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ARTICLE HIGHLIGHTS

• Plasma protein signatures preceding diabetes can improve our understanding of diabetes pathogenesis.
• The aims of this study were to discover and validate (internally and externally) associations for nearly 5,000 ap-

tamer measurements of the plasma proteome in midlife with incident diabetes. We also conducted a pathway
analysis and examined causality using genetic instruments.

• We identified 47 plasma proteins predictive of incident diabetes, established causal effects for 3 proteins (SHBG,
ATP1B2, and GSTA1), and identified diabetes-associated inflammation and lipid pathways with potential implica-
tions for diagnosis and therapy.
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OBJECTIVE

The plasma proteome preceding diabetes can improve our understanding of dia-
betes pathogenesis.

RESEARCH DESIGN AND METHODS

In 8,923 Atherosclerosis Risk in Communities (ARIC) Study participants (aged 47–70 years,
57% women, 19% Black), we conducted discovery and internal validation for associations
of 4,955 plasma proteinswith incident diabetes.We externally validated results in the Sin-
gapore Multi-Ethnic Cohort (MEC) nested case-control (624 case subjects, 1,214 control
subjects). We used Cox regression to discover and validate protein associations and risk-
prediction models (elastic net regression with cardiometabolic risk factors and proteins)
for incident diabetes.We conducted a pathway analysis and examined causality using ge-
netic instruments.

RESULTS

There were 2,147 new diabetes cases over a median of 19 years. In the discovery
sample (n = 6,010), 140 proteins were associated with incident diabetes after ad-
justment for 11 risk factors (P < 1025). Internal validation (n = 2,913) showed 64
of the 140 proteins remained significant (P < 0.05/140). Of the 63 available pro-
teins, 47 (75%) were validated in MEC. Novel associations with diabetes were
found for 22 the 47 proteins. Prediction models (27 proteins selected by elastic
net) developed in discovery had a C statistic of 0.731 in internal validation, with
DC statistic of 0.011 (P = 0.04) beyond 13 risk factors, including fasting glucose
and HbA1c. Inflammation and lipid metabolism pathways were overrepresented
among the diabetes-associated proteins. Genetic instrument analyses suggested
plasma SHBG, ATP1B2, and GSTA1 play causal roles in diabetes risk.

CONCLUSIONS

We identified 47 plasma proteins predictive of incident diabetes, established
causal effects for 3 proteins, and identified diabetes-associated inflammation
and lipid pathways with potential implications for diagnosis and therapy.

Type 2 diabetes pathogenesis involves an interplay of behaviors and genes over
many years (1). Detailed characterization of the plasma proteome may provide in-
sights into the dynamic changes preceding diabetes (2). Previous studies on the pro-
teomics of diabetes risk have included a select number of proteins and generally
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focused on White populations (3–8).
Broader proteomics coverage in larger,
multiethnic samples should provide addi-
tional insights and broader generalizability.
Furthermore, a robust design using discov-
ery, followed by independent validation,
should enhance the identification of novel
plasma biomarkers, underlying pathways,
clues for new treatment targets, and po-
tentially improved risk prediction.

Using data from the Atherosclerosis Risk
in Communities (ARIC) Study, we examined
associations of nearly 5,000 aptamermeas-
urements of the plasma proteome in mid-
life with incident diabetes among Black
and White adults. We divided the ARIC
Study data into discovery (2/3) and valida-
tion (1/3) samples, which permitted an in-
ternal validation of the proteome-diabetes
associations, and we conducted an exter-
nal replication of the top proteins in the
SingaporeMulti-Ethnic Cohort (MEC). Addi-
tionally, we 1) assessed the improvement
in risk provided by proteome biomarkers
beyond traditional risk factors, 2) per-
formed a pathway analysis to identify bio-
logical pathways and upstream regulators
relevant to diabetes development, and 3)
used genetic models of plasma proteins
to examine support for causal links be-
tween top proteins with diabetes risk.

RESEARCH DESIGN AND METHODS

Study Design

The ARIC Study

The ARIC Study is a community-based co-
hort study that began in 1987–1989 when
the 15,792 participants were aged 45–
64 years (9). Participants were recruited
from four U.S. communities: Forsyth County,
North Carolina; suburban Minneapolis,
Minnesota; Jackson, Mississippi; and
Washington County, Maryland. Visit 2
occurred in 1990–1992 when participants
were aged 46–70 years and was the first
visit with HbA1c measurements. Partici-
pants were asked to fast>8 h and under-
went phlebotomy during a clinic visit.
Details relevant to covariate data collec-
tion are provided in the Supplementary
Methods. Participants provided written in-
formed consent. Institutional review
boards at participating study centers
approved the protocols.

Among the 14,348 ARIC participants
who attended visit 2, we excluded 2,537
participants missing SomaScan visit 2 data
(1,148 did not consent for industry-
sponsored studies; 1,389 had no available

sample or failed quality control [QC]), 382
participants who fasted <8 h, 1,590 indi-
viduals with prevalent diabetes (self-report
diagnosis, glucose-lowering medication
use, fasting blood glucose $126 mg/dL
or HbA1c $6.5%), and 783 missing covari-
ates of interest. Owing to small numbers,
we excluded 42 participants who were nei-
ther White nor Black and 49 Black partici-
pants at the Maryland and Minnesota
centers. To conduct protein discovery and
then internal replication of the identified
proteins, we randomly divided the data set
into a 2/3 discovery (n = 6,010) and 1/3 val-
idation (n = 2,913) sample.

Protein Measurements

The relative abundance of 5,284 plasma
proteins was quantified using a highly mul-
tiplexed aptamer-based assay (SomaScan
version 4; SomaLogic, Boulder, CO). Plasma
samples (never thawed) from ARIC visit 2
were stored at �80�C until shipment on
dry ice to the ARIC Study central labora-
tory, where specimens were thawed and
underwent aliquoting into plates. These
plates were sent to SomaLogic for protein
measurements and were analyzed at
SomaLogic in 2021. As described previously
(10), the SomaScan uses Slow Offrate
Modified Aptamer (SOMAmer) reagents
to quantify the relative abundance of
thousands of proteins and involves multi-
ple QC steps with normalization, scaling,
and calibration to minimize assay biases
and batch effects. Protein abundances
were standardized by SomaLogic using
adaptive normalization by maximum likeli-
hood techniques. After standard ARIC QC
exclusions (see Supplementary Methods),
we considered 4,955 SOMAmers (4,712
unique proteins) in the current analyses.

Ascertainment of Incident-Diagnosed Diabetes

Incident diabetes was based on a self-
reported diagnosis by a health-care pro-
vider or glucose-lowering medication use
(self-reported or medication brought to
visits) reported by participants (or their
proxies) during annual follow-up tele-
phone calls through 2011–2013 or during
ARIC visits 3 (1993–1995) or 4 (1996–1998)
(11). We censored follow-up on the date
the participant attended visit 5 (2011–
2013) when the participants were all aged
>65 years. If the participant was alive
and did not attend visit 5, we censored
follow-up on 31 December 2013. The
date of the call or the visit where dia-
betes (diagnosis or medication) was first

reported was used as the proxy for the
date of diagnosis.

Statistical Analysis
We log2-transformed and then standard-
ized the protein abundance to facilitate
comparisons across proteins. We used a
random number generator to divide the
data set into a 2/3 discovery and 1/3 valida-
tion sample. In discovery, the Bonferroni-
corrected two-sided P value was <10�5

(<0.05/4,955). We used Cox regression to
examine associations of 4,955 proteins with
incident diagnosed diabetes. Person-time
accrued between visit 2 (baseline) to the
date of diagnosed diabetes, death, loss to
follow-up, or administrative censoring at
visit 5, whichever came first.We used a set
of hierarchical models, including model 0
(unadjusted). Model 1 adjusted for age
(continuous), sex, race-center (White-
Minnesota,White-Maryland, Black-Mississippi,
White-North Carolina, Black-North Carolina),
and estimated glomerular filtration rate
(eGFR, continuous). We included eGFR in
model 1 because kidney function is so
strongly linked with the circulating pro-
teome (12). Model 2 further added cur-
rent smoking, physical activity (sport index),
total cholesterol, HDL-cholesterol, sys-
tolic blood pressure, and hypertension
medication use. Model 3 further added
BMI. We further adjusted model 3 for
HbA1c and fasting glucose (both mod-
eled continuously, model 4) as comple-
mentary biomarkers of hyperglycemia.
We considered model 3 as our main
model for the discovery analysis. In a sen-
sitivity analysis, we further adjusted all
models for 10 protein principal components
(PCsprotein) to account for correlations be-
tween proteins, including batch effects.

We explored the consistency of proteo-
mic associations by baseline age (<55,
$55 years), sex (male, female), race
(Black, White), BMI (<25, $25 kg/m2),
and HbA1c (<5.7%, 5.7 to <6.5%) in
model 3. We calculated P interactions by
adding a protein * subgroup cross-product
term in the models and a statistical signifi-
cance threshold (Bonferroni P < 0.05/
4,955/5) for testing interactions.

We used elastic net (13) with Cox re-
gression models to examine whether pro-
teins improved prediction of 20-year risk of
diabetes beyond each of the adjustment
models, quantified using the C statistics.
Elastic net uses a machine learning ap-
proach to select a combination of proteins
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that optimize the predictive model for inci-
dent diabetes. This process was conducted
for models including 1) covariate adjust-
ment and 2) covariate adjustment 1 pro-
teins (100 aptamers with the smallest
P value were considered regardless of
Bonferroni statistical significance). Covari-
ates were forced in the elastic net mod-
els. We developed a predictive model
(covariates and proteins) in discovery and
tested model discrimination and calibra-
tion in the internal validation sample.
We used R version 4.1.2 software for

all analyses.

Internal and External Validation
For the internal replication analysis within
the ARIC Study, we examined whether
proteins that were Bonferroni significant
in the 2/3 discovery sample were also sig-
nificant in the 1/3 internal validation sam-
ple at P < 0.05/no. of hits tested for each
adjustment model.
We then externally replicated our prote-

omic findings in a nested matched case-
control study (n = 1,858, mean age 50
[SD 11] years, 624 incident diabetes cases)
within the Singapore MEC, a population-
based cohort that included individuals of
Chinese, Malay, and Indian ethnicity (14).
Plasma proteins were quantified in MEC
using SomaScan version 4. Of the 64 dia-
betes-associated proteins that were inter-
nally validated, 63 plasma proteins were
available in MEC. Conditional logistic
models were adjusted for a comparable
set of covariates to our model 3 (see
Supplementary Methods for details). For
external validation, statistical significance
was based on a Bonferroni threshold of
P < 0.05/63. In a sensitivity analysis, we
considered a less conservative threshold
based on a false discovery rate (FDR) of
q< 0.05.

Ingenuity Pathway Analysis
To explore mechanisms and upstream
factors of diabetes-associated proteins
(based on ARIC model 3), we conducted
a pathway analysis using Ingenuity Path-
way Analysis (IPA) (QIAGEN) based on
published relationships between genes
(or gene products) and regulators. De-
tails regarding IPA have been previously
published (15). Of the 4,955 proteins,
4,910 were mapped to genes in the IPA
base, which we used to characterize
canonical (biological) pathways and up-
stream regulators.

Genetic Instruments of Top Proteins
with Diabetes
To characterize a causal nature of the dia-
betes-associated proteins, we performed a
proteome-wide association study (PWAS)
by combining genetic models from individ-
uals of European ancestry for top proteins
using previously developed elastic net
regression models (16) with BMI-adjusted
summary statistics from a genome-wide
association study (GWAS) of diabetes
among individuals of European ancestry
performed by the DIAMANTE (DIAbetes
Meta-ANalysis of Trans-Ethnic associa-
tion Studies) consortium (17). This PWAS
approach is equivalent to a two-sample
Mendelian randomization (MR) that is
restricted to the cis-region of the respec-
tive protein (i.e., ± 500 kilobase [kb] of
the gene-encoding region) (18). The re-
striction to the cis-region leads to more
conservative genetic models of SomaScan
proteins than genome-wide modeling to
increase support of the MR assumptions
(e.g., pleiotropy). Moreover, this analysis is
restricted to genetic models with signifi-
cant genetic heritability (16). For the causal
analyses, we considered the 64 internally
validated proteins identified in model 3,
of which 50 proteins had genetic instru-
ment models. We used Bonferroni correc-
tion to determine statistical significance
P < 0.05/50 (<0.001). In a sensitivity
analysis, we performed colocalization anal-
ysis using a Bayesian framework (19). We
estimated the posterior probability of the
same causal variant underlying the pro-
tein GWAS and the diabetes GWAS (hy-
pothesis 4 [H4]) for each protein with a
significant PWAS finding in the encoding
region ± 500 kb.

RESULTS

Untargeted Discovery of the
Proteomics of Incident Diabetes
In the discovery sample, there were 6,010
participants: mean age 56.8 (SD 5.7) years,
57% were women, and 19% self-identified
their race as Black (Table 1). Over the me-
dian 19 (quartile 1, quartile 3: 13, 21) years
of follow-up, we identified 1,435 cases of
diagnosed diabetes.

Therewere 596 proteins associated (Bon-
ferroni P < 0.05/4,955) with an �20-year
risk of diabetes in unadjusted analyses.
There were 544 proteins associated with
incident diabetes after adjustment for
demographics and eGFR (model 1) and
312 proteins after additional adjustment
for lifestyle and cardiometabolic risk factors

(model 2).With further adjustment for BMI
(model 3), 140 proteins were associated
with an �20-year risk of diabetes with
ADIPOQ, SLITRK3, IGFBP2, APOF, and
HTRA1 as top proteins (Fig. 1A, Supple-
mentary Table 1). After adjustment for base-
line fasting glucose and HbA1c (model 4),
there remained 53 statistically signifi-
cant proteins (Supplementary Table 2).

After adjusting for the first 10 PCsprotein,
the number of proteins associated with in-
cident diabetes in model 3 was reduced
(71 vs. 140 proteins). However, the top
protein hits remained similar to our pri-
mary analysis without PCsproteins adjust-
ment (Supplementary Table 3).

Results were generally consistent across
age, sex, race, BMI, and HbA1c subgroups
in discovery. There was a statistically signif-
icant P value for interaction (based on
<2.0 × 10�6) for NTRK3 by race (P inter-
action = 1.9 × 10�6). In analyses stratified
by race, NTRK3 was inversely associated
with diabetes risk among White partici-
pants (hazard ratio [HR], 0.81; 95% CI
0.76, 0.87; P = 1 × 10�9) but not among
Black participants (HR 1.03; 95% CI 0.91,
1.15; P = 0.68).

Internal and External Validation of
Proteins Identified in Discovery
Participant characteristics in the internal
validation sample (n = 2,913) were similar
to the discovery sample (Table 1). In in-
ternal validation, there were 712 cases of
diagnosed diabetes during a median of
19 years of follow-up. Of the 140 proteins
identified in discovery (model 3), 64 pro-
teins were also statistically significantly
(P < 0.05/140) associated with incident dia-
betes in the internal validation sample, includ-
ing 25 known (e.g., adiponectin [ADIPOQ],
sex-hormone-binding globulin [SHBG], growth
hormone receptor [GHR], aminoacylase-1
[ACY1]) and 39 novel hits (e.g., glutathione
S-transferase A1 [GSTA1] and sodium/
potassium-transporting ATPase subunit b-2
[ATP1B2]) (Supplementary Table 4). For the
64 proteins, the direction and magnitude
of the effect estimates were similar across
discovery and internal validation (Fig. 1B).
NTRK3, the one protein with a statistical in-
teraction identified in discovery, had a similar
pattern in internal validation (P interaction =
0.03, P likelihood ratio test = 0.03; HRWhites

0.85 [95% CI 0.77, 0.93], HRBlacks 1.01 [0.88,
1.17]).

Using the 64 proteins that were inter-
nally validated in ARIC, we then exter-
nally replicated the proteins in the MEC.
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Characteristics of the MEC participants
are provided in Table 1. There were 624
case subjects with incident diabetes and
1,214 matched control subjects (mean
age 50 [SD 11] years, maximum follow-
up 11 years). Of the 63 proteins available
in the MEC, 47 (75%) were associated
with incident diabetes (based on P <
0.05/63; in a sensitivity analysis, 60 pro-
teins based on FDR q < 0.05) comprising
22 novel and 25 known diabetes-associated
proteins (Supplementary Table 5). All 47
effect estimates for protein-diabetes as-
sociations were in the same direction in
ARIC and MEC (Supplementary Fig. 1).
The remaining 16 proteins that did not
validate in MEC had effect estimates in
the same direction as in ARIC.

Prediction
In the discovery elastic net regression
models for 20-year diabetes risk, the
protein-only model had a C statistic of

0.718 (95% CI 0.704, 0.732) (Table 2).
Inclusion of the proteins selected by
elastic net led to improved discrimination
of incident diabetes beyond demographics
and cardiometabolic factors (model 3:
DC statistic 0.064; P < 10�300). The C sta-
tistic from the model with the 27 pro-
teins selected by elastic net and model 4
covariates, including fasting glucose and
HbA1c, was 0.770 (95% CI 0.758, 0.783).
For comparison, the C statistic for a model
adjusted for model 4 covariates and the
47 proteins that we internally validated
was 0.763 (95% CI 0.750, 0.776) and led
to improved discrimination beyond model 4
covariates (DC statistic 0.017, P < 2 × 10�8)
in discovery.

In the internal validation sample, the
discrimination of the prediction model,
including model 4 covariates plus the 27
proteins selected in discovery, was 0.731
(95% CI 0.711, 0.750), which improved
discrimination beyond themodel 4 covariates

(DC statistic 0.011, P = 0.04) (Table 2).
The discrimination in internal validation
(C statistic 0.731) was lower than found
in discovery (C statistic 0.770).

We provide the deciles of predicted ver-
sus observed risk in discovery and in valida-
tion in Supplementary Table 6 and visually
inspected calibration plots (Supplementary
Fig. 2). In discovery, as expected, calibration
was excellent (Supplementary Fig. 2A). In in-
ternal validation, the protein-based model
overestimated the observed diabetes risk
across all deciles (Supplementary Fig. 2B). In
the highest risk decile, the observed 20-year
risk was 79% in discovery and 66% in inter-
nal validation (Supplementary Table 6).

Pathway Analysis
Pathway analysis identified acute-phase
response signaling as the top biological
pathway (Supplementary Table 7). Other
inflammatory pathways, such as comple-
ment activation, STAT3 signaling, and

Table 1—Baseline participant characteristics in the ARIC Study (discovery and internal validation; 1990–1992) and in the
Singapore MEC nested-case control study (external validation; 2004–2010)

ARIC characteristics MEC characteristics

ARIC discovery ARIC validation MEC overall MEC case subjects MEC control subjects
n = 6,010 n = 2,913 n = 1,838 n = 624 n = 1,214

Age, years 56.8 (5.7) 56.7 (5.7) 50.6 (11.3) 51.2 (11.6) 50.3 (11.1)

Sex, n (%)

Female 3,406 (57) 1,644 (56) 1,043 (57) 352 (56) 691 (57)
Male 2,604 (43) 1,269 (44) 795 (43) 272 (44) 523 (43)

Race/ethnicity, n (%)

Black 1,129 (19) 543 (19) — — —

White 4,881 (81) 2,370 (81) — — —

Chinese — — 667 (36) 245 (39) 422 (35)
Indian — — 585 (32) 185 (30) 400 (33)
Malay — — 586 (32) 194 (31) 392 (32)

eGFR, mL/min/1.73 m2 98.5 (15.7) 99.0 (15.2) — — —

SomaScan log2(cystatin-C), RFU — — 11.1 (11.0, 11.2) 11.1 (10.9, 11.3) 11.1 (11.0, 11.3)

Physical activity (sports index) 2.48 (0.8) 2.46 (0.8) — — —

Leisure-time physical activity, MET-h/week — — 644 (967) 643 (950) 645 (976)

Current smoking, n (%) 1,320 (22) 650 (22) 244 (13) 87 (14) 157 (13)

Total cholesterol, mg/dL 210 (38) 208 (39) 208 (36) 211 (36) 207 (36)

HDL-cholesterol, mg/dL 51 (17) 51 (17) 50 (14) 46 (12) 51 (15)

Systolic BP, mmHg 120.0 (18.3) 120.0 (18.0) 131.5 (21.7) 136.9 (21.9) 128.7 (21.0)

BP-lowering medication use 1,396 (23) 623 (21) 250 (14) 125 (20) 125 (10)

BMI, kg/m2 27.3 (5.0) 27.3 (5.0) 25.6 (4.8) 27.2 (5.0) 24.8 (4.5)

HbA1c, % 5.4 (0.4) 5.4 (0.4) 5.7 (0.4) 5.9 (0.4) 5.6 (0.4)

Fasting glucose, mg/dL 101.3 (9.4) 101.4 (9.3) 89.1 (9.9) 94.3 (10.8) 86.8 (8.5)

Categorical variables are presented as indicated, and continuous variables are presented as mean (SD) or as median (quartile 1, quartile 3). In
MEC, the case subjects were diabetes-free when baseline characteristics were measured and in MEC, for fasting glucose and HbA1c, data
were available only for 91.24% and 82.54% of participants, while the data completeness of all other variables was 100%. BP, blood pressure;
RFU, relative florescence intensities.
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interleukin 15 (IL15) production, were also
among the top overrepresented biological
pathways, as was lipid metabolism (liver X
receptor/retinoid X receptor and farnesoid
X receptor/retinoid X receptor activation).
The proinflammatory cytokine IL17a was
identified as the top upstream regula-
tor of diabetes-associated proteins for
a network of proteins associated with
incident diabetes in an upstream regula-
tor analysis (Supplementary Fig. 3 and
Supplementary Table 8). Another top
upstream regulator included tumor necro-
sis factor (Supplementary Fig. 3), which is
a cytokine and master regulator of in-
flammatory signaling.

Genetic Instruments of Proteins with
Diabetes
For the causal analyses, we considered
the 50 proteins with genetic instrument
models (the number of single nucleotide
polymorphisms [SNPs] per protein models
ranged from 16 to 170, genetic heritability
from 1 to 37%) of the 64 proteins identi-
fied in model 3 discovery (140 “hits”
based on P < 0.05/4,955) that were inter-
nally validated (P < 0.05/140 hits in
model 3). The genetic instrument anal-
yses supported causal roles for SHBG,
ATP1B2, and GSTA1 in the develop-
ment of diabetes (P < 0.05/50) (Table 3).
The direction of the protein-diabetes
association was consistent between the

genetic instrument analyses and the un-
targeted analyses of diabetes proteomics
for SHBG (inverse) and GSTA1 (positive),
but the direction was opposite for ATP1B2
(positive in genetic instrument analyses vs.
inverse in proteomic discovery and valida-
tion). Results for the remaining genetic in-
struments for proteins with diabetes risk
are shown in Supplementary Table 9. For
the three proteins with causal support,
colocalization analyses provided further
independent support of a causal link for
GSTA1 (posterior probability H4 = 67.4%)
and ATP1B2 (posterior probability H4 =
99.7%). Owing to the close proximity of
SHBG and ATP1B2 on chromosome 17
(Supplementary Fig. 4), the potential
SHBG signal in the diabetes GWAS is
hidden by the stronger ATP1B2 signal,
such that the posterior probability of
H4 is only 3.6% for SHBG. When ex-
cluding the region corresponding to the
ATP1B2 signal by visual inspection and
restricting the colocalization analysis to
the secondary peak (chromosome 17:
7,500,600–7,600,000) we do observe sup-
port for a shared causal variant (posterior
probability H4 = 86%).

CONCLUSIONS

In this large community-based study of
Black and White adults, we identified nu-
merous novel and established proteins

associated with diabetes incidence in mid-
life by using an untargeted approach. The
identified proteins were internally and ex-
ternally validated. Furthermore, pathway
analyses identified key biological mecha-
nisms, including systemic inflammation
and altered lipid metabolism, underlying
the pathogenesis of diabetes. Three pro-
teins were found to have a direct causal
link to diabetes in genetic instrument anal-
yses. Of particular clinical importance, we
provide novel and known proteins that
may help improve risk prediction for inci-
dent diabetes beyond current approaches
for identifying individuals at high-risk for
diabetes.

Comparisons with Other Proteomic
Studies
Our study comprehensively assessed as-
sociations between 4,955 proteins and in-
cident diabetes in >10,000 participants.
Studies of the proteomics of diabetes
have generally been smaller (�880 to
3,000 participants), had �80 to 4,100
proteins quantified, and included pre-
dominantly White populations. Previous
studies of proteomic alterations linked to
incident diabetes identified proteins that
related to inflammation and other meta-
bolic processes related to glycemic regula-
tion (Supplementary Table 10) (3–8). Of
the 47 validated protein hits in this study,
25 were also identified by prior studies,

Figure 1—Volcano plots for �20-year risk of diabetes and scatterplot comparing discovery and validation: the ARIC study. Estimates adjusted for
age, sex, race-center, eGFR, smoking status, physical activity, total cholesterol, HDL-cholesterol, systolic blood pressure, hypertension medication
use, and BMI. Bonferroni-corrected P value in discovery based on P< 0.05/4,955.
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including a recent 3-protein signature of
isolated impaired glucose tolerance for
diabetes risk (20). The known biological
role in the regulation of glycemia of pro-
teins, such as adiponectin, insulin-growth
factor binding proteins, leptin, and insu-
lin, support the potential importance of
our novel hits. Interestingly, for adipo-
nectin levels, our PWAS analysis did not
find evidence for causality differing from
a prior study (21). This may be due to
our analysis conservatively focusing on
only cis SNPs (i.e., ± 500 kb from the
protein coding genes), whereas older
MR analyses included trans SNPs. For
adiponectin, trans SNPs include the SIAH2
(siah E3 ubiquitin protein ligase 2), which
has an even stronger association with dia-
betes than adiponectin SNPs and several
other genes (21). Our study expands on
prior knowledge on the proteomic markers
of diabetes with the identification of >20
novel proteins (Supplementary Table 4)
that were rigorously associated with dia-
betes risk in 2 racially and ethnically
diverse cohorts.

Mechanisms
Our analyses implicated inflammation as a
top pathway leading to diabetes, consis-
tent with existing understanding of diabe-
tes pathogenesis. Inflammatory pathways
have long been discussed as a mechanism
contributing to diabetes risk arising from
obesity (22). While inflammation could be
a marker of obesity, in experimental mod-
els, proinflammatory cytokines produced
by adipose tissue have been shown to
cause insulin resistance (23). The cytokine,
IL17a, was identified as a top upstream
regulator in our pathway analysis. IL17
could be involved in insulin resistance de-
velopment through adipose tissue disrup-
tion (24). IL17 has been shown to promote
b-cell death in mouse islets (25), thereby
adversely affecting insulin production. In
mice with induced type 1 diabetes, IL17a
promoted oxidative stress and apoptosis
of b-cells (26), thereby leading to reduc-
tions in insulin secretion. Interestingly,
there are pharmacological agents that
can reduce IL17. Our results, if confirmed
in other studies, suggest that such thera-
pies might be investigated as repurposed
therapies for prevention or management
of diabetes.

Altered lipid metabolism was another
key pathway identified in our pathway
analysis. In the setting of obesity, excess
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lipids are stored in the liver and muscle
rather than adipose tissue (27). Accumula-
tion of lipids can lead to a proinflammatory
state (28). Indeed, activation of liver X re-
ceptor/retinoid X receptor—one of our top
pathways—has been shown to induce apo-
ptosis of insulin-secreting cells (29). These
prior laboratory data, in addition to our re-
sults, suggest inflammation and alterations
in lipid metabolism may be important and
perhaps intertwined processes underlying
diabetes pathogenesis.

We found causal support for an inverse
association between SHBG with diabetes
risk. SHBG may play a role in diabetes
through interaction of sex hormones with
fat, muscle, and other peripheral tissues
involved in glucose homeostasis. In our
untargeted proteomic discovery analysis,
the association of plasma SHBG with dia-
betes did not differ by sex (HRmen 0.72,
HRwomen 0.77; P interaction > 0.05). Find-
ings from mouse models indicate that
monosaccharides, including glucose, slow
SHBG transcriptional activity in the liver
via downregulation of hepatocyte nuclear
factor-4a (HNF-4a) (30). Our findings are
in line with prior research implicating low
SHBG as a risk factor for diabetes in ob-
servational (31,32), and MR (33,34) stud-
ies. Indeed, SHBG has been shown to
decrease following weight gain (35). Our
genetic instrument results model a life-
long difference in SHBG levels and hence
support a causal link for SHBG with
diabetes.

Our genetic instrument results also sup-
ported a causal role for ATP1B2 and GSTA1.
To our knowledge, links between ATP1B2
and GSTA1 with diabetes risk in humans
are novel.With regard to ATP1B2, ATP and
ADP have important role in intracellular res-
piration and could be posited to have a role
in glucose trafficking (36). It is plausible that
altered expression of ATP1B2 may reflect a
state of systemic insulin resistance activity
in the peripheral tissue (37). This notion is
supported by rat models indicating altera-
tions to ATPase sodium-potassium regula-
tion within skeletal muscle in the presence
of insulin-resistant states (high-fat diet, sed-
entary) (37). Mechanisms linking GSTA1
with diabetes are not well documented;
however, laboratory-based studies sug-
gest that GSTA1 and other glutathione S-
transferase (GST) genes may play a role in
inflammatory pathways. In vitro studies
have suggested GSTA1 involvement in
suppressing c-Jun N-terminal kinase–
associated (inflammatory) cellular apoptosis

(38). Tissue specimens from humans and
mice have substantially lower expression of
GSTA1 in pancreatic b-cells in the setting of
type 2 diabetes (vs. cells exposed to nondia-
betic conditions) (39). Future studies are
needed to characterize these mechanisms
in humans and determine whether these
proteins may be modifiable via lifestyle or
pharmacological intervention.

Clinical and Public Health
Implications
We identified proteins that improved risk
stratification for diabetes, with implica-
tions for clinical and public health practice.
We used a machine learning approach to
identify proteins associated with diabe-
tes risk beyond demographics, BMI, fast-
ing glucose, HbA1c, and other diabetes
risk factors. Risk stratification for dia-
betes was improved when we added
27 top diabetes-associated proteins (e.g.,
SLITRK3, APOF, ADIPOQ, CPM, IGFBP1,
RBP5, and RTN4R). Prior prediction mod-
els for diabetes risk have not included
such an extensive list of proteins beyond
common clinically used parameters. Im-
portantly, these proteins improved pre-
diction even beyond fasting glucose and
HbA1c—biomarkers that are used to clini-
cally define prediabetes and diabetes.
Our findings suggest that novel pro-
teins may help refine definitions of
prediabetes and improve our ability
to identify individuals at high risk for
diabetes, eligible for targeted diabetes
prevention strategies.

Strengths and Limitations
Strengths of this study include the rigor-
ous assessment of the plasma proteome
with incident diabetes, including internal
validation, in a community-based popu-
lation with Black and White adults, and
external validation in a multiethnic Asian
cohort. Other strengths include the long
follow-up in ARIC, large sample size, and
quantification of �5,000 proteins.

Limitations include, first, genetic models
were created only among individuals of
European ancestry due to the current
paucity of summary GWAS data from ge-
netically diverse populations. The genetic
instruments for the proteins were also de-
rived from GWAS data in ARIC. Analyses
rely upon the currently available charac-
terization of the genetic architecture for
each protein, and statistical power can dif-
fer for proteins according to heritability,
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particularly when the heritability of the
protein is low.

Second, we conservatively accounted
for multiple comparisons using Bonfer-
roni correction. We recognize that some
proteins that did not meet the conser-
vative Bonferroni threshold but met
the FDR threshold may offer additional
information on diabetes risk in future
research.

Third, plasma samples underwent long-
term storage; however, prior work in ARIC
indicates excellent stability of proteins in
ARIC samples (40).

Fourth, we used self-report to capture
incident diabetes events in ARIC, but we
previously showed in the ARIC Study
that self-reported diabetes is highly
specific (11).

Last, in ARIC, the type of diabetes was
not known. However, given the age range
of participants, it is likely that the vast ma-
jority of diabetes cases were type 2.

Conclusion
In conclusion, we identified 22 novel and
25 established proteins associated with
incident diabetes after rigorous adjust-
ment in two diverse cohorts. We identi-
fied a set of proteins that improved risk
prediction for diabetes beyond tradi-
tional risk factors and the prevailing
glycemia (assessed by both fasting glu-
cose and HbA1c). In genetic analyses, we
found causal evidence to support links of
SHBG, ATP1B2, and GSTA1 with incident
diabetes. Our findings suggest novel po-
tential biological mechanisms, including
some proteins (e.g., IL17a) that may be
targetable by existing drugs, which may
predict diabetes pathogenesis.
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