrix of 

the unique scores, which is diagonal. Once we have estimated Bw, we can estimate Mf by 

multiplying the item response by its weight and aggregating across. After obtaining Mf, we 

can estimate the XM interaction using XMf and estimate the single mediator model from Eq. 

1 and 2 using OLS regression (Skrondal & Laake, 2001). There are two things to note. First, 

the linear factor model assumes that the indicators are normally distributed. If indicators 

are nonnormal as in the case of discrete items, standard errors might be too small (Flora & 

Curran, 2004) and factor loadings might be underestimated (Rhemtulla et al., 2012), which 

2Regression scores, a popular alternative, are linearly related to Bartlett scores (Lawley & Maxwell, 1971).
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would affect the estimation of the scores. Second, M is both an independent and a dependent 

variable in the mediation model, so by using Mf from Bartlett scores, the unstandardized 

parameter estimates would not recover the true effect sizes (but see Analytic Notes section; 

Devlieger et al., 2016).

Summed scores for M with error correction.—Covariance structure modeling can be 

used to correct summed score models for unreliability (Aiken & West, 1991). Measurement 

error affects the variances of the variables, but not their covariances. In this case, we would 

fit the single mediation model to the covariance matrix of X, Ms, Y, C, and XMs, manually 

adjusting the variances of Ms and XMs using an estimate of the reliability of Ms, such as 

coefficient alpha,3 αMs. The corrected variance of Ms, σMsc
2 , is estimated by σMsc

2 = αMsσMs
2 . 

Lastly, we correct variance of XMs using the relations between the variances of X, M, and 

XM. When X and M are centered (e.g., μx = μm = 0), one can show that, in expectation, 

(Bohrnstedt & Marwell, 1978),

V ar(XM) = V ar(X)V ar(M) − Cov(X, M)2 . (5)

Therefore, one can substitute Var(M) with σMsc
2  in Eq. 5 to estimate the variance of σXMsc

2 . 

Lastly, one can fit the single mediator model with the XMs interaction to the corrected 

covariance matrix in any SEM program using maximum likelihood, which assumes 

multivariate normality.

Factor scores for M with Croon’s correction.—Croon (2002) developed a method 

to correct for bias in regression estimates among factor scores by manually correcting 

the variances and covariances of the factor scores. Recently, Croon’s correction has been 

extended to models with latent interactions (Cox & Kelcey, 2021). Suppose that we have two 

latent variables, ξ and η, and their factor scores, Fξ and Fη, and we want to estimate Var(ξ) 

and Cov(ξ,η) from Var(Fξ) and Cov(Fξ, Fη). The corrections follow these general forms:

Cov(ξ, η) = Cov(F ξ, Fη)
Bwξλξλη

′Bwη
′ ; V ar(ξ) = V ar(Fξ) − BwξΘeξBwξ

′

Bwξλξλξ
′Bwξ

′ , (6)

with symbols defined as above. Our model differs from the general case in that M is the only 

latent variable, and the rest are observed and assumed to be perfectly reliable (for which λ = 

1 and Bw = 1). Also, Bartlett scores have the property that Bw
′ λη = 1 (Devlieger et al., 2016), 

which simplifies the denominator in Eq. 6. Recall that Bartlett scores are weighted scores, so 

their variance can be estimated from the factor model parameters,

V ar(Mf) = BwξλξΦλξ
′Bwξ

′ + BwΘeBw
′ . (7)

In this case, Φ = 1, which is the variance of the latent variable, so Var(Mf) is decomposed 

into variance due to the common factor (first term) and unique variance (second term). 

3Note that the reliability-adjusted product indicator (RAPI) approach uses similar adjustments (Hsiao et al., 2018).

Gonzalez and Valente Page 6

Multivariate Behav Res. Author manuscript; available in PMC 2024 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



As such, Croon’s correction for the variance in Eq. 6 is effectively the adjustment for 

unreliability, which consists of removing the part of the factor score variance that is not 

true score variance. Also, given that Bwξλξλξ
′Bwξ

′ = 1 for Bartlett scores, the reliability of Mf is 

ρMf = 1 ∕ σMf
2 . Extending prior developments, we can correct for the variance of Var(XMf) by 

estimating σMfc
2 = σMf

2 ρMf and use it in Eq. 5. Similar to above, one can fit the single mediator 

model with the XMf interaction to the corrected covariance matrix in any SEM program 

using maximum likelihood, which assumes multivariate normality of the observed variables.

Structural models that accommodate the latent XM interaction

Instead of scoring M, the goal of the next four structural models is to estimate the effect of 

the latent XM interaction directly or indirectly, and still obtain the estimates for the single 

mediator model.

Multiple-group (MG) model.—Suppose that a categorical variable, a latent variable, and 

their interaction predict a continuous outcome. In that case, one could use an MG model 

to indirectly estimate the latent interaction effect (Marsh et al., 2012). First, one would 

estimate the relation between the latent variable and the outcome in each group defined by 

the categorical predictor. Then, invariance constraints and χ2 tests are used to test if the 

relation between the latent variable and the outcome varies by group. However, these steps 

are more appropriate when the categorical variable is a covariate and not a focal variable. 

For our case, the grouping variable is the treatment-control indicator X, and its relation with 

the mediator (and outcome) are important to estimate the mediated effect. To remedy this 

situation, we can extend the MG approach and use algebra to compute the single mediation 

paths from Eq. 1 and 2. In this case, we can fit the following two-group model in which X, 

indexed by (g), defines the groups,

mij
(g) = τj

(g) + λj
(g)Mi + eij

(g)
(10)

Mi = i2
(g) + g(g)Ci + ei2

(g) (11)

Y i = i3
(g) + b(g)Mi + g(g)Ci + ei3

(g) (12)

Furthermore, the residual variances of Eq. 10-12 also vary by group, σej
2 (g), σe2

2 (g), and σe3
2 (g). 

For identification, we constrained the conditional mean and variance of M at g = 0, i2
g = 0 = 0

and σe2
2 (g = 0) = 1. During estimation, we centered C and X, so X = (−0.5, 0.5) because it is 

balanced, and we assumed strict measurement invariance of the factor structure across g by 

constraining to equality the intercepts (τj
(g) = τj), loadings (λj

(g) = λj), and residual variances of 

the items (σej
2 (g) = σej

2 ). The estimates of the mediation model in Eq. 1 and 2 would be,

• The a-path in Eq. 1 is i2
g = 1

• The b-path for the control group is bg=0 and for the treatment group is bg=0

• The h-path in Eq. 2 (i.e., the XM interaction) is (bg=1 – bg=0).
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• The c’-path at M = 0 in Eq. 2 is i3
g = 1 − i3

g = 0 + .5i2
g = 1ℎ

As such, the MG approach can be fit using any SEM software program using maximum 

likelihood, which assumes multivariate normality of the observed variables.

Unconstrained product indicator (UPI) approach.—The most influential approaches 

to estimate latent interactions are the product indicator approaches (Kenny & Judd, 1984). 

These approaches create a latent variable for the interaction term, where the indicators 

are products of the indicators of the respective latent variables involved in the interaction. 

There are many variations of the product indicator approaches, some of which differ on 

the constraints imposed on the model or on how to match variables to create the product 

indicators (see Marsh et al., 2012 and references therein). In this paper, we focus on the UPI 

approach with indicator parceling (Aytürk et al., 2021; Marsh et al., 2004). First, we made 

parcels of items mj by dividing them into three sets and summing item responses within set 

to yield m1
∗, m2

∗, and m3
∗. Then, we created three products, xm1

∗, xm2
∗, and xm3

∗, by multiplying m1
∗, 

m2
∗, and m3

∗ and X, so xm1
∗, xm2

∗, and xm3
∗ were the indicators of the latent XM interaction term. 

Finally, the mean of the latent XM term was fixed to E(XM) = Cov(X,M) and its variance 

to its expected variance per Eq. 5. Note that the loadings and residual variances of xm1
∗, xm2

∗, 

and xm3
∗ are freely estimated (i.e., unconstrained), which is a distinguishing feature of the 

UPI approach compared to other procedures (e.g., Kenny & Judd, 1984).4 With the previous 

specifications, the single mediator model with a latent XM interaction can be estimated 

in any SEM program using maximum likelihood, which assumes multivariate normality of 

the observed variables, although UPI parameter estimates might not be robust to moderate 

nonnormality (Marsh et al., 2012).

Latent moderated structural equations (LMS).—In contrast to the UPI approach, the 

LMS approach for latent interaction (Klein & Moosbrugger, 2000) is a distribution analytic 

approach in which a latent variable for the interaction term is not directly specified in 

the model. Rather, LMS uses a finite mixture of normal distributions to approximate the 

log-likelihood of the model and accommodate the nonnormal distribution of the outcome 

conditional on the predictors due to the nonlinear effect of the interaction (Kelava et al., 

2011). Formally, Equation 2 can be divided into matrices of linear and nonlinear effects,

Y = [b c′ f]
M
X
C

+ [M X C]
0 ℎ 0
0 0 0
0 0 0

M
X
C

+ eY , (13)

and the parameters are estimated using the EM algorithm (Dempster et al., 1977; Ng & 

Chan, 2020). This procedure is highly technical, so we refer readers to consult Klein & 

Moosbrugger (2000) and Kelava et al. (2011) for more details. This procedure is available 

in Mplus (Muthén & Muthén, 1998-2017), which facilitates its implementation. LMS 

assumes multivariate normality, but the LMS parameter estimates might be robust to mild 

nonnormality (Cham et al., 2012).

4In the typical UPI implementation, indicators of the variables that compose the interaction are only included in one product indicator 
(Marsh et al., 2012), but we had to reuse X because X does not have multiple indicators.
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Bayesian mediation.—Bayesian methods have been shown to yield accurate mediated 

effect estimates in models with latent X, M, and Y (Miočević, 2019), causal mediation 

effect estimates in models with observed XM interactions (Miočević et al., 2018), and latent 

interactions effects in general (Asparouhov & Muthen, 2021). Broadly, Bayesian estimation 

treats the parameters from the statistical mediation model as random, and prior distributions 

are assigned to those parameters, and parametric distributions are assigned to the latent 

variables. Posterior distributions for the parameters, which capture the probability that the 

parameter can take any value, are then estimated by combining the prior distributions with 

the likelihood of the data in accordance with Bayes Theorem. Specifically, the prior gets 

updated with the observed data using Markov-chain Monte Carlo (MCMC) estimation, 

which approximates the posterior distribution by taking draws from the distributions in 

which the Markov chains converged (Levy & Mislevy, 2016). A popular MCMC sampler 

is the Gibbs sampler, which is an iterative approach that consists of sampling values of 

the parameter estimates (i.e., mediation paths) conditional on the current draws of other 

parameters and the observed data (Levy & Mislevy, 2016). Suppose that we use Gibbs 

sampling to estimate a mediation model with a latent M, without an interaction (e.g., 

Miočević, 2019). A parameter that is sampled during the procedure is a score on latent 

M per respondent. As such, one can accommodate a latent XM interaction by estimating 

the product of each respondent’s X and their current sampled score on M and including 

that product in the model predicting Y. This procedure can be carried out in any software 

program with MCMC capabilities. Posterior distributions can take any shape, so inferences 

from credible intervals might be robust to nonnormality.

Present Study

The XM interaction provides an important link between the mediation effects estimated 

via the product-of-coefficients method and the causal mediation effects (MacKinnon et al., 

2020). However, the properties of the parameter estimates of the single mediator model 

with a latent XM interaction have not been examined. Below, we conduct a Monte Carlo 

simulation to study the estimation properties of the parameters of the single mediator model 

with a latent XM interaction and the causal mediation effects from the potential outcomes 

framework. Also, we illustrate the procedure using an applied prevention example.

Method

For this simulation, the datasets were generated in R and analyzed either in R or Mplus. We 

were interested in the finite-sample bias, power, type 1 error rates, and the interval coverage 

of the estimates from the single mediator model (e.g., paths in Eq. 1 and 2) and the causal 

mediation estimates (e.g., TNIE, PNIE, PNDE, TNDE, and the mediated interaction). We 

also discuss the effect of nonnormal indicators on the parameter estimates; the effect of 

nonnormal latent distribution on the parameter estimates is beyond the scope of this paper.

Simulation Factors

The effect sizes of the a-path = (0.14, 0.39), the b-path = (0.14, 0.39), the h-path = (−0.14, 

0, 0.14), and the confounder effects (e.g., the f-path and g-path) = (0, 0.20) were varied 

in the simulation (the c-path = .14 in all conditions). The paths approximately correspond 
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to small and medium Cohen’s f2 (see partial-R2 values for the paths in the supplement, 

part 4). Also, we varied the number of items (i = 6, 9) that assessed the mediator and the 

distribution of the items (d = normal or with skewness = .79 and excess kurtosis = −.61). 

Specifically, nonnormal indicators were generated by discretizing the standard-normal into 

seven response categories and fitting the linear factor model to the discrete responses, which 

is a common practice in psychology (Flora & Curran, 2004). For the normally-distributed 

indicators, the intercepts were set to zero, the factor loadings were drawn from a uniform 

distribution ranging from 0.40 and 0.70, and the residual variances were the compliments of 

the factor loadings so that the indicator total variance was one. For nonnormal indicators, 

thresholds (ν = −1.43, −.43, .38, .94, 1.44, 2.53) were taken from the extreme asymmetry 

condition from Rhemtulla et al. (2012), where the response with the lowest category had 

the largest number of cases. Note that the latent variable was normally distributed. Finally, 

we varied the sample size (N= 250, 500). Although we would expect to have marginal 

differences in the estimation approaches with normal indicators, there might be more 

differences across the approaches in conditions with nonnormal indicators. Overall, there 

were 192 conditions, with 500 replications per condition.

General Procedure

We estimated the single mediator model with a latent XM interaction using the eight 

methods discussed. For the summed score model, we added item responses for M and 

estimated the model using OLS regression. For the factor score model, we fit a one-factor 

model to M in lavaan (Rosseel, 2012), extracted Bartlett scores for M, and estimated the 

model using OLS regression. For the summed score model with reliability adjustment and 

the factor score model with Croon’s correction, we fit the model to the corrected covariance 

matrices of the variables in the mediation model using lavaan in R. Furthermore, the MG 

model from Eq. 10-12 and the UPI were fit to the data using lavaan with the specifications 

and constrains discussed above. We estimated the LMS approach in Mplus (Muthén & 

Muthén, 1998-2017) – the XM interaction was specified with the XWITH argument, also 

specifying numerical integration and random effect estimation – and processed the results 

using MplusAutomation in R (Hallquist & Wiley, 2020). For Bayesian mediation, we 

estimated the model using Gibbs sampling in JAGS (Plummer, 2003) using the R2jags 

package in R (Su & Yajima, 2020). Benchmarking results suggested that the model would 

reliably converge using a potential scale reduction factor (PSRF) < 1.1 per parameter as 

convergence criterion using 3 chains with 5,000 iterations. Specifically, the first 1000 were 

burn-in iterations, and then every 4th draw out of 4000 draws were analyzed (e.g., thinning = 

4). Diffused priors were specified for structural parameters (e.g., normal distributions; N(0, 

1000)), residual variances (e.g., inverse gamma distributions; IG(5,20)), and the factor model 

parameters (e.g., normal distributions for the item intercepts and factor loadings; N(0,1000), 

and inverse gamma distributions for the residual variances; IG(5,20)). The latent variable for 

M was identified by setting τ1 = 0 and the residual variance of M to 1.

Using the parameter estimates from Eq. 1 and 2 across methods, the causal mediation 

estimates from the potential outcomes framework were estimated as described above. 

Regarding significance testing, we used 95% percentile bootstrap confidence intervals for 

frequentist methods – 500 datasets were sampled with replacement from the original data, 
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the mediation model with the XM interaction was estimated in each bootstrapped dataset, 

parameter estimates of the mediation model and derived quantities (e.g., PNIE, TNIE, etc.) 

were compiled, and quantiles of those bootstrap distributions were used to construct the 

confidence intervals. Bootstrap confidence intervals might be more robust to nonnormal 

data than normal theory confidence intervals (Hancock & Liu, 2012). For the Bayesian 

mediation model, we computed a 95% equal-tail credible interval based on the draws from 

the posterior distribution of the parameters or derived quantities of interest, and we expect 

similar robustness to nonnormality.

Monte Carlo Outcomes

Power and type 1 error rate were defined as the proportion of times across replications 

in which the confidence/credible interval did not contain zero for parameters with a true 

nonzero value and true zero value, respectively. Interval coverage was defined as the 

proportion of times across simulation conditions in which the 95% percentile bootstrap 

confidence interval and Bayesian credible interval contained the true value of the parameter. 

Type 1 error rates between .025 and .075 (Bradley, 1978) and interval coverage between 

.925 and .975 were considered appropriate. These three outcomes were analyzed with 

regression trees using rpart in R (Gonzalez et al., 2018; Therneau & Atkinson, 2019). 

Trees were grown using binary recursive partitioning, and where the tree splits represent an 

improvement of R2 ≥ .005 on the outcome.

Finally, there were three estimates of finite-sample bias: raw bias was the difference between 

the estimated parameter and the true parameter value, relative bias (for nonzero parameters) 

was raw bias divided by the true value, and standardized bias (for zero parameters) was raw 

bias divided by the standard deviation of the parameter estimates across replications. Bias 

outcomes were analyzed using ANOVA from the rstatix R-package (Kassambara, 2021), 

where the predictors were the simulation factors and all possible interactions. Partial-η2 

≥ .005 were interpreted, and conditions with relative bias outside the range ± .10 (Flora 

& Curran, 2004) or standardized bias outside the range ± .40 (Collins et al., 2001) were 

considered high. Note that for the estimation of finite-sample bias, we need to determine a 

true value of the parameter that each method would recover during estimation, which we 

describe below.

Analytic Notes—In the supplement (part 2), we show the true covariance matrix of the 

relations between the variables in the mediation model with an XM interaction (from Eq. 

1 & 2). The data-generating parameter values are the values that the structural models 

should recover given normally-distributed indicators. We derived rescaled true values5 for 

the scoring methods because summed scores (i.e., Ms and Msc) and factor scores (i.e., 

Mf and Mfc) have a different mean (due to the scale of the scores) and variance (due to 

the scale of the scores + measurement error) compared to the data-generating values (see 

supplementary materials, part 3). Recall that measurement error either attenuates or inflates 

effect sizes of the paths in the single mediator model, so the partial R2 for each variable 

5We can use this rescaling to obtain the expected parameter values when Bartlett scores for M are used – parameters would be biased 
because M is both an independent and dependent variable in the model (Skrondal & Laake, 2001).
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differs from the partial R2 from models with perfectly reliable variables (Hoyle & Kenny, 

1999). As sample size increases, the model will not recover the data-generating effect sizes, 

but it will recover the attenuated/inflated effect sizes shown in the supplementary materials 

(part 4). As such, we computed bias with respect to those values.

Results

Parameter Bias

There were 88 ANOVAs conducted for raw bias (11 effects [6 paths + 5 causal mediation 

estimates] × 8 latent XM interaction approaches; see Table S1 in supplement, part 5), 

out of which 16 ANOVAs had a simulation factor with partial-η2 > .005. In general, 

the distribution of the indicators was a significant predictor of parameter bias (partial-

η2 =.006-.020) in models with summed scores, factor scores, corrected summed scores, 

corrected factor scores, the MG model, and Bayesian mediation. In Table S1, we show that 

the raw bias for normal, continuous indicators was smaller than for nonnormal, discrete 

indicators. For better interpretability of the magnitude of bias, we shift our discussion to the 

relative and standardized bias outcomes.

Table 1 shows that the average relative and standardized bias for parameters in conditions 

with discrete, nonnormal indicators are higher than in conditions with continuous, normal 

indicators. However, relative bias was within ± .10 and standardized bias was within ± 

.40 in most conditions. In the 56 ANOVAs conducted for relative bias in parameters that 

only had nonzero values (e.g., a-path, b-path, PNIE, PNDE, TNDE, and TNIE), only two 

ANOVAs had a simulation factor with partial-η2 > .005. The distribution of the indicators 

was a significant predictor of the relative bias in the b-path (partial-η2 = .009 and .010) for 

the corrected summed score and corrected factor score models, respectively. Note that the 

TNIE from these two models also had an average relative bias outside ± .10 in conditions 

with discrete, nonnormal indicators. In the 32 ANOVAs conducted for standardized bias for 

parameters that had at least one zero condition (e.g., h-path, f-path, g-path, and the mediated 

interaction), 12 ANOVAs had a simulation factor with partial-η2 > .005. Eight of those 

ANOVAs examined the mediated interaction for each of the approaches, where a higher true 

h-path was associated with higher standardized bias (partial-η2 = .032-.045). The remaining 

ANOVAs were from the g-path and h-path in models that scored M, where conditions with 

discrete, nonnormal indicators had higher standardized bias than conditions with continuous, 

normal indicators.

Power

The regression trees that predict statistical power from the simulation factors, along with the 

approach to model the latent XM interaction, are shown in the supplement (part 5; Figure 

S1). As expected, important predictors of statistical power were sample size and the effect 

size of the parameter, and for PNIE and TNIE, power depended on the sign of the h-path. 

Note that the method used to handle the latent XM interaction or the distribution of the 

indicators were not significant predictors of statistical power. Table 2 suggests that Bayesian 

mediation had lower power than the frequentist methods, but the results are not directly 

comparable given the fundamental differences on how uncertainty of a parameter is assessed 
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across methods. Also, there was notably higher power to detect the c’-path, PNDE, and 

TNDE with the uncorrected summed score and factor score models than the data-generating 

model (included for reference), which might be explained by how measurement error in the 

mediator inflates the X to Y relation.

Type 1 error rate

Table 3 suggests that the type 1 error rates for the h-path, f-path, and g-path were between 

.025 and .075, on average, across conditions, and there were no significant predictors 

(including the estimation method and distribution of the indicators) according to the 

regression trees, which are not shown. However, tabled values suggest that the Bayesian 

approach had slightly lower type 1 error rates than the frequentist methods, which, again, 

are not directly comparable, and that deviations of normality of the indicator led to slightly 

higher type 1 error rates. On the other hand, the mediated interaction had type 1 error rates 

below .025, which was expected because it is a product of two paths (i.e., ah). If both paths 

are small, then the power to detect ah is lower than the power to detect just h. (MacKinnon 

et al., 2020). For the mediated interaction, Table 3 shows that type 1 error rate improves by 

increasing the a-path.

Interval Coverage

Average coverage across conditions is shown in Table S2 in the supplement (part 5), which 

shows that all approaches have comparable average interval coverage between .925 and .975 

for most parameters. The regression trees predicting coverage from the simulation factors, 

including the estimation method, are not shown because most of the trees did not yield 

splits. However, for the mediated interaction, an important predictor was the size of the 

a-path, in which conditions with a-path = .39 had an average coverage of .950, and the 

conditions with a-path = .14 had an average coverage of .990, thus wider than in other 

conditions. Similar to results of type 1 error rates below .025, we presume that the coverage 

of the mediated interaction with a-path = .14 was above .975 because it is the product of 

two small effects (i.e., the h-path only takes the values of −.14, 0, or .14), which makes the 

interaction effect either zero or close to zero.

Summary

Overall, simulation results suggest that finite-sample bias was low across the parameter 

estimates, and that type 1 error, power, and confidence interval coverage for the parameters 

examined were similar across methods. Also, conditions with nonnormal, discrete indicators 

had slightly higher bias and type 1 error rates than conditions with normally-distributed 

indicators, although the values were still within the nominal rates.

Illustration

The approaches to handle the latent XM interaction are demonstrated using a dataset from 

the ATLAS study (Athletes Training and Learning to Avoid Steroids; Goldberg et al., 1996). 

ATLAS was a group-randomized treatment-control intervention program for high school 

athletes with the goal of reducing anabolic steroid use to increase performance. In this 

case, we study the effect of participating in the intervention (X) on self-reported training 
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self-efficacy (Y; α = .902) through the perceived severity of the anabolic androgenic steroids 

(AAS) use (M; α = .826), with the age of the respondents as a confounder of the M-Y 

relation (C; MacKinnon et al., 2001). The sample size was N=1,188 after listwise deletion, 

out of which 43.8% of respondents were in the treatment group, and all variables were 

observed variables.

Given that item-level responses for M were not available from original sources, we 

simulated item responses based on the centered total score of M. The scores on M were 

treated as latent variable scores, and then nine item responses per case were generated to 

mimic the conditions studied – continuous, normally distributed indicators and discrete, 

nonnormally distributed indicators. For the continuous items conditions, item intercepts 

were 0, the factor loadings were drawn from a uniform distribution, Unif(.3, .7), and the 

residual variances were the compliment of the communality so that the total variance of 

the item was 1, which leads to a summed score reliability of around .80. For the discrete 

item conditions, the continuous items were discretized using the same thresholds as in our 

simulation. The rest of the variables (e.g., intervention indicator [X], age [C], and training 

self-efficacy [Y]) were taken directly from the ATLAS dataset and were not simulated, so 

they kept their original moments. Except for the measurement structure of the mediator, the 

structural relations examined are from real data.

The general procedure to estimate the causal mediated effects and confidence/credible 

intervals follow closely the steps outlined in the Method section. We estimated the single 

mediator model with a latent XM interaction using summed scores, corrected summed score 

model, factor scores, factor scores with Croon’s correction, the MG approach, the UPI 

approach, the LMS approach, and Bayesian mediation. In all analyses, X, M, and C were 

centered.

Results

Parameter estimates for conditions with normally distributed indicators are shown in Table 

4 and discussed below (see Table S3 in supplement, part 5, for results with discrete, 

nonnormal indicators, where results are largely similar, but the latent XM interaction and 

ah were more likely to be statistically significant and the interval limits were close to zero). 

Overall, all the approaches arrived at similar conclusions. There was a significant effect of 

the program on the perceived severity of AAS (i.e., a-path), a significant relation between 

perceived severity of AAS and training self-efficacy (i.e., b-path), and the effects of age 

on perceived severity of AAS and training self-efficacy were not significant (i.e., f- and g-

paths). Most methods with normal indicators suggested that there was not a significant latent 

XM interaction (i.e., h-path) – LMS and the Bayesian approach had a significant h-path, but 

the upper limit of their summary intervals was close to zero. Given our simulation results, 

we presume that the difference in the conclusions about the h-path was due to variability in 

the sampling procedures.

Finally, the mediated effects (i.e., PNIE and TNIE) were statistically significant across 

all methods and were not statistically significantly different from one another (i.e., the 

mediated interaction, ah was not significant) except for the LMS and Bayesian approaches. 

For example, the PNIE using corrected summed scores was equal to 0.184 with 95% CI = 
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[0.114, 0.252] which can be interpreted as the ATLAS program increased strength training 

self-efficacy by 0.184 units, on average, through its effect on increasing perceived severity 

of AAS when blocking the direct effect of the ATLAS program by holding it constant at 

the control-group level. In other words, it is the simple mediated effect in the control group. 

If the intervention were repeated many times and the PNIE was estimated with corrected 

summed scores each time, 95% of the estimated confidence intervals would contain the true 

value of the PNIE. The PNIE using the Bayesian approach was equal to 0.190 with 95% CI 

= [0.128, 0.262] which can be interpreted as the ATLAS program increased strength training 

self-efficacy by 0.190 units, on average, through its effect on increasing perceived severity 

of AAS when blocking the direct effect of the ATLAS program by holding it constant at the 

control-group level. There is a 95% probability that the true value of the PNIE is contained 

within the estimated credible interval.

Discussion

The XM interaction is central to the relation between traditional mediated effects using the 

product-of-coefficients method and causal mediated effects using the potential outcomes 

framework (MacKinnon et al., 2020). In this paper, we describe eight methods that fall 

on two broad categories to estimate XM interactions when M is latent: scoring M and 

estimating an observed XM interaction (e.g., using summed scores or factor scores, with 

or without error corrections) or using structural approaches (e.g., Bayesian mediation, 

latent moderated structural equations, multiple-group approach, and unconstrained product 

indicator approach). Our simulation results, broadly, suggest that the approaches recover 

unbiased estimates with respect to their own true values (i.e., finite-sample bias is low), 

the type 1 error rates and interval coverage are appropriate, and power is similar across 

methods. We also found that using discrete, nonnormal indicators might affect the bias of 

the parameter estimates, especially in procedures that score M. We suspect that parameter 

bias is more a reflection of the discrete nature of the indicators rather than their distribution 

because the factor loadings are typically underestimated when linear factor models are fit 

to discrete items (Rhemtulla et al., 2012). Treating discrete item responses as continuous 

is a common practice in psychology (Flora & Curran, 2004), which guided our decision 

to study these conditions, but the effects of indicator discreteness and nonnormality are 

conflated. More work should continue to disaggregate this effect. Furthermore, our results 

differ from prior work suggesting that indicator nonnormality affects the type 1 error of the 

parameter estimates (e.g., Cham et al., 2012), which might be explained by the magnitude 

of nonnormality examined (i.e., the conditions examined mild nonnormality) or our use of 

the bootstrap confidence intervals or Bayesian credible intervals for estimating power, type 

1 error, and interval coverage instead of normal theory standard errors. Also, we did not 

examine conditions in which the latent variable was skewed or had excess kurtosis, which 

has been previously shown to affect the estimation of latent interactions (Cham et al., 2012) 

and might yield to greater performance differences across methods. These are avenues for 

future research.

Moreover, we show that using uncorrected summed scores or factor scores leads to inflated 

or attenuated effect sizes compared to the data-generating effect sizes, but that summed 

scores and factor scores consistently recover the paths associated with their respective 
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effect sizes. Lastly, because existing software packages for causal mediation effects do 

not allow for an XM interaction with a latent mediator (for a review see, Valente et al., 

2020) we provide code to encourage researchers to use these methods in applied settings 

(see supplementary materials, part 6). Ignoring the XM interaction can result in missing 

differential mediated (or direct) effects (MacKinnon et al., 2020), and ignoring error in 

variables can affect the reliability and power associated with interaction terms. Rather 

than abandoning the latent structure of mediators because of the perceived complexity of 

handling latent interactions (Cortina et al., 2021; Edwards, 2009), researchers can use the 

methods we discussed to address those problems.

Recommendations and Considerations

Given similar estimation performance, the main considerations for choosing how to estimate 

latent XM interactions might depend on the type of method, ease of use, possible 

complications, and meeting distributional assumptions (see Table S4 in the supplement, 

part 5). Perhaps the first consideration is to choose between scoring M or using a structural 

model. Using summed scores or factor scores for M treats variables as observed and avoids 

estimation complexity, but inaccurate mediated effects are estimated because they ignore 

measurement error. Although error corrections work well, they do not guarantee that the 

covariance matrix would remain positive definite. Note that factor score methods also rely 

on meeting the multivariate normality assumptions to estimate the factor model and thus the 

factor scores.

Regarding the structural approaches, LMS is easiest to implement, but a drawback is that the 

procedure is rarely available outside of Mplus. If a researcher is comfortable with Bayesian 

inference, Bayesian mediation analysis could handle the latent XM interaction and can be 

estimated in any program that has MCMC capabilities. In this paper we found that in some 

conditions the parameters had slightly lower power than frequentist methods, but these 

patterns might be because of the role of the diffused prior distributions, making it difficult 

to compare. Using informative priors for the paths in the mediation model might mitigate 

these effects (Miocevic et al., 2018). If one does not have access to Mplus and does not feel 

comfortable with Bayesian inference, then one could use the other two approaches based on 

structural equation models. The MG approach is an option to researchers who use any SEM 

software and who have latent mediators that interact with categorical variables. However, 

this approach would not be viable if X is continuous or there are more latent mediators given 

the computations used to derive the effects. Similar to the factor score methods, the MG 

approach relies on multivariate normality to estimate the model. Lastly, the UPI approach 

could easily scale to more variables, but more research is needed to determine the best way 

to build the product indicators for the latent interaction term in mediation models. Note that 

the UPI approach and LMS have been shown to be robust to slight deviations to multivariate 

normality (Cham et al., 2012). Overall, given our simulation results, ease of use, and general 

considerations, we would advise researchers to use LMS, but if they do not have access 

to Mplus, to either score M and check if the covariance matrix is positive definite after 

conducting a correction or use the UPI approach.
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Limitations and Future Directions

There are several limitations and future directions for this work. This paper addressed a 

model with a randomized X, one continuous and latent M, and continuous Y. It would 

be important to examine models with binary M and Y (Rijnhart et al., 2021), either by 

extending some of the methods discussed or examining methods from the causal inference 

literature, such as reliability adjustments (le Cessie et al., 2012; VanderWeele et al., 2012) 

or regression calibrations methods (Valeri et al., 2014) in generalized models with binary 

Y, or generalized structural equation modeling with a continuous latent M assessed with 

binary indicators and binary Y (Albert et al., 2016). Furthermore, estimation in models 

with a nonrandomized, latent X (MacKinnon, 2008), nonnormal latent variables (Cham et 

al., 2012) or longitudinal mediation models could be investigated (Valente & MacKinnon, 

2017). Further applications of these models to real data are needed, where adherence to 

distributional assumptions is uncertain. Also, for methods that score M, one must determine 

the factor structure for M prior to scoring. It is important to continue examining how 

treating discrete indicators as continuous (Rhemtulla et al., 2012) affect the estimation of 

the scores of M and the latent XM interaction, along with examining how measurement 

noninvariance (Georgeson et al., 2021) and unmodeled multidimensionality (Gonzalez & 

MacKinnon, 2018) affect parameter estimates. Regarding the methods studied, it would be 

important to assess the effect of our modeling decisions. Among others, one could evaluate 

how sensitive our results are to the prior distributions chosen in Bayesian mediation. For 

factor scoring, the factor model parameters are treated as fixed, but they have sampling 

distributions. So, one could investigate how parameter uncertainty propagates to the M score 

and structural parameters. Furthermore, we could examine the performance of these methods 

with indicators with higher skewness and kurtosis and examine if any bootstrap variations 

continue to have close to nominal type 1 error rates. Also, we only studied one procedure 

to make product indicators, but other procedures could be studied (Marsh et al., 2012). 

Lastly, there are other methods to estimate the latent XM interaction that we did not discuss. 

The two-stage least squares estimator (2SLS; Bollen & Paxton, 1998) can accommodate the 

latent XM interaction using instrumental variables, which has the advantage of being robust 

to misspecifications in the measurement structure. Also, one could use nonlinear structural 

equation mixture models (Brandt et al., 2020) to accommodate latent interactions.

In conclusion, we advise researchers to examine the XM interaction in models with (and 

without) latent mediators and to estimate causal mediation effects. We provided options, 

guidance, and code to handle a latent XM interaction in these situations. By incorporating 

these methods, researchers will be a step closer to understanding how interventions work 

and identifying mechanisms of behavior change for programs or treatments.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Single mediator model with a latent mediator and a latent XM interaction.
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Table 3.

Type 1 error rates for the parameters with a true value of zero across conditions for each approach to handle 

the latent XM interaction

model h-path g-path f-path ah: h=0, a=.14 ah: h=0 a=.39

Continuous, normal indicators

summed scores 0.054 0.056 0.055 0.008 0.040

factor scores 0.052 0.053 0.055 0.008 0.038

summed scores (c) 0.052 0.056 0.056 0.008 0.038

factor scores (c) 0.050 0.053 0.055 0.008 0.036

UPI 0.053 0.052 0.056 0.008 0.038

Multiple group 0.052 0.052 0.056 0.008 0.035

LMS 0.051 0.052 0.055 0.008 0.036

Bayesian approach 0.044 0.041 0.051 0.006 0.032

Discrete, nonnormal indicators

summed scores 0.060 0.057 0.058 0.008 0.044

factor scores 0.055 0.054 0.057 0.006 0.043

summed scores (c) 0.061 0.057 0.056 0.009 0.050

factor scores (c) 0.057 0.054 0.056 0.008 0.050

UPI 0.055 0.054 0.057 0.006 0.042

Multiple group 0.053 0.053 0.056 0.007 0.041

LMS 0.054 0.053 0.056 0.005 0.044

Bayesian approach 0.051 0.047 0.051 0.005 0.039

Note: in bold are coverage values outside of .025 and .075. (c) is for corrected, UPI is for unconstrained product indicator approach, LMS is for 
latent moderated equations, and ah is the mediated interaction
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