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Abstract
Background: C-reactive protein (CRP) is an acute-phase pro-
tein and has been found to be a risk factor for acute kidney 
injury (AKI) and chronic kidney diseases (CKD). However, the 
role and mechanisms of CRP in AKI and CKD remain largely 
unclear. Summary: Clinically, elevated serum CRP is a risk 
factor or biomarker for patients with AKI and CKD. Interest-
ingly, in critically ill COVID-19 patients, increased serum CRP 
is also associated with the development of AKI. Functionally, 
studies using human CRP transgenic mouse models find that 
CRP is pathogenic and can function as a mediator for AKI and 
CKD as mice overexpressing human CRP promote AKI and 
CKD. Mechanistically, CRP can promote AKI and CKD via NF-
κB and Smad3-dependent mechanisms. We found that CRP 
can activate Smad3 signaling directly and cause AKI via the 
Smad3-p27-dependent G1 cell cycle arrest mechanism. 
Thus, targeting CRP-Smad3 signaling with a neutralizing an-
tibody or Smad3 inhibitor can inhibit AKI. Key Messages: 
CRP acts not only as a biomarker but also as a mediator for 
AKI and CKD. CRP can activate Smad3 to induce cell death 

and cause progressive renal fibrosis. Thus, targeting CRP-
Smad3 signaling may represent a promising therapy for AKI 
and CKD. © 2022 The Author(s).

Published by S. Karger AG, Basel

Introduction

C-reactive protein (CRP), a pentameric protein con-
sisting of five identical subunits, is the prototypical acute-
phase protein in response to infection and inflammation. 
Similar to most of the acute-phase reactants, CRP is syn-
thesized in the liver and acts as a reliable biochemical 
marker for systemic inflammation in clinical practice. Re-
cent studies also demonstrate that CRP can be produced 
by many inflammatory cells such as inflammatory mac-
rophages [1]. In kidney diseases, CRP is highly expressed 
by many inflammatory cells, presumably macrophages, 
and intrinsic kidney cells including tubular cells and en-
dothelial cells [2]. In acute infection or inflammation, 
CRP can be secreted at the beginning of 4–10 h following 
inflammatory stimulation, peaking at 48 h with a short 
half-life of 19 h [3]. Whereas, continuing high levels of 
CRP may induce  chronic inflammation, as reported in 

This is an Open Access article licensed under the Creative Commons 
Attribution-NonCommercial-4.0 International License (CC BY-NC) 
(http://www.karger.com/Services/OpenAccessLicense), applicable to 
the online version of the article only. Usage and distribution for com-
mercial purposes requires written permission.



Li/Chen/Lan/TangKidney Dis 2023;9:73–8174
DOI: 10.1159/000528693

patients with chronic kidney disease (CKD) or end-stage 
renal disease (ESRD) [4]. Therefore, elevated CRP level is 
considered a biomarker for inflammatory response, tis-
sue injury, and chronic progression of diseases.

Apart from serving as a biomarker for inflammation, 
CRP also exerts pro-inflammatory actions and anti-in-
flammatory properties in two conformational isoforms 
including native pentameric CRP (pCRP) and monomer-
ic CRP (mCRP) [5], which may play a vital role in the 
pathogenesis of kidney diseases. Native pCRP belongs to 
the superfamily of pentraxins and has been identified to 
exhibit pro-inflammatory activities including phagocyto-
sis and clearance as an opsonin [6]. Although pCRP is 
extremely stable, pCRP may dissociate to mCRP under 
certain conditions. In the inflammatory microenviron-
ment, both of pCRP and mCRP are found to aggravate 
inflammation and link to the progression of inflamma-
tory diseases such as atherosclerosis and ischemia-reper-
fusion injury (IRI) [6]. Meanwhile, an in vitro study dem-
onstrates that mCRP may limit the amplification of tissue 
injury via inhibiting properdin-mediated renal cell-di-
rected complement activation [4], indicating that the ex-
istence of different isoforms of CRP may exhibit diverse 
functions under different disease conditions. Elevated 
CRP is associated with development of many diseases, 
such as cardiovascular diseases, obesity-induced meta-
bolic disorders, and pancreatic and kidney diseases [1]. It 
is reported that CRP can promote the malignant proper-
ties of human pNEN cell lines [7]. Moreover, CRP trans-
genic mice exhibit endothelial dysfunction and develop 
perivascular fibrosis and macrophage infiltration [8]. A 
study by Kaneko et al. [9] has also demonstrate that over-
expression of CRP promotes the development of insulin 
resistance and hepatic steatosis in high-fat diet mice, re-
vealing the pathogenic role of CRP in the development of 
obesity-induced metabolic disorders. Similarly, CRP also 
plays a pathogenic role of renal inflammation and fibrosis 
in various kidney diseases [10]. Thus, this review provides 
a brief update on the role of CRP in kidney diseases. The 
possible mechanisms and potential therapy for acute kid-
ney injury (AKI) and CKD by targeting CRP signaling are 
also discussed.

CRP and AKI
AKI is a clinical syndrome with multiple etiologies and 

is defined as an acute loss of renal function. The patho-
genesis of AKI is multifactorial, involving renal tubular 
necrosis, inflammation, and vascular dysfunction [10]. 
As an inflammatory biomarker, elevated CRP levels are 
associated with worse clinical outcomes and mortality in 

patients with AKI [11]. It is considered that CRP works 
as an independent predictor of AKI in ST elevation non-
myocardial infarction patients following primary percu-
taneous coronary intervention [12], as well as in patients 
undergoing coronary artery bypass graft [13]. Besides, in 
patients undergoing coronary angiography, CRP is also a 
risk factor for AKI [14]. Given that a high CRP and a low 
serum albumin are biomarkers of progressive inflamma-
tion, the CRP-to-albumin ratio has been considered an 
important prognostic indicator in patients with critical 
illness. Indeed, the CRP/albumin ratio is an independent 
risk factor for postoperative AKI occurred in elderly cys-
tectomy patients and CRP/albumin ratio ≥0.1 has been 
shown to be associated with the increased incidence of 
AKI [15]. Emerging data have also suggested that CRP is 
an important predictive indicator of sepsis-induced AKI 
[16]. Moreover, the serum level of CRP is found to be as-
sociated with the mortality in older AKI patients and on-
cology patients with AKI [17, 18]. Our study has also 
found that elevated serum CRP is associated with deterio-
ration of renal function in patients with AKI, in which the 
level of CRP is subsequently declined with the recovery of 
AKI [19].

The pathogenic role for CRP in AKI has been demon-
strated in a mouse model of ischemic-induced AKI, in 
which mice overexpressing human CRP are largely en-
hanced AKI by promoting renal inflammation and tubu-
lar necrosis (shown in Fig. 1) [19–21], which is blocked 
by using a neutralizing antibody to human CRP [19]. Re-
sults from these studies also suggest that targeting CRP 
may be a novel therapeutic strategy for AKI.

CRP and COVID-19-Associated Kidney Diseases
Globally, COVID-19 pandemic is still a serious health 

threat. COVID-19 may lead to various clinical manifesta-
tions including fever, coughing, sweating, and fatigue, al-
though some COVID-19 patients may be asymptomatic 
[22]. Severe COVID-19 infection may result in acute re-
spiratory metabolic acidosis, coagulation dysfunction, 
and multiple organ failure [23, 24]. In addition to pulmo-
nary involvement, renal involvement such as AKI has also 
been identified in critically ill COVID-19 [25]. Moreover, 
in patients with underlying kidney diseases such as hy-
pertension and diabetes, COVID-19 infection can aggra-
vate the preexisting pathologies in CKD patients. Obser-
vational study including 777 COVID-19 patients shows 
that 45% COVID-19 patients with CKD develop more 
severe renal injury [26]. A meta-analysis including 
344,431 COVID-19 patients also reveal an increased risk 
of progression and mortality in COVID-19 patients with 
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CKD [27]. In these patients, elevated CRP and cytokines 
such as IL-6 are found to be the unique risk factor for CO-
VID-19 patients [28]. As reported, high-sensitivity CRP 
levels of ≥4 mg/L may contribute to the development of 
severe COVID-19 [29]. Meanwhile, in patients who died 
from COVID-19, the levels of CRP are much higher when 
compared to those with survivors [30]. A cohort study by 
Stringer et al. [31] suggested that levels of CRP predict the 
mortality in COVID-19 patients. Thus, elevated CRP lev-

els were associated with more severe COVID-19 infection 
and the disease severity [31–36]. Notably, a retrospective 
study including 2,782 patients with COVID-19 has also 
suggested that the initial high serum level of CRP is 
strongly associated with the development of AKI [11]. In 
addition, high CRP level is also an additional risk factor 
for COVID-19 patients who are required for the renal re-
placement therapy [37].

Fig. 1. Mechanism of CRP in acute kidney injury (AKI). After binding with CD32/CD64, CRP promotes the ac-
tivation of inflammation and accumulation of myeloid-derived suppressor cells and apoptosis as well as inhibits 
autophagy and arrests the cell cycle by activating Smad3 via ERK/p38 and TGF-β1 signaling pathways, leading 
to the progression of AKI. Red arrows represent positive regulation of pathways or biological process, while the 
green lines represent negative regulation.
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To examine the pathogenic role of CRP in COVID-19 
AKI, we recently demonstrated that in CRP transgenic 
mice, kidney-specifically overexpressing SARS-CoV-2 N 
protein can largely promote AKI (unpublished data). 
This preliminary observation provides direct evidence for 
the pathogenic role of CRP in COVID-19 AKI.

CRP and CKD
CKD, characterized as a progressive loss of renal func-

tion, has become a global public health burden. Inflam-
mation and fibrosis are common pathological features 
that contribute to the progression of CKD including folic 
acid nephropathy, obstructed nephropathy, and diabetic 
nephropathy (DN) [38]. It has been well established that 
CRP is a risk factor for CKD, and elevated serum levels of 
CRP are also associated with the mortality and morbidity 
of CKD [39, 40]. In CKD patients, a high CRP level is 
found to be a predictor of cardiovascular events [41] and 
an independent risk factor for all-cause mortality in stage 
3 and 4 CKD patients [39]. Besides, increased levels of 
CRP also correlate with the genetic variants of the CRP 
locus. According to the data from a large population-
based survey, the CRP single nucleotide polymorphism 
(SNP) rs2808630 is associated with CKD in African 
Americans and non-Hispanic blacks with hypertensive 
kidney disease. Meanwhile, the CRP SNP rs2808630 is as-
sociated with albuminuria which is a strong risk factor for 
CKD progression [42]. Hence, genetic predisposition of 
CRP may predispose patients with a higher risk of CKD 
progression. It is highly possible that high CRP may pro-
mote the infiltration of inflammatory cells and the release 
of cytokines, chemokines, and TGF-β1 from the diseased 
kidney, resulting in progressive renal inflammation and 
fibrosis [43]. Hence, the interplay between inflammation 
and fibrosis is a major determinant in the progression of 
CKD in response to CRP. The role of CRP in the patho-
genesis of CKD is demonstrated in a mouse model of 
UUO in which mice overexpressing human CRP develop 
severe renal inflammation and fibrosis [44], revealing a 
pathogenic role for CRP in CKD (shown in Fig. 2).

DN is also a severe complication in both type 1 and 
type 2 diabetes, which is considered a leading cause of 
end-stage renal disease worldwide. Numerous studies in 
patients with diabetes have demonstrated that a modest 
elevation in CRP is associated with an increased risk of 
type 2 diabetes and its complication such as diabetic reti-
nopathy and DN. For example, a study by Yeo et al. [45, 
46] reveals that CRP is an independent risk factor for type 
2 DN and is associated with the disease progression. An-
other study also demonstrates the correlation between el-

evated levels of CRP and the incidence of cardiovascular 
events in type 2 DN [47]. Moreover, increased levels of 
CRP are also associated with the development of micro-
albuminuria in both types of DN [48, 49]. A meta-analy-
sis containing 1,331 cases and 1,779 controls reveals that 
high-sensitivity CRP concentration is significantly in-
creased in DN patients and correlated with increased mi-
croalbuminuria in different stage of DN [50]. Notably, 
the detection of mCRP deposition in kidney tubules by 
immunostaining has found to be associated with the dis-
ease severity in DN patients [51], suggesting CRP may be 
involved in the pathogenesis of DN (shown in Fig. 3). The 
pathogenic role for CRP in DN is confirmed in a mouse 
model of type 1 diabetes in which mice overexpressing 
human CRP are largely promoted STZ-induced DN [49]. 
In contrast, CRP deficiency inhibits diabetic renal injury 
in rats [52].

CRP also plays a role in the pathogenesis of type 2 DN. 
This is confirmed in CRP transgenic-db/db mice in which 
db/db mice overexpressing human CRP largely promote 
diabetic kidney disease by increasing renal inflammation 
and fibrosis [2].

Mechanisms of CRP Mediate AKI and CKD
The pathogenic role of CRP in AKI and CKD has been 

demonstrated in different mouse models including AKI, 
UUO, and db/db mice, in which M1 macrophage activa-
tion, NF-κB signaling, and Samd3 signaling are  involved 
as discussed below.

CRP and M1 Macrophage Activation
Macrophages (MФ) which are classified into M1 and 

M2 macrophages have been found to play an important 
role in pathogenesis of both AKI and CKD. In the early 
stage of AKI, M1 macrophages infiltrate into the injury 
site and release the pro-inflammatory mediator, leading to 
further damage to the kidney [53]. Although M2 macro-
phages are considered to play an important role in con-
trolling inflammation and tissue repair in AKI, studies 
also found that the profibrogenic M2 macrophages can 
also contribute to the transition from AKI to CKD [54]. 
Interestingly, a previous study found that CRP can induce 
polarization of macrophages to M1 phenotype and pro-
mote the conversion of macrophages from M2 to M1 phe-
notype in vitro [55]. This is consistent with an in vivo 
study that showed that CRP exacerbates IRI-induced AKI 
by promoting M1 macrophage activation in human CRP 
transgenic mice [20]. Thus, the activation of M1 pheno-
type macrophages and expression of FcγR may contribute 
to IRI-AKI in CRP transgenic mice, as shown in Figure 1.
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CRP and NF-kB Signaling
NF-κB signaling pathway is a key inflammatory path-

way associated with CRP-mediated AKI and CKD. CRP 
can activate NF-κB signaling to induce the expression of 
monocyte chemotactic protein 1 (MCP-1), resulting in 
macrophage infiltration and renal inflammation [6]. In a 
mouse model of UUO induced in human CRP transgen-
ic mice, CRP strongly activates NF-κB signaling to pro-
mote the early and severe renal inflammation [44]. This 

is also found in mouse models of both type 2 and type 1 
DN in which CRP binds CD32 to activate NF-κB signal-
ing, resulting in the development of renal inflammation 
[2, 49]. In addition, CRP can also induce expression of 
integral membrane glycoprotein, DPP4, which regulates 
the activation of NF-κB, leading to the development of 
type 2 DN [56]. Thus, CRP may activate NF-κB-dependent 
mechanism directly or indirectly to mediate renal inflam-
mation in AKI and CKD.

Fig. 2. Mechanism of CRP in chronic kidney disease. CRP induces the phosphorylation of Smad3 via promoting 
ERK/p38 and TGF-β1 pathways, which subsequently exacerbate renal inflammation by activating NF-κB path-
way via increasing the expression of MCP-1 and decreasing the expression of Smad7 and promote renal fibrosis. 
Besides, CRP induces renal inflammation via enhancing the activation of NF-κB pathway directly.
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CRP and Smad3 Signaling
Smad3 is not only the vital mediator of TGF-β signal-

ing but can also interact with other signaling pathway 
such as NF-κB and mTOR signaling to mediate renal in-
flammation and fibrosis in CKD (Fig. 2). Many studies 
have revealed the important role of Smad3 in CRP-me-
diated renal inflammation and fibrosis [2, 19, 57, 58]. By 
using human CRP transgenic mice, we find that high lev-
els of CRP can promote necrotic renal inflammation and 
fibrosis via the Smad3-dependent mechanism (shown in 
Fig. 1 and 2). This is supported by the findings that CRP 

transgenic mice lacking Smad3 can protect against AKI 
and CKD in mouse models of ischemic, UUO, and dia-
betic kidney diseases [2, 57, 58]. Mechanistically, we un-
cover that after binding to CD32, CRP can activate Smad3 
directly and indirectly via both TGF-β1 and/or ERK/p38 
MAPK-Smad crosstalk pathways to cause cell death via 
the Smad3-p27-dependent G1 cell cycle arrest mecha-
nism (shown in Fig. 1). This is confirmed by the findings 
that genetic deletion or pharmacological inhibition of  
Smad3 can block or rescue the renal injury in mouse 
models of ischemic-induced AKI, UUO, and diabetic db/

Fig. 3. Mechanism of CRP in diabetic nephropathy. Under high-glucose condition, CRP induces renal fibrosis 
by Smad3-mediated mechanism. Meanwhile, the crosstalk between autophagy inhibited by CRP via C3a/C3aR 
pathway in podocyte, and apoptosis positively regulated by CRP via Wnt/β-catenin and ERK pathways in tubu-
lar epithelial cells, is related to the epithelial-mesenchymal transition (EMT) which contribute to renal fibrosis. 
Similar to the mechanism of CRP in CKD, CRP could promote the activation of NF-κB pathway directly to in-
duce inflammation in diabetic nephropathy (DN).
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db mice [2, 57, 58]. Similarly, CRP, as a key inflamma-
tory stress molecule, may also play a role in COVID-
19-associated AKI [35]. Indeed, SARS-CoV-2 N protein 
can directly interact with Smad3 and induce tubular epi-
thelial cell death and AKI via the Smad3-p21-dependent 
G1 cell cycle arrest mechanism [59]. This is also con-
firmed by genetic deletion and pharmacological inhibi-
tion of Smad3 to protect kidneys from SARS-CoV-2-in-
duced AKI [59].

It has been well established that TGF-β/Smad3 signal-
ing is a key pathway leading to renal fibrosis under CKD 
conditions. CRP can activate Smad3 to mediate renal fi-
brosis via both TGF-β-dependent and independent 
mechanisms (shown in Fig. 2). The role of Smad3 in CRP-
mediated renal fibrosis is confirmed by the finding that 
human CRP transgenic mice lacking Smad3 are protected 
against UUO-induced progressive renal fibrosis [58]. 
Furthermore, we also find that CRP can induce renal fi-
brosis through a CD32b-Smad3-mTOR pathway in a 
mouse model of DN [2]. Compared to diabetic db/db 
mice, CRP transgenic-db/db mice develop more severe 
type 2 DN with more progressive renal inflammation and 
fibrosis, which is associated with over-activation of CRP-
CD32b, NF-κB, TGF-β/Smad3, and mTOR signaling [2]. 
Further studies demonstrate that blockade of mTOR sig-
naling with rapamycin inhibits CRP-induced renal fibro-
sis, revealing a critical role for CRP-CD32b-Smad3-
mTOR signaling in the pathogenesis of DN (shown in 
Fig. 3).

Others
Other mechanisms such as myeloid-derived sup-

pressor cells and crosstalk between autophagy and ap-
optosis also participate in the pathogenesis of CRP-in-
duced AKI and CKD. It is reported that CRP can pro-
mote AKI by increasing renal accumulation of 
myeloid-derived suppressor cells [21, 60]. Overexpres-
sion of CRP in mice also cause dysregulation of autoph-
agy and activation of apoptosis, resulting in the kidney 
with more susceptible to IRI-AKI [61]. Furthermore, as 
shown in Figure 3, CRP can induce apoptosis in HK-2 
cells and facilitate epithelium cell to mesenchymal fi-
broblast transition via the CD32-Wnt/β-catenin and 
ERK signaling [62]. Emerging evidence also shows that 
CRP can activate the complement system while inhibit-
ing autophagy via C3a/C3aR signaling under diabetic 
conditions [52]. Although all these findings are prelim-
inary, they suggest that the regulatory role of CRP in the 
process of autophagy and apoptosis during AKI to CKD 
is worthy of further studies.

Therapeutic Strategies by Targeting CRP Signaling
Since CRP is pathogenic in the development of many 

diseases, it is highly possible that targeting CRP signaling 
may be a promising therapeutic approach clinically. It has 
been reported that treatment with CRP antisense oligo-
nucleotide (ASO) can facilitate the degradation of human 
CRP mRNA to selectively reduce the level of CRP and 
thus effectively inhibits collagen-induced arthritis in CRP 
transgenic mice [63, 64]. Importantly, treatment with 
CRP ASO can also selectively reduce the level of CRP in 
healthy human male volunteers challenged with endotox-
in [65]. In addition, the use of specific CRP inhibitor can 
protect rats from acute myocardial infarction [66]. It is 
well established that CRP can bind to Fc receptors such 
as CD16, CD32, and CD64; however, only the anti-CD32 
but not the anti-CD16 or anti-CD64 antibodies can effec-
tively prevent coronary artery disease [67, 68]. Similarly, 
the neutralizing anti-CD32 antibody can block the CRP-
CD32 interaction and thus reverse CRP-induced AKI 
[19]. Clinically, it is reported the use of selective CRP 
apheresis can specifically reduce serum levels of CRP and 
thus has  therapeutic effect on “low-risk” COVID-19 pa-
tients with respiratory failure, although it fails to show 
significant benefits to those with “high-risk” COVID-19 
patients [69, 70]. Nevertheless, it should be pointed out 
that the therapeutic effect of anti-CRP treatment on AKI 
and CKD remains preliminary, and further experimental 
and clinical studies are warranted.

Conclusion

Increasing evidence shows that CRP is not only a bio-
marker or risk factor for AKI and CKD, but it may also 
play a pathogenic role in the development of AKI and 
CKD. CRP may act via both NF-κB and TGF-β/Smad3 
signaling pathways to cause renal inflammation and fi-
brosis. Thus, targeting CRP signaling may represent a 
promising therapy for AKI and CKD.
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