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ARTICLE HIGHLIGHTS

• Automated algorithms using electronic health record data can identify individuals with type 1 diabetes in large
biobanks, but it is not known whether the accuracy of these algorithms differs according to self-reported race.

• This study shows that misclassification of type 1 diabetes is more likely in self-reported non-White participants
than in self-reported White participants.

• Incorporating genetic information using type 1 diabetes polygenic scores can improve the accuracy of classifica-
tion algorithms.

• These findings highlight a disparity in existing type 1 diabetes classification algorithms and propose a potential
solution.
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OBJECTIVE

Automated algorithms to identify individuals with type 1 diabetes using elec-
tronic health records are increasingly used in biomedical research. It is not known
whether the accuracy of these algorithms differs by self-reported race. We inves-
tigated whether polygenic scores improve identification of individuals with type 1
diabetes.

RESEARCH DESIGN AND METHODS

We investigated two large hospital-based biobanks (Mass General Brigham
[MGB] and BioMe) and identified individuals with type 1 diabetes using an estab-
lished automated algorithm. We performed medical record reviews to validate
the diagnosis of type 1 diabetes. We implemented two published polygenic
scores for type 1 diabetes (developed in individuals of European or African ances-
try).We assessed the classification algorithm before and after incorporating poly-
genic scores.

RESULTS

The automated algorithm was more likely to incorrectly assign a diagnosis of
type 1 diabetes in self-reported non-White individuals than in self-reported
White individuals (odds ratio 3.45; 95% CI 1.54–7.69; P = 0.0026). After incorpo-
rating polygenic scores into the MGB Biobank, the positive predictive value of
the type 1 diabetes algorithm increased from 70 to 97% for self-reported White
individuals (meaning that 97% of those predicted to have type 1 diabetes indeed
had type 1 diabetes) and from 53 to 100% for self-reported non-White individu-
als. Similar results were found in BioMe.

CONCLUSIONS

Automated phenotyping algorithms may exacerbate health disparities because
of an increased risk of misclassification of individuals from underrepresented
populations. Polygenic scores may be used to improve the performance of phe-
notyping algorithms and potentially reduce this disparity.

Biobanks linked to electronic health records (EHRs) offer a wealth of clinical infor-
mation, presenting opportunities for research in large numbers of individuals, as re-
ported, for example, by the All of Us research program (1). However, the extraction
of accurate phenotype information from EHR data can be challenging. Because
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diagnosis codes are primarily recorded
for billing purposes, they may not accu-
rately capture relevant phenotypes (2).
Instead of relying solely on diagnosis co-
des, targeted strategies are necessary to
extract phenotypes of interest from the
vast array of EHR data (which include
categories such as demographics, labora-
tory values, and medication prescriptions
in addition to diagnosis codes) (3,4); still,
incomplete EHR data present an addi-
tional challenge. Multiple algorithms have
been developed and validated that use
EHR data to identify individuals with type
1 and type 2 diabetes (5–11). However, it
is unknown whether these algorithms ac-
curately capture the intended phenotype
across diverse populations in the medical
system. Specifically, misclassification of dis-
ease is frequently present in studies based
on EHR data, and sociodemographic fac-
tors such as race and ethnicity may play a
role in misclassification (12). In this work,
we assessed the accuracy of a type 1 dia-
betes classification algorithm across two
large health systems in the U.S., with a fo-
cus on racial variation in misclassification
rates.
Because EHR-derived type 1 diabetes

definitions can lead to misclassification,
we investigated whether the inclusion
of genetic information could improve
classification accuracy. Previous work has
demonstrated that genetic information
(through the use of type 1 diabetes poly-
genic scores) can identify individuals
with type 1 diabetes with high accuracy
(13,14). Here, we demonstrate that the
incorporation of type 1 diabetes poly-
genic scores can enhance existing algo-
rithm-based identification of individuals
with type 1 diabetes and reduce the dis-
parity in misclassification rates among
racial groups.

RESEARCH DESIGN AND METHODS

A schematic flowchart summarizing the
overall analysis plan is displayed in
Supplementary Fig. 1.

Study Populations
The Mount Sinai BioMe Biobank is an EHR-
linked biorepository comprising �60,000
participants, all aged >18 years. BioMe en-
rolls nonselectively from the Mount Sinai
Health System, located in and serving the
greater New York City area. During the en-
rollment process, participants complete a
detailed demographic and lifestyle question-

naire, and they consent to link their de-
identified EHR to their DNA and plasma
information. Participants were excluded
from analysis if their electronic medical
records were not accessible because of
privacy concerns. Genotyping was per-
formed using the Illumina Global Screen-
ing Array or the Illumina Global Diversity
Array. Imputation was performed using
the National Heart, Lung and Blood Insti-
tute Trans-Omics for Precision Medicine
(TOPMed) reference panel.

The Mass General Brigham (MGB) Bio-
bank is another EHR-linked biobank based
at the MGB hospital system in Boston, Mas-
sachusetts. There were�40,000 participants
with available genetic data at the time of
this study. Genotyping was performed on
DNA samples using the Illumina Multi-Ethnic
Genotyping Array or the Infinium Global
Screening Array. Imputation was performed
using the TOPMed reference panel.

To optimize the type 1 diabetes poly-
genic scores (see below), we used a
separate cohort from the UK Biobank
(15). The UK Biobank is a large-scale pro-
spective study with �500,000 partici-
pants from the U.K. aged between 40
and 69 years. A majority of participants
self-identified as White.

Race and Ethnicity
All categories of race and ethnicity
were extracted from EHRs. Race and
ethnicity values were ascertained using
self-identification; however, we cannot
exclude the possibility that race and eth-
nicity values in legacy versions of EHRs
were assigned by other observers (such
as clinic administrative staff members).

The two study sites had different options
available for self-identification. BioMe asked
a single question (“What is your ances-
try?”), whereas the MGB Biobank asked
two separate questions (“What is your
race?” and “What is your ethnicity?”). In
order to harmonize the demographic infor-
mation in the two biobanks, we applied
standardized labels to each category, while
acknowledging that these labels do not per-
fectly capture the information reported by
each participant (Supplementary Table 1).
Certain categories had very low numbers of
participants and were combined together
under the “Other” label.

Genetically Inferred Ancestry
As a sensitivity analysis, we also classi-
fied biobank participants by genetically

inferred ancestry groups.We used principal
component analysis to assign participants
to one of six continental ancestry groups
(African, American, Central/South Asian,
East Asian, European, and Middle Eastern),
following the method of the Pan-UK Bio-
bank (16). We used a random forest classi-
fier to determine the probability that a
given individual matched a specific genetic
ancestry group. Each individual was then
assigned to the ancestry group that had
the highest probability from the random
forest classifier. If no ancestry group had a
probability >50%, then the individual’s ge-
netic ancestry was left as “Unclassified.”

Type 1 Diabetes Definitions

eMERGE Algorithm

We identified individuals in EHRs with
type 1 diabetes using an electronic phe-
notyping algorithm developed at the
Children’s Hospital of Philadelphia for
the eMERGE (Electronic Medical Records
and Genomics) Consortium (17). The algo-
rithm identifies individuals who have been
assigned a type 1 diabetes–related ICD-9
or ICD-10 code and who have been pre-
scribed insulin. It excludes individuals who
have been prescribed type 2 diabetes
medications or who have an ICD code for
malignant cancer, cystic fibrosis, or drug-
induced diabetes.

Medical Record Review

At each site, a trained medical reviewer
performed manual record review for all
individuals identified as having type 1
diabetes by the eMERGE algorithm. To
confirm a diagnosis of type 1 diabetes,
participants had to meet all of the fol-
lowing criteria, modified from (13):

• Diagnosis confirmed by an endocri-
nologist or primary care physician

• Current use of basal-bolus insulin or
pump

• No secondary cause of diabetes listed in
the medical record: gestational diabetes,
checkpoint inhibitor use, glucocorticoid-
induced diabetes, cystic fibrosis diagno-
sis, hemochromatosis, pancreatogenic
diabetes, posttransplantation diabetes,
maturity-onset diabetes of the young,
or diagnosis of type 1.5 diabetes

Phenotypic Traits
BMI and hemoglobin A1c (HbA1c) values
were extracted from EHR data. Median
values were reported using the most
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recent 5 years of data. For BMI, inpa-
tient encounters were excluded because
of wide variations in weight during inpa-
tient admissions. Age and sex were self-
reported. Age was defined at the time
the data were accessed in the biobank,
not at the time of diabetes diagnosis.

Statistics
To assess the accuracy of the type 1 dia-
betes classification algorithm, we calcu-
lated the positive predictive value (PPV),
which is the proportion of individuals
with putative type 1 diabetes confirmed
to have true type 1 diabetes after manual
medical record review. We used logistic
regression models to assess the relation-
ship between race and type 1 diabetes
misdiagnosis, while simultaneously con-
trolling for covariates such as age, sex,
and BMI. We then meta-analyzed the re-
sults across the two biobanks using the R
statistical package meta (18).

To evaluate the discriminatory power
of the polygenic scores, we calculated
the area under the curve (AUC) of the
receiver operating characteristic curve,
which evaluated type 1 diabetes status
(case or control) using only the poly-
genic score as a predictor. Statistical
comparisons between AUCs were per-
formed using the DeLong test (19).

Polygenic Scores
We calculated two previously published
polygenic scores to assess the genetic risk
of type 1 diabetes. Both scores are re-
stricted to significant polygenic scores
(rsPSs), meaning that they include only a
set of single-nucleotide polymorphisms
(SNPs) reaching genome-wide significant
association with type 1 diabetes (20). The
first score (T1D-rsPSEUR) was created in in-
dividuals with self-reported White or Eu-
ropean ancestry (6,670 cases and 9,416
control participants) (13). The second score
(T1D-rsPSAFR) was created in individuals
with self-reported Black or African ancestry
(1,021 cases and 2,928 control partici-
pants) (14).

T1D-rsPSEUR included a weighted sum
of 67 SNPs, where each risk allele was
weighted by the log-odds of association
from a genome-wide association study.
The score also accounted for interac-
tions between various HLA haplotypes
by assigning different weights to distinct
combinations of HLA alleles. Among the
SNPs included in T1D-rsPSEUR, certain

variants were not available in the TOPMed
imputation panel, so proxy SNPs were
substituted in these instances (Supple-
mentary Table 2). T1D-rsPSAFR included
seven SNPs (five from chromosome 6
near HLA loci, one from chromosome 11,
and one from chromosome 17), also
weighted by the log-odds of association
from a genome-wide association study.

Incorporation of Polygenic Scores in
eMERGE Algorithm
To assess the impact of polygenic scores, we
added an additional step to the eMERGE
type 1 diabetes algorithm, where partici-
pants needed to have a polygenic score
(T1D-rsPSEUR or T1D-rsPSAFR) above a pre-
specified cutoff threshold to confirm the
diagnosis of type 1 diabetes. The updated
classification algorithms are denoted as
eMERGE-rsPSEUR or eMERGE-rsPSAFR.

To determine the optimal cutoff value
for each polygenic score, we first imple-
mented both scores in an independent
population (UK Biobank). We identified
the value for each polygenic score that
maximized the Youden index (defined as
j = sensitivity1 specificity � 1). Because
the UK Biobank had a very low number
of non-White individuals with type 1 dia-
betes, we were not able to determine a
cutoff for each self-reported racial group.
Therefore, we did not restrict study par-
ticipants by race, and we used the entire
UK Biobank (which primarily comprises
White participants) to determine the op-
timal cutoff value of both T1D-rsPSEUR
and T1D-rsPSAFR.

RESULTS

Implementation of eMERGE Type 1
Diabetes Algorithm
The two biobanks were similar in size and
age distribution, with an average age of
58.7 years in BioMe and 57.7 years in the
MGB Biobank (Table 1). BioMe had a
higher proportion of Black and Hispanic
participants, whereas MGB Biobank had a
higher proportion ofWhite participants.

The eMERGE type 1 diabetes algorithm
identified 160 BioMe participants and 172
MGB participants with putative type 1 dia-
betes (Table 1 and Supplementary Table
3). As expected, median HbA1c was ele-
vated among individuals with putative
type 1 diabetes in both BioMe (8.5%
[69 mmol/mol]) and the MGB Biobank
(8.1% [65 mmol/mol]); median HbA1c
was not available for the entire biobank

because of missing values for a substan-
tial proportion of participants.

Verification of Type 1 Diabetes
Phenotype
To verify the type 1 diabetes phenotype,
manual medical record reviews were
conducted for all individuals with puta-
tive type 1 diabetes identified by the
eMERGE algorithm. Each participant was
then relabeled as having verified or mis-
classified type 1 diabetes. On manual re-
cord review, 122 of 160 participants with
putative type 1 diabetes in BioMe were
confirmed to have type 1 diabetes (PPV
76%), as well as 116 of 172 participants
in the MGB Biobank (PPV 67%).

To confirm that the manual record re-
view process improved the classification
of type 1 diabetes, we calculated poly-
genic scores for type 1 diabetes. When
using the eMERGE type 1 diabetes algo-
rithm to define case/control status, the
AUC for T1D-rsPSEUR was 0.744 in the
MGB Biobank, but the AUC improved to
0.875 after revising the type 1 diabetes
case definition based on manual record
reviews (P = 2.5 × 10�7) (Supplementary
Fig. 2A). The results were similar in Bi-
oMe (AUC 0.766 using the eMERGE type 1
diabetes algorithm to define case/control
status and AUC 0.822 using manual re-
cord review) (Supplementary Fig. 2B),
but the difference was not significant
(P = 0.059). Findings were similar when
restricting the analysis to self-reported
White participants, which is the popula-
tion in which T1D-rsPSEUR was developed
(Supplementary Fig. 2C and D), and when
using T1D-rsPSAFR (Supplementary Fig. 2E
and F).

Analysis of Individuals With
Misclassified Type 1 Diabetes
We next assessed whether participants
with confirmed type 1 diabetes differed in
clinical features from those who had been
misclassified (Table 1 and Supplementary
Table 4). In BioMe, the average age of the
individuals with confirmed type 1 diabetes
was younger (47.8 years) compared with
those with misclassified type 1 diabetes
(65.0 years) (P = 1.9 × 10�9). A similar age
difference was observed in the MGB Bio-
bank (51.2 vs. 63.8 years; P = 1.1 × 10�6).
Individuals with confirmed type 1 diabetes
had a lower median BMI compared with
those who had been misclassified (BioMe
26.2 vs. 31.1 kg/m2; P = 3.1 × 10�4; MGB
Biobank 27.3 vs. 30.3 kg/m2; P = 5.1 ×
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10�3). HbA1c did not differ significantly be-
tween the two groups in either BioMe or
the MGB Biobank (Table 1).
The PPV of the eMERGE algorithm

differed by self-reported race in both bi-
obanks. In BioMe, the eMERGE type 1
diabetes algorithm correctly identified
49 of the 57 White individuals with type 1
diabetes (86%), whereas only 73 of 103
non-White individuals (71%) were cor-
rectly classified (P = 0.03) (Table 2). Like-
wise, in the MGB Biobank, the eMERGE
type 1 diabetes algorithm correctly identi-
fied 96 of 136 White individuals (71%),
compared with only 16 of 30 non-White
individuals (53%; P = 0.07). Across the two
biobanks, these results remained significant
after controlling for age, sex, and BMI. In a
meta-analysis of BioMe and the MGB Bio-
bank, the odds of a non-White individual
being misclassified as having type 1 diabe-
tes was 3.45 (95% CI 1.54–7.69; P = 2.6 ×
10�3), compared with a White individual
(Fig. 1). Additionally, increased age and in-
creased BMI were independently associ-
ated with higher odds of type 1 diabetes
misclassification (Fig. 1).

Incorporation of Polygenic Scores
Next, we investigated whether type 1 di-
abetes polygenic scores could improve
the identification of individuals with type 1
diabetes. We calculated two ancestry-
specific polygenic scores that were re-
stricted to genome-wide significant SNPs

(T1D-rsPSEUR and T1D-rsPSAFR), and we
updated the eMERGE algorithm to in-
clude these scores. In BioMe, for self-
identified White individuals, inclusion of
T1D-rsPSEUR improved the PPV from 86
to 100%, while inclusion of T1D-rsPSAFR
improved the PPV to 97% (Fig. 2). For
non-White individuals, the PPV improved
from 71 to 93% with T1D-rsPSEUR and
86% with T1D-rsPSAFR. The results were
similar for the MGB Biobank; for instance,
among self-identified White individuals, in-
clusion of T1D-rsPSEUR improved the PPV
from 71 to 97%, whereas for non-White
individuals, inclusion of T1D-rsPSAFR im-
proved the PPV from 53 to 83% (Fig. 2).

However, while incorporating polygenic
scores improved the PPV of the eMERGE

type 1 diabetes algorithm, the sensitivity
was reduced. For instance, there were a
total of 96 White individuals with verified
type 1 diabetes in the MGB Biobank but
eMERGE-rsPSEUR identified only 65 indi-
viduals with verified type 1 diabetes.

We recognize that self-identified race
is distinct from genetic ancestry, and the
two labels cannot be used interchange-
ably; therefore, we also assessed the
eMERGE type 1 diabetes algorithm after
using principal component analysis to
determine genetically inferred ancestry
for MGB Biobank participants. Once again,
we found that inclusion of T1D-rsPSEUR
or T1D-rsPSAFR improved the PPV of the
eMERGE type 1 diabetes algorithm (Supple-
mentary Fig. 3).

Table 1—Baseline characteristics of MGB Biobank and BioMe cohorts

MGB Biobank BioMe

Entire
biobank

Participants with
putative type 1

diabetes (eMERGE
algorithm)

Participants with
verified type 1

diabetes (medical
record review)

Entire
biobank

Participants with
putative type 1

diabetes (eMERGE
algorithm)

Participants with
verified type 1

diabetes (medical
record review)

Total no. of participants 41,006 172 116 57,643 160 122

Self-identified race

White 34,939 136 96 16,663 57 49
Black 2,101 20 11 11,443 29 25
Hispanic 1,270 4 1 19,524 50 35
Other* 1,511 6 4 10,013 24 13

Sex

Female 22,418 87 63 33,389 92 72
Male 18,587 85 53 24,254 68 50

Age, years 57.7 ± 17.2 55.4 ± 16.4 51.2 ± 16.1 58.7 ± 17.9 51.3 ± 14.8 47.8 ± 13.8

BMI,† kg/m2 28.6 ± 6.3 28.2 ± 5.8 27.3 ± 5.4 28.3 ± 6.6 27.2 ± 6.6 26.2 ± 5.3

HbA1c,† % — 8.1 ± 1.6 8.0 ± 1.5 — 8.5 ± 1.9 8.5 ± 2.0

HbA1c,† mmol/mol — 65 ± 17.5 64 ± 16.4 — 69 ± 20.8 69 ± 21.9

Data presented as n or mean ± SD. *Includes participants who selected any race other than the listed choices. †Median values over last 5 years.

Table 2—PPV of eMERGE type 1 diabetes algorithm across racial groups

Self-identified race

PPV* of eMERGE algorithm, %

MGB Biobank BioMe

White 70.6 86.0

Black 55.0 86.2

Hispanic 25.0 70.0

Other† 66.7 54.2

All non-White groups 53.3 70.9

Total 67.4 76.3

*Proportion of participants with putative type 1 diabetes whose phenotype was verified after
manual medical record review. †Includes participants who selected any race other than the
listed choices.
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CONCLUSIONS

We analyzed an automated algorithm
developed by the eMERGE Consortium
to identify individuals with type 1 diabe-
tes in large biobanks. Using manual med-
ical record reviews as a gold standard,
we found that the eMERGE algorithm
was moderately effective for identifying
individuals with type 1 diabetes in a racially
diverse adult cohort, with a combined PPV

of 72% across BioMe and the MGB Bio-
bank. However, there was a clear bias in
the performance of the eMERGE type 1
diabetes algorithm across race, with worse
performance in non-White individuals.

There are various possible explanations
for the disparity in performance between
racial groups. The eMERGE algorithm in-
corporates diagnosis codes, which are en-
tered by clinicians during routine clinical

care and may be subject to bias. Further-
more, the eMERGE algorithm was de-
veloped in a pediatric population, with
White children comprising the majority
(H. Qu, personal communication), so
the algorithm may not be optimized for
racially diverse adult cohorts. For in-
stance, the eMERGE algorithm excludes
individuals who have been treated with
type 2 diabetes medications, but the
use of type 2 diabetes medications dif-
fers between children and adults (21) as
well as between racial groups (22,23).

In addition, the heterogeneity of dia-
betes across different populations may
contribute to the lower performance of
the eMERGE type 1 diabetes algorithm
in non-White individuals. On average,
compared with White individuals, Black
and Hispanic individuals have an earlier
onset of type 2 diabetes (24); conse-
quently, young adults in these popula-
tions may be misdiagnosed as having
type 1 diabetes. Furthermore, although
individuals who develop diabetic ketoa-
cidosis are commonly diagnosed with
type 1 diabetes, these individuals may
also have ketosis-prone diabetes, an atyp-
ical form of diabetes that also involves ke-
toacidosis but is distinct from type 1
diabetes. Ketosis-prone diabetes was ini-
tially described in individuals with African
ancestry, but it has also been described in
Hispanic, Asian, and other populations
(25,26). Therefore, the decreased perfor-
mance of the eMERGE type 1 diabetes al-
gorithm in non-White individuals may be
related to the presence of ketosis-prone
diabetes or another form of atypical dia-
betes in these populations, although keto-
sis-prone diabetes is poorly understood
and remains an active area of investiga-
tion. Overall, further work should test the
performance of the eMERGE algorithm as
well as additional automated type 1 dia-
betes classification algorithms in other ra-
cially diverse cohorts.

We demonstrated that adding type 1
diabetes polygenic scores to the eMERGE
type 1 diabetes algorithm (eMERGE-rsPSEUR
and eMERGE-rsPSAFR) can help identify in-
dividuals with true type 1 diabetes and re-
duce the disparity in misclassification rates
among self-reported racial groups. As in-
creasing numbers of biobanks incorporate
genetic information, this strategy can be
used to identify individuals with type 1 dia-
betes in biobanks for additional research
studies. Of note, although autoantibodies
such as GAD65 can be used to confirm the

race

Figure 1—Meta-analysis of eMERGE type 1 diabetes classification algorithm performance compared
with manual medical record review.The forest plot demonstrates how different factors affect the likeli-
hood of misclassification by the eMERGE type 1 diabetes algorithm in a meta-analysis of participants
from the MGB Biobank and BioMe. Odds ratios were obtained from a single logistic regression model
that simultaneously controlled for race, sex, age, and BMI.The 95% CI is displayed for each data point.

Figure 2—Improvement of eMERGE type 1 diabetes algorithm with inclusion of polygenic scores. The
PPV of specified type 1 diabetes algorithms is shown for individuals in the MGB Biobank or BioMe, as
classified by self-reported race (White vs. non-White). Values are displayed for the original eMERGE
type 1 diabetes algorithm, as well as for modified versions that also require individuals to have a poly-
genic score greater than a specified cutoff value (T1D-rsPSEUR (13) or T1D-rsPSAFR (14)). The optimal cut-
off value was identified in a separate cohort (UK Biobank). The raw number of individuals with verified
and misclassified type 1 diabetes is displayed beneath the graph. Statistical significance was assessed
with two-sample test of proportions. *P< 0.05, **P< 0.005.
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diagnosis of type 1 diabetes, in practice
the number of biobank participants with
autoantibody testing is very low. There-
fore, genetic predisposition for type 1 dia-
betes (as captured by the polygenic score)
offers a useful alternative with which to
identify individuals with type 1 diabetes.
Previous studies have shown that type 1

diabetes polygenic scores developed in a
single population can be applied to a more
diverse population, but the predictive
power is variable across race and ethnic-
ity (27–30). Notably, self-identified race is
not interchangeable with genetic ances-
try; however, because race and ethnicity
are correlated with genetic ancestry (31),
ancestry-specific polygenic scores may per-
form differently in different racial groups.
We found that among self-identifiedWhite
participants, T1D-rsPSEUR showed greater
discriminatory power compared with T1D-
rsPSAFR. For non-White participants,
eMERGE-rsPSEUR had the highest PPV,
but this was at the expense of reduced
sensitivity. For instance, in BioMe, only
27 non-White individuals with verified
type 1 diabetes were identified using
eMERGE-rsPSEUR compared with 38 in-
dividuals when using eMERGE-rsPSAFR.
Therefore, choosing the optimal poly-
genic score requires a tradeoff between
optimizing sensitivity versus maximizing
PPV.
One important limitation of this study

is that we focused on the PPV of the
eMERGE type 1 diabetes algorithm, but
we did not assess the negative predictive
value because of the limited feasibility of
performing manual medical record reviews
for thousands of individuals. Because the
prevalence of type 1 diabetes is highest
among White individuals, it is possible that
type 1 diabetes is underdiagnosed in other
populations. This has significant implica-
tions for public health because failure to
recognize type 1 diabetes can lead to
worse glycemic control and increased rates
of diabetic ketoacidosis.
Another limitation to note is the small

sample size included in this study. Type 1
diabetes accounts for only 5–10% of all
diabetes cases, and the additional exclu-
sion of type 2 diabetes medications fur-
ther decreased the available participants.
This affected the sample size of non-
White participants in the MGB Biobank,
where there were <5,000 non-White
participants and a very limited number
of individuals with type 1 diabetes. For
instance, among Hispanic participants in

the MGB Biobank, the PPV of the eMERGE
type 1 diabetes algorithm was notably
low at 25%, but this corresponded to
just one of four individuals in this sub-
group (Table 2).

Additionally, although all non-White
biobank participants were analyzed to-
gether to maximize sample size, they
represent multiple populations with di-
verse ancestry. Very few type 1 diabetes
polygenic scores have been developed in
non-White populations (32). T1D-rsPSAFR
was developed for individuals with self-
reported Black or African ancestry; how-
ever, additional studies are needed to
develop type 1 diabetes polygenic scores
in other populations, such as Hispanic in-
dividuals. Recent work has shown that
modification of T1D-rsPSEUR with the ad-
dition of four African-specific variants
can improve the predictive power in in-
dividuals with African ancestry (28). On-
going efforts are underway to develop
multiancestry type 1 diabetes polygenic
scores (33) using meta-analyses that in-
corporate participants from multiple
populations (34). Future efforts may
classify individuals according to genetically
inferred ancestry groups; notably, however,
the disparity in the eMERGE type 1 diabe-
tes algorithm was present when classifying
individuals by self-reported race, irrespec-
tive of genetic ancestry.

In this study, both participating bio-
banks are hospital based and are subject
to selection biases, such as Berkson bias.
This bias arises when a sample is taken
from a subpopulation and not the overall
general population. To be included in the
current study, participants were required
to have some affiliation with either the
Mount Sinai or MGB health systems, bi-
asing the study to be less healthy than
the general public. Furthermore, within
the hospital cohorts, it is possible that
certain populations are more likely to
provide consent to use genomic data.
This makes these results less generaliz-
able to the general public.

Overall, we demonstrated an impor-
tant disparity in the performance of an
automated classification algorithm to de-
tect individuals with type 1 diabetes, and
we identified a potential solution by incor-
porating polygenic scores. Further work is
needed to elucidate the sources of this
disparity. Accurate diagnosis of diabetes
subtypes in non-White populations is likely
to be a critical component for reducing
disparities in diabetes outcomes. Future

multiancestry type 1 diabetes polygenic
scores may help to reduce this disparity
even further.
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