
ntLink: a toolkit for de novo genome assembly scaffolding and
mapping using long reads

Lauren Coombe1,*, René L. Warren1, Johnathan Wong1, Vladimir Nikolic1, Inanc Birol1,*

1Canada’s Michael Smith Genome Sciences Centre at BC Cancer, 570 W 7th Ave, Vancouver, BC
V5Z 4S6, 604-707-5900

Abstract

With the increasing affordability and accessibility of genome sequencing data, de novo genome

assembly is an important first step to a wide variety of downstream studies and analyses.

Therefore, bioinformatics tools that enable the generation of high-quality genome assemblies in

a computationally efficient manner are essential. Recent developments in long-read sequencing

technologies have greatly benefited genome assembly work, including scaffolding, by providing

long-range evidence that can aid in resolving the challenging repetitive regions of complex

genomes. ntLink is a flexible and resource-efficient genome scaffolding tool that utilizes long-

read sequencing data to improve upon draft genome assemblies built from any sequencing

technologies, including the same long reads. Instead of using read alignments to identify candidate

joins, ntLink utilizes minimizer-based mappings to infer how input sequences should be ordered

and oriented into scaffolds. Recent improvements to ntLink have added important features such

as overlap detection, gap-filling and in-code scaffolding iterations. Here, we present three basic

protocols demonstrating how to use each of these new features to yield highly contiguous genome

assemblies, while still maintaining ntLink’s proven computational efficiency. Further, as we

illustrate in the alternate protocols, the lightweight minimizer-based mappings that enable ntLink

scaffolding can also be utilized for other downstream applications, such as misassembly detection.

With its modularity and multiple modes of execution, ntLink has broad benefit to the genomics

community, from genome scaffolding and beyond. ntLink is an open-source project and is freely

available from https://github.com/bcgsc/ntLink.

Basic Protocol 1: ntLink scaffolding using overlap detection

Basic Protocol 2: ntLink scaffolding with gap-filling

Basic Protocol 3: Running in-code iterations of ntLink scaffolding

Alternate Protocol 1: Generating long-read to contig mappings with ntLink

Alternate Protocol 2: Using ntLink mappings for genome assembly correction with Tigmint-long

Support Protocol 1: Installing ntLink

*Corresponding authors: lcoombe@bcgsc.ca, ibirol@bcgsc.ca.

CONFLICT OF INTEREST STATEMENT:
The authors declare that they have no conflicts of interest.

HHS Public Access
Author manuscript
Curr Protoc. Author manuscript; available in PMC 2024 April 01.

Published in final edited form as:
Curr Protoc. 2023 April ; 3(4): e733. doi:10.1002/cpz1.733.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://github.com/bcgsc/ntLink

Keywords

De novo genome assembly; long reads; scaffolding; minimizer mapping

INTRODUCTION

Generating high-quality de novo genome assemblies for both model and non-model

organisms opens the door to a plethora of important downstream studies, including

annotation, structural variant analysis and population studies, to name a few (Logsdon et

al., 2020). In recent years, long-read genome sequencing technology from Oxford Nanopore

Technologies PLC (ONT, Oxford, UK) and Pacific Biosciences of California, Inc. (PacBio,

Menlo Park, CA) have gained in popularity. Long reads range in length from kilobases

to megabases, orders of magnitude greater than the typical 150–300 bp lengths of short

reads, albeit with a higher base error rate than typical short read sequencing technologies

(e.g. Illumina). This length distribution enables the long reads to span over the numerous

repetitive elements present in complex genomes, therefore allowing for repeats to be

resolved in a draft assembly. With the continued improvement and accessibility of long-read

genome sequencing, there is great opportunity to harness the rich information of this data

type for facilitating and improving de novo genome assemblies.

While current state-of-the-art de novo long-read assemblers such as Flye (Kolmogorov et

al., 2019) are generating highly contiguous assemblies, we observe that they still do not

fully exhaust or necessarily correctly use the long-range evidence inherent in long reads

(Coombe et al., 2021). Therefore, there is great value in stand-alone genome assembly

scaffolders, such as LINKS (Warren et al., 2015), OPERA-LG (Gao et al., 2016), LRScaf

(Qin et al., 2019), and our alignment-free scaffolder ntLink (Coombe et al., 2021). ntLink is

a lightweight, minimizer-based long-read scaffolding tool that was previously published as

a central step in the correction and scaffolding pipeline LongStitch (Coombe et al., 2021).

More recently, ntLink was integrated as a key step in our de novo long-read assembler

GoldRush (Wong et al., 2022). ntLink uses long-read evidence to further contiguate draft

assemblies from any sequencing technology. Instead of using alignments of long reads to the

draft assembly, like many state-of-the-art long-read scaffolding tools, ntLink uses minimizer

mappings (leveraging particular subsets or sketches of the sequence k-mers), which we have

shown to be effective for assembly scaffolding as it confers considerable computational

benefit (Coombe et al., 2021).

ntLink is a flexible toolkit which can be run in various modes depending on the desired user

output (Figure 1), with multiple new functionalities introduced since the published version

(Coombe et al., 2021). For each basic protocol, the input files provided by the users include

the long reads and a draft assembly to be improved, and the main output file is a scaffolded

assembly in FASTA format. The core functionality of ntLink uses the long-read evidence

and generated minimizers to infer how the input contigs (draft assembly sequences) should

be ordered and oriented, and subsequently performs these joins. The basic protocols

differ in additional steps that are performed to more accurately join contigs together, fill

ambiguous sequences (i.e. gap-filling), and enhance the final contiguity of the assembly. In

Coombe et al. Page 2

Curr Protoc. Author manuscript; available in PMC 2024 April 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

earlier versions of ntLink, contigs were joined together end-to-end naively, whether they

overlapped in the genomic space or not. The overlap detection feature of ntLink identifies

cases where adjacent contigs overlap, and trims them to remove the overlapping regions

prior to concatenation (Basic Protocol 1, Figure 1A). Furthermore, scaffolding assemblies

generally introduces gaps, or ambiguous nucleotide bases (“N”s), between joined contigs.

The gap-filling feature of ntLink instead fills gaps with bases from a representative read

supporting the join (Basic Protocol 2, Figure 1B). Finally, running additional iterations of

ntLink can further improve the contiguity of the final output assembly. To take advantage of

these contiguity gains efficiently, ntLink can run in-code scaffolding iterations (also termed

rounds hereon) powered by a coordinate liftover module (Basic Protocol 3, Figure 1C).

Although ntLink was developed as a scaffolding tool, the initial minimizer-guided step of

mapping long reads to the draft assembly can also benefit other bioinformatics utilities that

require approximate mapping information, including the ntEdit+Sealer polishing component

of the GoldRush assembler (J. X. Li et al., 2022; Paulino et al., 2015; Warren et al., 2019;

Wong et al., 2022) and Tigmint-long (Coombe et al., 2021; Jackman et al., 2018), an

assembly correction tool also integrated in the LongStitch pipeline. In Alternate Protocols

1 and 2, we highlight the usage of ntLink as a mapping tool, and, as an example of using

ntLink mappings in a different downstream application, showcase how these mappings can

be utilized in Tigmint-long.

With its numerous modes and available protocols, ntLink is a flexible and wide-reaching

tool for improving de novo genome assemblies and helping researchers better leverage their

long-read sequencing data.

STRATEGIC PLANNING

Hardware

ntLink is a command-line tool, which can be run on 64-bit Linux or MacOS operating

systems with sufficient available RAM (random-access memory). The amount of RAM and

disk space required for running ntLink varies with the draft genome size and coverage

of the long-read dataset. See Table 1 for the peak memory and disk space usage for

representative ntLink scaffolding runs using four different species with varying genome

sizes. The wall-clock time for each ntLink run is also included in Table 1. For the basic

and alternate protocols, each step uses 5 threads, but this can be adjusted depending on the

specifications of the user’s machine. The parameter t controls the number of threads used

(where applicable), and is shown in each corresponding command.

Software

ntLink is available from the conda package manager for a more straightforward installation.

Users can also install ntLink from the provided source code on GitHub. Detailed instructions

for installing ntLink are available in the Support Protocol 1.

Coombe et al. Page 3

Curr Protoc. Author manuscript; available in PMC 2024 April 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Files

Each ntLink protocol requires input long sequencing reads (in FASTA or FASTQ format),

and an input draft genome assembly to be scaffolded (in FASTA format). Both files can be in

single-line or multi-line (standard) FASTA format.

BASIC PROTOCOL 1

ntLink scaffolding using overlap detection

Basic Protocol 1 describes running ntLink to scaffold an input draft assembly using long

reads, with overlap detection enabled. The overlap detection functionality identifies when

adjacent contigs (draft assembly sequences) overlap in genomic space, and trims the contigs

to ensure the sequences are merged without duplicating this overlapping sequence.

ntLink leverages the long-range information inherent in long-read sequencing data to

scaffold an input draft assembly. First, ntLink maps the long reads to a draft assembly

using a minimizer-based approach. Long-read mappings that span multiple contigs provide

evidence that these contigs should be joined together. These mappings are also used to

estimate gap sizes between the contigs. After ntLink determines the sequences of oriented

contigs to be joined together as scaffolds, the overlap detection feature identifies adjacent

contigs that have a putative overlap (indicated by a negative estimated gap size), and

resolves the overlaps. Finally, the ordered and oriented scaffolds are output in FASTA

format.

Necessary Resources:

Hardware—This protocol requires a 64-bit Linux or MacOS operating system with

sufficient RAM and available disk space (See Strategic Planning for more information).

Software—The steps of Basic Protocol 1 describe the installation of all required tools. For

easier installation of the dependencies, see Support Protocol 1 to set-up a conda environment

called “ntLink_env”.

Files—The input files for ntLink are long genome sequencing reads and a draft genome

assembly. The long sequencing reads can be provided in FASTA or FASTQ format, either

compressed with gzip or uncompressed. The input draft assembly to be scaffolded should be

in FASTA format (multi-line or single-line).

Sample Files—To demonstrate the usage of ntLink in Basic Protocol 1, we will scaffold

a C. elegans draft assembly with a corresponding C. elegans Oxford Nanopore long-read

dataset. The C. elegans long reads are available from the Sequence Read Archive (SRA)

under accession SRR10028109. The draft assembly is a Flye (Kolmogorov et al., 2019)

assembly of the same C. elegans long reads, and is available from https://doi.org/10.5281/

zenodo.7526395. To assess the genome assemblies generated from ntLink, a C. elegans N2

(Bristol strain) reference genome (accession GCA_000002985.3) will be used. There are

detailed steps in the protocol to guide the user in downloading these files.

Coombe et al. Page 4

Curr Protoc. Author manuscript; available in PMC 2024 April 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Protocol steps with step annotations:

1. Install ntLink

See Support Protocol 1 for detailed instructions and options for installing ntLink.

2. Install protocol-specific dependencies curl, QUAST, and SRA toolkit.

Option A: Use conda package manager

i. If Option A of Support Protocol 1 was used to install ntLink, the

protocol-specific dependencies can be installed in the same conda

environment.

conda activate ntlink_env

conda install -y -c bioconda -c conda-forge curl quast ‘sra-

tools>=2.10.2’

Option B: Install from source

i. Install curl

Many servers will already have curl installed. To check if curl is

available:

which curl

If you see the path to a curl installation, curl is already installed and you

can continue to part (ii) to install QUAST. Otherwise, follow the next

steps.

a. Go to https://curl.se/download.html, and find the tarball for

the latest released version. Version 7.86.0 is used below to

illustrate the steps. Change your terminal’s current directory to

the location where you would like curl installed, download the

tarball, extract the tarball and change your directory into the

downloaded curl directory.

mkdir -p ~/bin/curl && cd ~/bin/curl

wget https://curl.se/download/curl-7.86.0.tar.gz

tar zvxf curl-7.86.0.tar.gz

cd curl-7.86.0/

b. Compile the source code

mkdir curl_install

./configure --with-ssl --prefix=$(pwd)/curl_install

Coombe et al. Page 5

Curr Protoc. Author manuscript; available in PMC 2024 April 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://curl.se/download.html
https://curl.se/download/curl-7.86.0.tar.gz

make

make install

c. Add the curl installation directory to your PATH

export PATH=$(pwd)/curl_install/bin:$PATH

ii. Install QUAST (Mikheenko et al., 2018)

a. Go to https://github.com/ablab/quast/releases, download the

latest release and extract the tarball. Version 5.2.0 is shown

as an example in the following commands.

mkdir -p ~/bin/quast_install && cd ~/bin/

quast_install

curl -L --output

quast-5.2.0.tar.gz https://github.com/ablab/quast/

releases/download/quast_5.2.0/quast-5.2.0.tar.gz

tar xvzf quast-5.2.0.tar.gz

cd quast-5.2.0/

./install.sh

cd ..

b. Add the QUAST installation directory to your PATH

export PATH=$(pwd)/quast-5.2.0:$PATH

iii. Install the SRA toolkit

a. Go to https://github.com/ncbi/sra-tools/wiki/01.-Downloading-

SRA-Toolkit, and find the pre-built binary appropriate for

your system. Download the archive and extract it. We use the

centOS linux release v3.0.2 as an example below.

mkdir -p ~/bin/sratools && cd ~/bin/sratools

curl -L --output

sratoolkit.3.0.2-centos_linux64.tar.gz

https://ftp-trace.ncbi.nlm.nih.gov/sra/sdk/3.0.2/

sratoolkit.3.0.2-centos_linux64.tar.gz

tar xvzf sratoolkit.3.0.2-centos_linux64.tar.gz

b. Add the sratoolkit installation directory to your PATH

Coombe et al. Page 6

Curr Protoc. Author manuscript; available in PMC 2024 April 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://github.com/ablab/quast/releases
https://github.com/ablab/quast/releases/download/quast_5.2.0/quast-5.2.0.tar.gz
https://github.com/ablab/quast/releases/download/quast_5.2.0/quast-5.2.0.tar.gz
https://github.com/ncbi/sra-tools/wiki/01.-Downloading-SRA-Toolkit
https://github.com/ncbi/sra-tools/wiki/01.-Downloading-SRA-Toolkit
https://ftp-trace.ncbi.nlm.nih.gov/sra/sdk/3.0.2/sratoolkit.3.0.2-centos_linux64.tar.gz
https://ftp-trace.ncbi.nlm.nih.gov/sra/sdk/3.0.2/sratoolkit.3.0.2-centos_linux64.tar.gz

export PATH=$(pwd)/sratoolkit.3.0.2-centos_linux64/

bin:$PATH

3. Navigate to the directory where you want to run the ntLink tests, and download

the sample long-read data.

Note that downloading the long reads will take approximately 1 hour.

cd ~/ntLink/test

fasterq-dump SRR10028109

Once the command has finished, the reads will be available in the file

SRR10028109.fastq. These reads are ~93-fold coverage C. elegans Oxford

Nanopore long reads.

4. Download the sample draft long-read assembly.

This is a Flye (Kolmogorov et al., 2019) assembly of the long reads downloaded

in the previous step.

curl -L --output celegans_flye.fa https://zenodo.org/record/

7526395/files/celegans_flye.fa

5. Download a reference genome assembly for the C. elegans Bristol N2 strain.

This assembly will be used in a later step when assessing the final assembly

scaffolds using QUAST.

curl -L --output celegans_reference.fa.gz

https://ftp.ncbi.nlm.nih.gov/genomes/all/GCA/000/002/985/

GCA_000002985.3_WBcel235/GCA_000002985.3_WBcel235_genomic.fna.gz

6. Run ntLink.

The specified values of k, w and overlap are the default values, but are included

in the command to demonstrate how to set these parameters using the ntLink

Makefile driver script.

ntLink scaffold target=celegans_flye.fa reads=SRR10028109.fastq

k=32 w=100 t=5 overlap=True

7. Check the logs and output files to ensure that the run executed successfully.

If ntLink completed successfully, the ntLink terminal output should contain

the message “Done ntLink! Final post-ntLink scaffolds can be found in:

celegans_flye.fa.k32.w100.z1000.ntLink.scaffolds.fa”. In addition, the final

Coombe et al. Page 7

Curr Protoc. Author manuscript; available in PMC 2024 April 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://zenodo.org/record/7526395/files/celegans_flye.fa
https://zenodo.org/record/7526395/files/celegans_flye.fa
https://ftp.ncbi.nlm.nih.gov/genomes/all/GCA/000/002/985/GCA_000002985.3_WBcel235/GCA_000002985.3_WBcel235_genomic.fna.gz
https://ftp.ncbi.nlm.nih.gov/genomes/all/GCA/000/002/985/GCA_000002985.3_WBcel235/GCA_000002985.3_WBcel235_genomic.fna.gz

output scaffolds file “celegans_flye.fa.k32.w100.z1000.ntLink.scaffolds.fa”

should be in the current working directory.

8. Assess the final output scaffolds using abyss-fac (de novo approach) (Jackman

et al., 2017) and QUAST (reference-based approach) (Mikheenko et al., 2018).

The abyss-fac utility is part of the ABySS suite of tools, which is installed as

a dependency of ntLink. See Table 2 for detailed descriptions of the assembly

statistics and Table 3 for the expected statistics generated from these steps.

a. Run abyss-fac using the input draft genome assembly and the post-

ntLink genome assembly.

abyss-fac -G100e6 --count-ambig celegans_flye.fa

celegans_flye.fa.k32.w100.z1000.ntLink.scaffolds.fa

The “-G” option specifies the genome size, which is approximately 100

Mbp for C. elegans. The “--count-ambig” option counts any ambiguous

bases (ex. “N”s) in the output statistics.

After running this command, you will see that the NG50 length

increases after ntLink scaffolding, and the number of sequences

decreases.

b. Run QUAST to assess the input draft genome assembly and the post-

ntLink genome assembly using the previously downloaded C. elegans
reference assembly.

quast -t 5 -o quast_ntlink_bp1 -r

celegans_reference.fa.gz --fast --large celegans_flye.fa

celegans_flye.fa.k32.w100.z1000.ntLink.scaffolds.fa

After running QUAST, all output files will be written to the

quast_ntlink_bp1 directory. The main statistics will be written to

report.tsv. You will see that certain statistics, such as “# contigs (>=

0 bp)” and “NG50” will be the same as calculated by abyss-fac.

Important reference-based statistics to look at include the “NGA50”

and “# misassemblies” (Table 2). After scaffolding, we want to

minimize the number of contigs and misassemblies, while maximizing

the NG50 length and NGA50 length. Note that the QUAST executable

will be quast.py if the tool was installed from source as described in

Step 2B.

Coombe et al. Page 8

Curr Protoc. Author manuscript; available in PMC 2024 April 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

BASIC PROTOCOL 2

ntLink scaffolding with gap-filling

Basic Protocol 2 describes how to run ntLink scaffolding with a gap-filling step. In this

protocol, instead of simply introducing ambiguous bases, ntLink fills gaps with sequence

from the input long-read sequencing data. The initial steps of ntLink are executed as

described in Basic Protocol 1. Then, an additional step is performed which fills-in the

ntLink-induced scaffold gaps with bases from a representative read that supports the given

join (the read that has the highest average number of minimizers in common with the

incident contigs). Following this gap-filling step, the scaffolds are output in FASTA format.

Because the gaps are filled with raw long-read sequence, we recommend polishing the

output assembly using long-read polishing tools such as ntEdit+Sealer (J. X. Li et al., 2022;

Wong et al., 2022), Racon (Vaser et al., 2017) or Medaka (Medaka: Sequence Correction

Provided by ONT Research, n.d.) following the ntLink scaffolding and gap-filling.

Necessary Resources:

Hardware—This protocol requires a 64-bit Linux or MacOS operating system with

sufficient RAM and available disk space (See Strategic Planning for more information).

Software—The following software must be installed and available in your PATH

environment variable:

• SRA toolkit (v3.0.0+): (https://github.com/ncbi/sra-tools)

• curl: (https://curl.se/)

• Python 3.7+: (https://www.python.org/)

• ntLink (v1.3.7+): (https://github.com/bcgsc/ntLink)

• ABySS (v2.3.0+): (https://github.com/bcgsc/abyss)

• QUAST (v5.2.0+): (https://github.com/ablab/quast)

For more information about installing these dependencies, see Support Protocol 1 and

Basic Protocol 1, steps 1–2. Instructions for creating a conda environment that can be used

for installing protocol-specific dependencies, as described below, are available in Support

Protocol 1.

Files—The input files for ntLink are long genome sequencing reads and a draft genome

assembly. The long sequencing reads can be provided in FASTA or FASTQ format, either

compressed with gzip or uncompressed. The input draft assembly to be scaffolded should be

in FASTA format (multi-line or single-line).

Sample Files—The sample files used for this protocol are the same as used in Basic

Protocol 1.

Protocol steps with step annotations:

1. Install the required software.

Coombe et al. Page 9

Curr Protoc. Author manuscript; available in PMC 2024 April 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://github.com/ncbi/sra-tools
https://curl.se/
https://www.python.org/
https://github.com/bcgsc/ntLink
https://github.com/bcgsc/abyss
https://github.com/ablab/quast

Installing protocol-specific dependencies minimap2 and Racon:

Option A: Using conda package manager

i. If ntLink was installed using Option A of Support Protocol 1, minimap2

and Racon can be installed in the same environment.

conda activate ntlink_env

conda install -y -c bioconda -c conda-forge minimap2 racon

Option B: Installing from source

i. Install minimap2

a. For Linux, minimap2 provides pre-compiled binaries. Go

to https://github.com/lh3/minimap2/releases to find the most

recent pre-compiled binary. Here, we show downloading the

v2.24 binary as an example:

mkdir -p ~/bin/minimap2 && cd ~/bin/minimap2

curl -L https://github.com/lh3/minimap2/releases/

download/v2.24/minimap2-2.24_x64-linux.tar.bz2 |

tar -jxvf -

cd minimap2–2.24_x64-linux

b. For MacOS, review the minimap2 dependencies (https://

github.com/lh3/minimap2), download the most recent release

tarball from https://github.com/lh3/minimap2, extract it and

compile the code. We show downloading and compiling the

v2.24 release as an example.

mkdir -p ~/bin/minimap2 && cd ~/bin/minimap2

curl -L --output minimap2-2.24.tar.bz2

https://github.com/lh3/minimap2/releases/download/

v2.24/minimap2-2.24.tar.bz2

tar -jxvf minimap2-2.24.tar.bz2

cd minimap2-2.24

make

c. Append the path to the minimap2 installation to your PATH

environment variable.

export PATH=$(pwd):$PATH

Coombe et al. Page 10

Curr Protoc. Author manuscript; available in PMC 2024 April 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://github.com/lh3/minimap2/releases
https://github.com/lh3/minimap2/releases/download/v2.24/minimap2-2.24_x64-linux.tar.bz2
https://github.com/lh3/minimap2/releases/download/v2.24/minimap2-2.24_x64-linux.tar.bz2
https://github.com/lh3/minimap2/releases
https://github.com/lh3/minimap2/releases
https://github.com/lh3/minimap2/releases
https://github.com/lh3/minimap2/releases/download/v2.24/minimap2-2.24.tar.bz2
https://github.com/lh3/minimap2/releases/download/v2.24/minimap2-2.24.tar.bz2

ii. Install Racon (See https://github.com/lbcb-sci/racon for information

about dependencies), and add the path to the Racon installation to your

PATH environment variable.

git clone https://github.com/lbcb-sci/racon && cd racon

mkdir build && cd build

cmake -DCMAKE_BUILD_TYPE=Release ..

make

export PATH=$(pwd)/bin:$PATH

2. Download the sample data. As the sample data for this protocol is the same

as used for Basic Protocol 1, please see steps 3–5 of Basic Protocol 1 for full

details about downloading the long reads, draft genome assembly and reference

genome.

3. Change to the directory with the downloaded data, and run ntLink with the gap-

filling option specified. The ntLink steps are powered by the ntLink Makefile.

cd ~/ntLink/test

ntLink scaffold gap_fill target=celegans_flye.fa

reads=SRR10028109.fastq k=32 w=100 t=5

Note that the k (k-mer size) and w (window size) values specified are the default

values, but are included in the command to illustrate how they can be set when

running ntLink. The target gap_fill being specified in the command triggers the

gap-filling stage after the initial scaffolding steps of ntLink.

4. Check the logs and output files to ensure that the run executed successfully.

If ntLink completed successfully, this message will be found in the terminal

output: “Done ntLink! Final post-ntLink and gap-filled scaffolds can be found

in: celegans_flye.fa.k32.w100.z1000.ntLink.scaffolds.fa”. In addition, the final

output scaffolds file “celegans_flye.fa.k32.w100.z1000.ntLink.scaffolds.fa” will

be in the current working directory. The intermediate scaffold file before gap-

filling is “celegans_flye.fa.k32.w100.z1000.stitch.abyss-scaffold.fa”.

5. Polish the gap-filled ntLink scaffolds. For illustrative purposes, we demonstrate

polishing using Racon, but any long-read polishing tool can be utilized. This is

an optional step in the pipeline, and can be bypassed if the integration of raw

long reads (with a lower base quality) into the draft assembly is not a concern.

a. First, align the long reads to the draft assembly, and output the

alignments in SAM format. This step will take approximately 20

minutes.

minimap2 -a -t 5 -x map-ont -o

Coombe et al. Page 11

Curr Protoc. Author manuscript; available in PMC 2024 April 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://github.com/lbcb-sci/racon
https://github.com/lbcb-sci/racon

celegans_flye.fa.k32.w100.z1000.ntLink.scaffolds.SRR10028109

.sam celegans_flye.fa.k32.w100.z1000.ntLink.scaffolds.fa

SRR10028109.fastq

b. Next, run Racon, supplying the SAM file generated in step 5a. This step

will take approximately 60 minutes.

racon -u -t 5 SRR10028109.fastq

celegans_flye.fa.k32.w100.z1000.ntLink.scaffolds.SRR10028109

.sam celegans_flye.fa.k32.w100.z1000.ntLink.scaffolds.fa 1>

celegans_flye.fa.k32.w100.z1000.ntLink.scaffolds.racon-

polished.fa

c. Check the Racon output files to ensure that the run executed

successfully. The final, polished assembly will be in the file

“celegans_flye.fa.k32.w100.z1000.ntLink.scaffolds.racon-polished.fa”,

and the final terminal output message in a successful Racon run will

include “[racon::Polisher::] total =”, along with the runtime.

6. Assess the final, polished output scaffolds using abyss-fac (reference-free) and

QUAST (reference-based). See Table 2 for detailed descriptions of the assembly

statistics generated, and Table 4 for the expected results.

a. Run abyss-fac using the input draft genome assembly, the ntLink

intermediate scaffolds file before gap-filling, and the final output

scaffolds file after gap-filling and polishing.

abyss-fac -G100e6 --count-ambig celegans_flye.fa

celegans_flye.fa.k32.w100.z1000.stitch.abyss-scaffold.fa

celegans_flye.fa.k32.w100.z1000.ntLink.scaffolds.racon-

polished.fa

See Basic Protocol 1, Step 8a for detailed information describing the

abyss-fac output.

b. Run QUAST to assess the input draft genome assembly, the ntLink

intermediate scaffolds file before gap-filling, the output scaffolds after

gap-filling and the final output scaffolds file after gap-filling and

polishing.

quast -t 5 -o quast_ntlink_bp2 -r celegans_reference.fa.gz

--fast --large --split-scaffold celegans_flye.fa

celegans_flye.fa.k32.w100.z1000.stitch.abyss-scaffold.fa

celegans_flye.fa.k32.w100.z1000.ntLink.scaffolds.fa

Coombe et al. Page 12

Curr Protoc. Author manuscript; available in PMC 2024 April 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

celegans_flye.fa.k32.w100.z1000.ntLink.scaffolds.racon-

polished.fa

See Basic Protocol 1, Step 8b for detailed information about the

QUAST output. In addition to the QUAST statistics described in

the previous protocol, for this protocol we are also interested in

distinguishing between “Scaffold NG50/NGA50” and “Contig NG50/

NGA50”, which are available from the QUAST output in the

quast_ntlink_bp2 directory. See Table 2 for detailed explanations

of these statistics. When the --split-scaffold option is specified for

QUAST, it will output the statistics for the full input assembly

(“Scaffold” statistics), and the assembly after breaking the sequences at

regions of >= 10 Ns (“Contig” statistics, “_broken” added to filename).

Therefore, the “Contig NG50/NGA50” statistics are a measure of

contiguity as well as the number and distribution of gaps in the

assembly. Furthermore, the QUAST statistic “# N’s per 100 kbp” gives

a direct measure of the number of ambiguous bases in the assembly.

With efficient gap-filling, the “Contig” statistics will become closer to

the “Scaffold” statistics, and the “# N’s per 100 kbp” will decrease.

BASIC PROTOCOL 3

Running in-code iterations of ntLink scaffolding

Basic Protocol 3 describes how to run multiple iterations, or rounds, of ntLink using a

liftover-based approach. When scaffolding assemblies, the goal is to achieve the highest

possible contiguity without sacrificing the correctness of the assembly. While running

a single round of ntLink, as described in Basic Protocols 1 and 2, is very effective in

improving upon a draft genome assembly from any technology, further gains are possible

with additional rounds of ntLink. Using the in-code round capability of ntLink allows a user

to maximize the contiguity of the final assembly without needing to manually run ntLink

multiple times. To avoid re-mapping the reads at each round, ntLink lifts over the mapping

coordinates from the input draft assembly to the output post-ntLink scaffolds, which can

then be used for the next round of ntLink. The same process can be repeated as many times

as needed, thus enabling multiple rounds of ntLink to be powered by a single instance of

long-read mapping.

Necessary Resources:

Hardware—This protocol requires a 64-bit Linux or MacOS operating system with

sufficient RAM and available disk space (See Strategic Planning for more information).

Software—The following software must be installed and available in your PATH

environment variable:

• SRA toolkit (v3.0.0+): (https://github.com/ncbi/sra-tools)

• curl: (https://curl.se/)

Coombe et al. Page 13

Curr Protoc. Author manuscript; available in PMC 2024 April 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://github.com/ncbi/sra-tools
https://curl.se/

• Python 3.7+: (https://www.python.org/)

• ntLink (v1.3.7+): (https://github.com/bcgsc/ntLink)

• ABySS (v2.3.0+): (https://github.com/bcgsc/abyss)

• QUAST (v5.2.0+): (https://github.com/ablab/quast)

For more information about installing these dependencies, see Support Protocol 1 and Basic

Protocol 1, steps 1–2.

Files—The input files for ntLink are long genome sequencing reads and a draft genome

assembly. The long sequencing reads can be provided in FASTA or FASTQ format, either

compressed with gzip or uncompressed. The input draft assembly to be scaffolded should be

in FASTA format (multi-line or single-line).

Sample Files—The sample files used for this protocol are the same as used in Basic

Protocol 1.

Protocol steps with step annotations:

1. Download the sample data. The sample data is the same as for Basic Protocols 1

and 2.

For detailed instructions describing downloading the sample data, see Basic

Protocol 1, steps 3–5.

2. Run 3 rounds of ntLink scaffolding.

Change into a new directory, and create soft links so that the input files are

accessible in the current working directory

cd ~/ntLink/test

mkdir -p run_rounds && cd run_rounds

ln -s ../celegans_flye.fa && ln -s ../SRR10028109.fastq

ln -s ../celegans_reference.fa.gz

Option A: Run rounds of ntLink without gap-filling

ntLink_rounds run_rounds target=celegans_flye.fa

reads=SRR10028109.fastq k=32 w=100 t=5 rounds=3 dev=True

Option B: Run rounds of ntLink with gap-filling

ntLink_rounds run_rounds_gaps target=celegans_flye.fa

reads=SRR10028109.fastq k=32 w=100 t=5 rounds=3 dev=True

Coombe et al. Page 14

Curr Protoc. Author manuscript; available in PMC 2024 April 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://www.python.org/
https://github.com/bcgsc/ntLink
https://github.com/bcgsc/abyss
https://github.com/ablab/quast

The dev=True option will retain all intermediate files. Although this is useful

to be able to see all the file types generated by ntLink for working through

this protocol, this option can be omitted for most runs. When omitted, some

intermediate files will be automatically deleted to save disk space.

3. Check the logs and output files to ensure that the ntLink run executed

successfully.

After the ntLink command has completed, check the terminal output for this

final message, which indicates a successful run: “Done ntLink rounds! Final

scaffolds found in celegans_flye.fa.k32.w100.z1000.ntLink.3rounds.fa”. This

message also indicates the FASTA file which contains the final, scaffolded

assembly sequences.

4. Use abyss-fac (de novo approach) and QUAST (reference-based approach) to

assess the genome assembly after each round of ntLink scaffolding, and compare

the results to the initial baseline assembly. See Table 2 for detailed descriptions

of the assembly statistics generated in these steps, and Figure 2 for a summary of

the expected assembly statistics.

a. Reference-free analysis of the ntLink output scaffolds using abyss-fac.

If Option A was followed in Step 2:

abyss-fac --count-ambig -G100e6

celegans_flye.fa celegans_flye.fa.k32.w100.z1000.ntLink.fa

celegans_flye.fa.k32.w100.z1000.ntLink.ntLink.fa

celegans_flye.fa.k32.w100.z1000.ntLink.3rounds.fa

If Option B was followed in Step 2:

abyss-fac --count-ambig -G100e6 celegans_flye.fa

celegans_flye.fa.k32.w100.z1000.ntLink.gap_fill.fa

celegans_flye.fa.k32.w100.z1000.ntLink.ntLink.gap_fill.fa

celegans_flye.fa.k32.w100.z1000.ntLink.3rounds.fa

See Basic Protocol 1, Step 8a for detailed information describing the

abyss-fac output.

b. Reference-based analysis of the ntLink output scaffolds using QUAST.

If Option A was followed in Step 2:

quast -t 5 -o quast_ntlink_bp3 -r

celegans_reference.fa.gz --fast --large --split-scaffold

celegans_flye.fa celegans_flye.fa.k32.w100.z1000.ntLink.fa

Coombe et al. Page 15

Curr Protoc. Author manuscript; available in PMC 2024 April 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

celegans_flye.fa.k32.w100.z1000.ntLink.ntLink.fa

celegans_flye.fa.k32.w100.z1000.ntLink.3rounds.fa

If Option B was followed in Step 2:

quast -t 5 -o quast_ntlink_bp3 -r celegans_reference.fa.gz

--fast --large --split-scaffold celegans_flye.fa

celegans_flye.fa.k32.w100.z1000.ntLink.gap_fill.fa

celegans_flye.fa.k32.w100.z1000.ntLink.ntLink.gap_fill.fa

celegans_flye.fa.k32.w100.z1000.ntLink.3rounds.fa

See Basic Protocol 1, Step 8b and Basic Protocol 2, Step 6b for detailed

information about the QUAST output. The QUAST output will be

written to the directory named quast_ntlink_bp3. Note that if QUAST

was installed from source, the executable will be named quast.py.

Note that the final scaffolds file name will be the same whether Option A or

Option B was followed, but the names of the files from intermediate rounds

differ slightly.

ALTERNATE PROTOCOL 1

Generating long-read to contig mappings with ntLink

Although ntLink is most commonly used as a scaffolding tool, the minimizer-based mapping

functionality that enables assembly scaffolding can also be run in isolation. In any mode,

ntLink first maps the input long reads to the input draft genome. When using ntLink in the

default scaffolding mode, these mappings are parsed to infer evidence that supports ordering

and orienting contigs into scaffolds. However, this mapping information can also be simply

output to a file in a standard format and used for other downstream applications. In Alternate

Protocol 1, we demonstrate the mapping mode of ntLink, which outputs the mappings in a

standard (Pairwise mApping Format) PAF format.

Necessary Resources:

Hardware—This protocol requires a 64-bit Linux or MacOS operating system with

sufficient RAM and available disk space (See Strategic Planning for more information).

Software—The following software must be installed and available in your PATH:

• SRA toolkit (v3.0.0+): (https://github.com/ncbi/sra-tools)

• curl: (https://curl.se/)

• Python 3.7+: (https://www.python.org/)

• ntLink (v1.3.7+): (https://github.com/bcgsc/ntLink)

For more information about installing ntLink and other dependencies, please see detailed

instructions in Basic Protocol 1, steps 1–2. Instructions for creating a conda environment

Coombe et al. Page 16

Curr Protoc. Author manuscript; available in PMC 2024 April 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://github.com/ncbi/sra-tools
https://curl.se/
https://www.python.org/
https://github.com/bcgsc/ntLink

that can be used for installing protocol-specific dependencies, as described below, are

available in Support Protocol 1.

Files—The input files for mapping with ntLink are long genome sequencing reads and a

draft genome assembly. The long sequencing reads can be provided in FASTA or FASTQ

format, either compressed with gzip or uncompressed. The input draft assembly to be

scaffolded should be in FASTA format (multi-line or single-line).

Sample Files—In this protocol, we will map the same Oxford Nanopore C. elegans long

reads as used in the basic protocols to a short-read C. elegans ABySS (Jackman et al.,

2017) assembly. The ABySS assembly is available from https://zenodo.org/record/7526395/

files/celegans_abyss.fa.

Protocol steps with step annotations:

1. Install the protocol-specific dependency, miller.

Option A: Use conda package manager

i. If Option A of Support Protocol 1 was used to install ntLink, miller can

be installed in the same conda environment.

conda activate ntlink_env

conda install -y -c conda-forge miller

Option B: Install from source

i. Go to the miller releases page (https://github.com/johnkerl/miller/

releases) and find the pre-built binary that is appropriate for your

system.

ii. Download the binary from the releases page, and extract the

compressed tarball. A Linux pre-built binary is shown for illustration

purposes, but the path to any pre-built miller binary can be used in this

step.

curl -L --output

miller_download.tar.gz https://github.com/johnkerl/miller/

releases/download/v6.5.0/miller-6.5.0-linux-amd64.tar.gz

tar xvzf miller_download.tar.gz

iii. Append the path to the miller installation to your PATH environment

variable.

export PATH=$(pwd)/miller-6.5.0-linux-amd64/:$PATH

Coombe et al. Page 17

Curr Protoc. Author manuscript; available in PMC 2024 April 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://zenodo.org/record/7526395/files/celegans_abyss.fa
https://zenodo.org/record/7526395/files/celegans_abyss.fa
https://github.com/johnkerl/miller/releases
https://github.com/johnkerl/miller/releases
https://github.com/johnkerl/miller/releases/download/v6.5.0/miller-6.5.0-linux-amd64.tar.gz
https://github.com/johnkerl/miller/releases/download/v6.5.0/miller-6.5.0-linux-amd64.tar.gz

2. Download the sample long reads. This file is the same as used for Basic

Protocols 1, 2 and 3.

For detailed instructions describing downloading the sample long reads, see

Basic Protocol 1, step 3.

3. Download the sample draft ABySS (Jackman et al., 2017) short-read assembly.

curl -L --output celegans-abyss.fa https://zenodo.org/record/

7526395/files/celegans_abyss.fa

4. Run ntLink to map the sample long reads to the draft assembly. Ensure that the

downloaded sample data files are in your current working directory.

ntLink pair target=celegans-abyss.fa reads=SRR10028109.fastq t=5

sensitive=True paf=True

5. Check the logs and output files to ensure that the run executed successfully.

If the ntLink mapping completed successfully, the terminal output messages

from ntLink should finish with a time stamp and “DONE!”. Furthermore, a PAF-

formatted mapping file called “celegans-abyss.fa.k32.w100.z1000.paf” should be

in your current working directory.

6. Assess the mapping file output from ntLink. See Table 5 for the expected

mapping statistics.

a. To make the generation of summary statistics more straightforward with

miller, add column labels to the PAF file.

cat celegans-abyss.fa.k32.w100.z1000.paf | mlr --tsv --

implicit-csv-header label

read,read_len,read_start,read_end,strand,contig,contig_len,c

ontig_start,contig_end,num_minimizers,len_mapping,mapping_qu

al > celegans-abyss.fa.paf.mlr.tsv

b. Count the total number of mappings of the long reads to the query

contigs.

mlr --tsv stats1 -a count -f read celegans-

abyss.fa.paf.mlr.tsv

c. Calculate the average mapping block length.

cat celegans-abyss.fa.paf.mlr.tsv | mlr --tsv stats1 -a

mean -f len_mapping

Coombe et al. Page 18

Curr Protoc. Author manuscript; available in PMC 2024 April 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://zenodo.org/record/7526395/files/celegans_abyss.fa
https://zenodo.org/record/7526395/files/celegans_abyss.fa

d. Calculate the average number of read mappings per draft assembly

contig.

cat celegans-abyss.fa.paf.mlr.tsv | mlr --tsv cut -f

read,contig then uniq -g read,contig then stats1 -a count

-f contig -g contig then stats1 -a mean -f contig_count

ALTERNATE PROTOCOL 2

Using ntLink mappings for genome assembly correction with Tigmint-long

As described in Alternate Protocol 1, the mapping functionality in ntLink can be used

to inform scaffolding, the most common use of ntLink, or separately to provide mapping

information that can be used by other downstream pipelines. One such alternate application

is Tigmint-long (Coombe et al., 2021), a de novo genome assembly correction tool which

utilizes information in long reads to detect and cut at putative misassemblies. In the default

mode, Tigmint-long simulates pseudo-linked reads from the long reads. This involves

breaking the long reads into tiles, which represent short-read fragments, then generating

paired-end reads from the fragments. Each read pair from the same long read is assigned

the same barcode, adhering to the expected format for linked reads. These reads are then

mapped to the draft assembly using minimap2 (H. Li, 2018), and these mappings are

parsed to look for regions of the draft assembly that are not well-supported by the reads.

However, as only approximate mappings are required, ntLink mapping can be used in place

of minimap2. As ntLink uses more streamlined mapping logic, the reads do not need to be

broken into pseudo-linked reads prior to mapping, thus eliminating a step in the pipeline.

The output of Tigmint-long is a contigs file in FASTA format, where the sequences are

broken at putative misassemblies.

Hardware—This protocol requires a 64-bit Linux or MacOS operating system with

sufficient RAM and available disk space (See Strategic Planning for more detail).

Software—The following software must be installed and available in your PATH:

• SRA toolkit (v3.0.0+): (https://github.com/ncbi/sra-tools)

• curl: (https://curl.se/)

• Python 3.7+: (https://www.python.org/)

• ntLink (v1.3.7+): (https://github.com/bcgsc/ntLink)

• QUAST (v5.2.0+): (https://github.com/ablab/quast)

For more information about installing ntLink and other dependencies, please see detailed

instructions in Basic Protocol 1, steps 1–2. Instructions for creating a conda environment

that can be used for installing protocol-specific dependencies, as described below, are

available in Support Protocol 1.

Coombe et al. Page 19

Curr Protoc. Author manuscript; available in PMC 2024 April 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://github.com/ncbi/sra-tools
https://curl.se/
https://www.python.org/
https://github.com/bcgsc/ntLink
https://github.com/ablab/quast

Files—The input files for ntLink are long genome sequencing reads and a draft genome

assembly. The long sequencing reads can be provided in FASTA or FASTQ format, either

compressed with gzip or uncompressed. The input draft assembly to be corrected should be

in FASTA format (multi-line or single-line).

Protocol steps with step annotations:

1. Install the protocol-specific dependency Tigmint.

Option A: Use conda package manager

i. If Option A of Support Protocol 1 was used to install ntLink, Tigmint

can be installed in the same conda environment.

conda activate ntlink_env

conda install -y -c bioconda -c conda-forge tigmint

‘samtools>=1.10’

Option B: Install from source

i. Consult the README in the Tigmint GitHub repository (https://

github.com/bcgsc/tigmint) to ensure that the required dependencies are

installed.

ii. Go to the releases page for Tigmint (https://github.com/bcgsc/tigmint/

releases) and find the most recent release tarball. Download and extract

this tarball in the directory where you would like Tigmint to be

installed. To demonstrate the required commands, Tigmint v1.2.9 is

shown below, but the URL can be substituted for any later release of

Tigmint.

curl -L --output tigmint-1.2.9.tar.gz https://github.com/

bcgsc/tigmint/releases/download/v1.2.9/tigmint-1.2.9.tar.gz

tar xvzf tigmint-1.2.9.tar.gz

cd tigmint-1.2.9

iii. Compile the required binaries

cd src

make

cd ../..

iv. Append the path to the Tigmint installation to your PATH environment

variable.

export PATH=$(pwd)/tigmint-1.2.9/bin:$PATH

Coombe et al. Page 20

Curr Protoc. Author manuscript; available in PMC 2024 April 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://github.com/bcgsc/tigmint
https://github.com/bcgsc/tigmint
https://github.com/bcgsc/tigmint/releases
https://github.com/bcgsc/tigmint/releases
https://github.com/bcgsc/tigmint/releases/download/v1.2.9/tigmint-1.2.9.tar.gz
https://github.com/bcgsc/tigmint/releases/download/v1.2.9/tigmint-1.2.9.tar.gz

2. Download the sample C. elegans long reads and reference genome. These files

are the same as used in Basic Protocols 1–3.

For detailed instructions describing downloading this sample data, see Basic

Protocol 1, steps 3 and 5.

3. Download the sample draft C. elegans ABySS short-read assembly. This draft

assembly FASTA is the same as used in Alternate Protocol 1.

For detailed instructions describing downloading the ABySS short-read

assembly, see Alternate Protocol 1, step 3.

4. Run Tigmint-long on the draft C. elegans ABySS assembly using ntLink

mapping and the downloaded long reads to detect and cut at putative

misassemblies. Ensure that the downloaded sample data files are in your current

working directory.

tigmint-make tigmint-long draft=celegans-abyss reads=SRR10028109

mapping=ntLink t=5 span=2

5. Check the logs and output files from Tigmint-long to ensure that the run

executed successfully.

A successful run of Tigmint will finish with the following terminal output

messages: “Cutting assembly at breakpoints…

DONE!”. There will also be a file named “celegans-abyss.cut500.tigmint.fa”

in your current working directory which contains the corrected draft assembly

sequences.

6. Use the reference-based assessment tool QUAST to compare the contiguity and

correctness of the corrected genome assembly and the initial baseline assembly.

See Table 6 for results from running QUAST on these assemblies.

quast -t 5 -o quast_tigmint_ap2 -r celegans_reference.fa.gz --fast

--large celegans-abyss.fa celegans-abyss.cut500.tigmint.fa

See Basic Protocol 1, Step 8b and Table 2 for detailed information about the

QUAST output. Note that if QUAST was installed from the source code (as

described in Basic Protocol 1, Step 2B), the executable will be named quast.py.

The QUAST results will be written to the quast_tigmint_ap2 directory.

SUPPORT PROTOCOL 1

Installing ntLink

ntLink can be installed using the conda package manager or from the source code. For a

more straightforward installation process, and to ensure that all dependencies are properly

installed, we recommend installing ntLink using conda.

Coombe et al. Page 21

Curr Protoc. Author manuscript; available in PMC 2024 April 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Necessary Resources:

Hardware—ntLink requires a 64-bit Linux or MacOS operating system with sufficient

RAM and available disk space (See Strategic Planning for more detail).

Software—Miniconda (https://docs.conda.io/en/latest/miniconda.html)

Protocol steps with step annotations:

Option A: Installing ntLink using the conda package manager

1. If miniconda is not already installed:

i. Download the miniconda3 bash installer: https://docs.conda.io/en/latest/

miniconda.html

ii. Run the installer script:

a. On MacOS:

bash Miniconda3-latest-MacOSX-x86_64.sh

b. On Linux:

bash Miniconda3-latest-Linux-x86_64.sh

iii. Follow the installer prompts

iv. Close and re-open your terminal window to finalize the installation

2. Create a new conda environment

conda create -n ntlink_env

3. Activate the new conda environment

conda activate ntlink_env

4. Install ntLink in the environment

conda install -y -c bioconda -c conda-forge ntlink

Option B: Installing ntLink from the source code

1. Install the following dependencies, and ensure that each is available in your

PATH environment variable. We recommend installing the dependencies using

a package manager such as conda. Otherwise, visit the tool homepages for

information about installing from the source code.

Coombe et al. Page 22

Curr Protoc. Author manuscript; available in PMC 2024 April 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://docs.conda.io/en/latest/miniconda.html
https://docs.conda.io/en/latest/miniconda.html
https://docs.conda.io/en/latest/miniconda.html

• Python 3.7+

• Python modules:

– Numpy: (https://numpy.org/)

– Python-igraph: (https://igraph.org/python/)

• btllib: (https://github.com/bcgsc/btllib)

• ABySS (v2.3.0+): (https://github.com/bcgsc/abyss)

• Zlib: (https://zlib.net/)

• Make: (https://www.gnu.org/software/make/)

2. Change your directory to the desired folder for the ntLink installation, then clone

the ntLink repository from GitHub.

cd ~/bin/ntlink

git clone https://github.com/bcgsc/ntLink.git

3. Append the location of the ntLink installation to your PATH environment

variable

export PATH=$(pwd)/ntLink:$PATH

Checking your installation—To verify that your installation is working properly, you

can follow any of the basic protocols, or run the small demo provided on GitHub.

Running test demo

1. If you haven’t already cloned ntLink during the installation process, clone the

GitHub repository to download the small test demo.

git clone https://github.com/bcgsc/ntLink.git

2. Change your working directory to the cloned ntLink repository, then to the

directory containing the test demo script.

cd ntLink/tests

3. Run the provided demo shell script

./test_installation.sh

Coombe et al. Page 23

Curr Protoc. Author manuscript; available in PMC 2024 April 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://numpy.org/
https://igraph.org/python/
https://github.com/bcgsc/btllib
https://github.com/bcgsc/abyss
https://zlib.net/
https://www.gnu.org/software/make/
https://github.com/bcgsc/ntLink.git
https://github.com/bcgsc/ntLink.git

4. If the test was successful, indicating that your installation is working as expected,

you will see this message: “Done tests! Compare your generated files with the

files in the expected_outputs folder to ensure the tests were successful.”

GUIDELINES FOR UNDERSTANDING RESULTS

For all ntLink runs, it is important to look through the terminal output messages to ensure

that there are no errors. If there are error messages at any stage, the results are not reliable,

and the error(s) needs to be resolved prior to any downstream genome analysis. See Table 7

for some common errors and suggested solutions.

Running ntLink for scaffolding or mapping will generate various intermediate files. For

scaffolding runs, the most important output file is the FASTA file containing the final,

improved scaffolds. However, the other intermediate files contain useful information about

both the evidence used for generating the final scaffolds as well as the composition of

the output scaffolds themselves. The constructed scaffold graph is output in DOT format

(“.scaffold.dot”). In this graph, the nodes are contigs, and the directed edges represent

long-read evidence between the incident contigs. When running ntLink scaffolding, this

graph is traversed using abyss-scaffold (Jackman et al., 2013) to produce the final ordered

and oriented scaffolds. The ntLink output files with the suffices “trimmed_scafs.path” and

“trimmed_scafs.agp” each describe the composition of the output scaffolds in different

formats. These files allow the user to deduce the order and orientation of the input contigs

in the output scaffolds, as well as any gap sequences between the contigs. The “.path”

format describes one scaffold per tab-separated line, with the first column denoting the

scaffold name, and the second listing the order and orientation of the contigs, with gap sizes

indicated by “<number>N”. The “.agp” file follows the standard AGP specifications. The

AGP file with the suffix “gap_fill.fa.agp” is only generated when the gap-filling step of

ntLink is performed, and additionally reports the identity and coordinates of the input long

reads used to fill gaps.

Following successful ntLink scaffolding, it is expected that there will be fewer sequences

in the scaffolded assembly compared to the baseline assembly, since input contigs will be

joined together to form scaffolds. Consequently, the contiguity of the scaffolded assembly

(as assessed by abyss-fac, QUAST or other assembly assessment tools) is expected to

increase. If there is no change in the contiguity or number of sequences, it is possible

that parameters such as k and w (controlling the generation of the minimizers) need to be

optimized (See Critical Parameters). For example, if using a long-read dataset with a high

error rate, a smaller k value may be needed to increase the sensitivity of the long-read

mapping. When running rounds of ntLink, it is expected that the contiguity will not increase

after several rounds, as demonstrated in Basic Protocol 3. This is not a cause for concern, but

just an indication that the long-read evidence leveraged by ntLink may be exhausted.

As demonstrated in the protocols, it is important to analyse the output scaffold FASTA files

with tools such as abyss-fac or QUAST to assess the scaffolding success. While abyss-fac

analysis does not require a reference, QUAST is reference-based, and is thus not suitable

for all studies. For assembly projects without an available reference genome, or if many

Coombe et al. Page 24

Curr Protoc. Author manuscript; available in PMC 2024 April 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

structural variants are expected, BUSCO (Manni, Berkeley, Seppey, Simão, et al., 2021;

Manni, Berkeley, Seppey, & Zdobnov, 2021) is a useful tool for reference-free assessment of

the assembly quality. BUSCO, or Benchmarking Universal Single Copy Orthologs, searches

the input genome assembly for genes that are evolutionarily expected to be found in single

copy. Since BUSCO assesses the assembly completeness in the gene space, it provides

complementary information to the reference-free contiguity metrics.

Following ntLink scaffolding and quality control of the resulting assembly, there are a

variety of downstream analyses that can be performed, from comparative genomics to

annotation. The direction that these analyses take will be guided by the particular research

lab and study focus, making this assembly stage broadly important.

COMMENTARY

Background Information:

Scaffolding tools, such as ntLink, can play important roles in de novo assembly pipelines

through further improving upon draft assemblies. Multiple new features and modes have

been integrated into ntLink to help users obtain the best possible assemblies and results from

their sequencing data. The efficiency of the new and existing features of ntLink are largely

attributable to the use of minimizer sketches for the various mapping tasks.

As described in Roberts et al. (2004) and implemented in btllib (Nikolić et al., 2022),

ntLink generates ordered minimizer sketches by first breaking the input sequences into their

constituent k-mers (substrings of length k), and computing a hash value for each k-mer using

ntHash2 (Kazemi et al., 2022). Then, for each w (window size) k-mers, the k-mer with the

smallest hash value is chosen as the minimizer for that window. Sliding this window across

the entire sequence generates the ordered minimizer sketch, a particular subset of k-mers

(represented by hash values) which is much smaller than the entire k-mer spectrum. Using

this sketching approach for sequence mapping provides a great computational advantage for

ntLink in both memory usage and time efficiency, enabling ntLink to scale to large genomes

(Table 1).

The newly developed overlap detection, gap-filling and liftover-based round functionalities

of ntLink benefit the final quality of the assemblies and allow the scaffolder to be more

flexible to the specific needs of the users. Prior to the integration of overlap detection,

ntLink would simply join sequences end-to-end with an intervening gap, whether the

sequences had a putative overlap or not. This could lead to small insertion misassemblies

being introduced at the join point, which could have a negative impact on such downstream

applications as annotation, if the insertion is in a gene region, for example. The overlap

detection feature resolves these overlaps, avoiding the introduction of small misassemblies

at the join point and allowing for a cleaner join. When using ntLink to scaffold assemblies

without the gap-filling feature, the regions between joined contigs that have a gap between

them, or missing genomic sequence, are filled with ambiguous bases (“N”s). While it

is valuable to have sequences ordered and oriented relative to one another, there is also

genomic information in those gaps that will then be missing in the assembly. Gap-filling

can be performed as a downstream, often computationally intensive, assembly step (Chu

Coombe et al. Page 25

Curr Protoc. Author manuscript; available in PMC 2024 April 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

et al., 2019; Paulino et al., 2015), but performing gap-filling within ntLink is efficient and

effective in recovering these missing regions. Currently, the gaps are filled with raw read

sequence, which could negatively impact the base quality of the output assembly. Therefore,

we recommend polishing the assembly after ntLink gap-filling, as demonstrated in Basic

Protocol 3. Finally, running liftover-based rounds of ntLink enables additional improvements

to the draft assembly by fully leveraging the long-read evidence, while also avoiding the

computational burden of re-mapping the reads at each round.

Other state-of-the-art long-read assemblers, such as LRScaf (Qin et al., 2019) and OPERA-

LG (Gao et al., 2016), rely on sequence alignments instead of mapping and do not provide

users with the same features and flexibility as ntLink. Neither LRScaf nor OPERA-LG

provides gap-filling functionality, nor an in-code approach for running rounds of scaffolding.

Therefore, if a user wants to run multiple rounds of scaffolding, they would have to do so

in a naïve manner (manually executing ntLink multiple times). Furthermore, while some

long-read scaffolding tools such as LRScaf do also have logic to deal with overlapping

joined sequences, their algorithms use alignments, while ntLink uses a more lightweight

minimizer-mapping guided approach. OPERA-LG is not currently maintained (the last

release was in 2016), so may not properly leverage more recent improvements in both

sequencing and bioinformatics technologies.

Finally, we also demonstrate the flexibility of using the mapping functionality of ntLink

for other applications in Alternate Protocols 1 and 2. Sequence mapping is a foundational

process in bioinformatics, and often exact coordinates are not needed for the desired

application. In this case, ntLink is a great resource for lightweight mapping, which can

find numerous applications such as in misassembly correction (as demonstrated in Alternate

Protocol 2), targeted assembly and targeted polishing, to name a few.

Critical Parameters:

k (k-mer size) and w (window size)—The k and w parameters control the generation

of minimizers for mapping the long reads to the draft assembly in ntLink, and are therefore

the most influential parameters. Generally, the default settings (k=32, w=100) produce good

results for a variety of input assemblies and reads, but in order to obtain the best final

scaffolds, these parameters can be optimized using a grid search. If undertaking a grid

search, the approximate recommended ranges of k and w to test would be k=[24–80] and

w=[75–1000]. Generally, we recommend a lower k and w setting when the long reads and/or

draft assembly are more erroneous. However, if the draft assembly is very contiguous and/or

the base quality of the input data is high, higher values can be successful.

Troubleshooting:

ntLink should complete with an exit code of 0 and a message indicating a successful run.

If an error occurs, the pipeline should stop running and output an error message. Some

common errors are documented in Table 7. If you encounter additional errors not discussed

in Table 7, please create new issue at the ntLink GitHub repository (https://github.com/

bcgsc/ntLink).

Coombe et al. Page 26

Curr Protoc. Author manuscript; available in PMC 2024 April 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://github.com/bcgsc/ntLink
https://github.com/bcgsc/ntLink

Advanced Parameters:

There are several ntLink parameters that can be tweaked in addition to k and w that may

provide benefits for more advanced users. The default settings of each of these parameters

have been found to work well for most assemblies.

z (minimum contig length)—By default, only sequences greater than 1 kb (z=1000) will

be considered for integration into an output scaffold. Depending on the contiguity of the

input draft assembly, the user may want to adjust this parameter if the input assembly is very

contiguous (increase z) or very fragmented (decrease z).

a (minimum number of anchoring reads)—When ntLink parses the long-read

evidence to create edges in the scaffold graph, it requires (by default) at least one ‘anchoring

read’ for an edge to retained. An ‘anchoring read’ is defined as a read that has at least 2

mapped minimizers on each contig in the putative pair. If more stringent scaffold pairing is

desired, this parameter can be increased to require more ‘anchoring reads’ before retaining

an edge.

v (verbose benchmarking mode)—If the user specifies v=1 in their ntLink command,

the time and peak memory will be tracked for each step, and output to separate files. This

option can be useful when benchmarking the execution of ntLink.

soft_mask (soft mask filled gaps)—If soft_mask=True is specified in the ntLink

command when gap-filling is enabled, the gaps will be filled with lowercase bases instead

of uppercase bases. This soft masking could be useful for downstream analyses such as

targeted polishing, for example.

Time Considerations:

Running all of the basic protocols on the C. elegans assembly/long read sequencing data

showcased herein will take about 3h25m to complete: 75 m for Basic Protocol 1, 110 m for

Basic Protocol 2 and 20 m for Basic Protocol 3. The vast majority of this time is attributable

to the execution time of a few longer-running steps. The bulk of the time for Basic Protocol

1 (~60 m) is spent downloading the long-read data, while most of the time for Basic

Protocol 2 is spent polishing the assembly using minimap2 and Racon (~90 m). Note that

the polishing step of Basic Protocol 2 is optional, as noted in the step-by-step instructions.

For each basic protocol, the ntLink step takes less than 15 minutes. The Alternate Protocols

will take about 10 m to complete: 5 m for Alternate Protocol 1 and 5 m for Alternate

Protocol 2.

The exact time required for each protocol will vary based on the specifications of the

machine used to execute the commands and the installation methods chosen (conda

vs. source code, where applicable). For steps where multiple threads (parameter t) are

supported, increasing the number of specified CPU threads will generally reduce the

runtime.

Coombe et al. Page 27

Curr Protoc. Author manuscript; available in PMC 2024 April 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.

ACKNOWLEDGEMENTS:

This study is supported by the Canadian Institutes of Health Research (CIHR) [PJT-183608] and the National
Institutes of Health [2R01HG007182-04A1]. The content of this article is solely the responsibility of the authors,
and does not necessarily represent the official views of the National Institutes of Health or other funding
organizations. The funding organizations did not have a role in the design of the study, the collection, analysis
and interpretation of the data, or in writing the manuscript.

DATA AVAILABILITY STATEMENT:

The sample assemblies that support the protocol are available from https://doi.org/10.5281/

zenodo.7526395. The sample long reads and reference genome are publicly available under

SRA accession SRR10028109 and GenBank accession GCA_000002985.3, respectively.

LITERATURE CITED:

Coombe L, Li JX, Lo T, Wong J, Nikolic V, Warren RL, & Birol I (2021). LongStitch: High-quality
genome assembly correction and scaffolding using long reads. BMC Bioinformatics, 22(1), 534.
10.1186/s12859-021-04451-7 [PubMed: 34717540]

Gao S, Bertrand D, Chia BKH, & Nagarajan N (2016). OPERA-LG: efficient and exact scaffolding of
large, repeat-rich eukaryotic genomes with performance guarantees. Genome Biology, 17(1), 102.
10.1186/s13059-016-0951-y [PubMed: 27169502]

Jackman SD, Coombe L, Chu J, Warren RL, Vandervalk BP, Yeo S, Xue Z, Mohamadi H, Bohlmann
J, Jones SJM, & Birol I (2018). Tigmint: Correcting assembly errors using linked reads from large
molecules. BMC Bioinformatics, 19(1), 393. 10.1186/s12859-018-2425-6 [PubMed: 30367597]

Jackman SD, Raymond AG, & Birol I (2013). Scaffolding a genome sequence assembly using ABySS.
http://sjackman.ca/abyss-scaffold-paper/

Jackman SD, Vandervalk BP, Mohamadi H, Chu J, Yeo S, Hammond SA, Jahesh G, Khan H, Coombe
L, Warren RL, & Birol I (2017). ABySS 2.0: Resource-efficient assembly of large genomes using a
Bloom filter. Genome Research, 27(5), 768–777. 10.1101/gr.214346.116 [PubMed: 28232478]

Kazemi P, Wong J, Nikolić V, Mohamadi H, Warren RL, & Birol I (2022). ntHash2: Recursive spaced
seed hashing for nucleotide sequences. Bioinformatics, 38(20), 4812–4813. 10.1093/bioinformatics/
btac564 [PubMed: 36000872]

Kolmogorov M, Yuan J, Lin Y, & Pevzner PA (2019). Assembly of long, error-prone reads using repeat
graphs. Nature Biotechnology, 37(5), 540–546. 10.1038/s41587-019-0072-8

Li H (2018). Minimap2: Pairwise alignment for nucleotide sequences. Bioinformatics, 34(18), 3094–
3100. 10.1093/bioinformatics/bty191 [PubMed: 29750242]

Li JX, Coombe L, Wong J, Birol I, & Warren RL (2022). ntEdit+Sealer: Efficient Targeted Error
Resolution and Automated Finishing of Long-Read Genome Assemblies. Current Protocols, 2(5),
e442. 10.1002/cpz1.442 [PubMed: 35567771]

Logsdon GA, Vollger MR, & Eichler EE (2020). Long-read human genome sequencing and its
applications. Nature Reviews Genetics, 21(10), 597–614. 10.1038/s41576-020-0236-x

Manni M, Berkeley MR, Seppey M, Simão FA, & Zdobnov EM (2021). BUSCO Update: Novel
and Streamlined Workflows along with Broader and Deeper Phylogenetic Coverage for Scoring
of Eukaryotic, Prokaryotic, and Viral Genomes. Molecular Biology and Evolution, 38(10), 4647–
4654. 10.1093/molbev/msab199 [PubMed: 34320186]

Manni M, Berkeley MR, Seppey M, & Zdobnov EM (2021). BUSCO: Assessing Genomic Data
Quality and Beyond. Current Protocols, 1(12), e323. 10.1002/cpz1.323 [PubMed: 34936221]

Medaka: Sequence correction provided by ONT Research. (n.d.). Retrieved December 13, 2022, from
https://github.com/nanoporetech/medaka

Coombe et al. Page 28

Curr Protoc. Author manuscript; available in PMC 2024 April 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://sjackman.ca/abyss-scaffold-paper/
https://github.com/nanoporetech/medaka

Mikheenko A, Prjibelski A, Saveliev V, Antipov D, & Gurevich A (2018). Versatile genome assembly
evaluation with QUAST-LG. Bioinformatics, 34(13), i142–i150. 10.1093/bioinformatics/bty266
[PubMed: 29949969]

Nikolić V, Kazemi P, Coombe L, Wong J, Afshinfard A, Chu J, Warren RL, & Birol I (2022). btllib:
A C++ library with Python interface for efficient genomic sequence processing. Journal of Open
Source Software, 7(79), 4720.

Paulino D, Warren RL, Vandervalk BP, Raymond A, Jackman SD, & Birol I (2015). Sealer: A scalable
gap-closing application for finishing draft genomes. BMC Bioinformatics, 16(1), 230. 10.1186/
s12859-015-0663-4 [PubMed: 26209068]

Qin M, Wu S, Li A, Zhao F, Feng H, Ding L, & Ruan J (2019). LRScaf: Improving draft genomes
using long noisy reads. BMC Genomics, 20(1), 955. 10.1186/s12864-019-6337-2 [PubMed:
31818249]

Roberts M, Hayes W, Hunt BR, Mount SM, & Yorke JA (2004). Reducing storage requirements
for biological sequence comparison. Bioinformatics, 20(18), 3363–3369. 10.1093/bioinformatics/
bth408 [PubMed: 15256412]

Vaser R, Sović I, Nagarajan N, & Šikić M (2017). Fast and accurate de novo genome assembly from
long uncorrected reads. Genome Research, 27(5), 737–746. 10.1101/gr.214270.116 [PubMed:
28100585]

Warren RL, Coombe L, Mohamadi H, Zhang J, Jaquish B, Isabel N, Jones SJM, Bousquet J,
Bohlmann J, & Birol I (2019). ntEdit: Scalable genome sequence polishing. Bioinformatics,
35(21), 4430–4432. 10.1093/bioinformatics/btz400 [PubMed: 31095290]

Warren RL, Yang C, Vandervalk BP, Behsaz B, Lagman A, Jones SJM, & Birol I (2015). LINKS:
Scalable, alignment-free scaffolding of draft genomes with long reads. GigaScience, 4(1),
s13742-015-0076-3. 10.1186/s13742-015-0076-3

Wong J, Coombe L, Nikolić V, Zhang E, Nip KM, Sidhu P, Warren RL, & Birol I (2022). GoldRush:
A de novo long read genome assembler with linear time complexity. BioRxiv, 2022.10.25.513734.
10.1101/2022.10.25.513734

Coombe et al. Page 29

Curr Protoc. Author manuscript; available in PMC 2024 April 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Figure 1.
Flowchart showing the various available features for ntLink scaffolding. ntLink uses

minimizers (indicated by coloured circles) to map the input long reads to the draft genome.

Identical minimizers are represented by the same colour. ntLink uses these mappings to

infer how the input contigs (draft genome sequences) should be ordered and oriented to

produce genome scaffolds. (A) ntLink can also use minimizers to detect when adjacent

contigs have an overlapping region, and resolves these overlaps (indicated by the vertical

black line), as described in Basic Protocol 1. (B) In addition, as demonstrated in Basic

Protocol 2, ntLink can use the input long-read information and minimizers to fill gaps

between joined contigs (dark grey box). (C) Finally, as shown in Basic Protocol 3, running

multiple in-code iterations of ntLink scaffolding can maximize the contiguity of the final

output scaffolds. The ntLink rounds can be run with or without gap-filling, as indicated by

the dashed transitive arrow.

Coombe et al. Page 30

Curr Protoc. Author manuscript; available in PMC 2024 April 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Figure 2.
Results from analyzing the output files from Basic Protocol 3 (ntLink Option B) using

QUAST. The scaffold NGA50 length (A) and misassembly (B) statistics for each round are

shown. Running additional rounds of ntLink results in a more contiguous final assembly

(Scaffold NGA50 length of 3.9 Mbp and 5.4 Mbp for round 1 and 2, respectively). The

third round of scaffolding did not produce any additional joins, showing that further ntLink

rounds would not benefit the assembly. More rounds may be required when the baseline

assembly is more fragmented, or a larger genome is being scaffolded.

Coombe et al. Page 31

Curr Protoc. Author manuscript; available in PMC 2024 April 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Coombe et al. Page 32

Table 1.

Example peak memory usage, disk space usage and wall-clock times when running ntLink scaffolding on draft

genomes of various sizes. The disk space usage of the input draft assembly and long reads files are not

included in the benchmarks
a
. See Supplementary Tables 1 and 2 for more information about the data used for

these example ntLink runs.

Species Approximate genome
size (Mbp)

Fold coverage of
long reads

Peak memory
usage (GB)

Peak disk space
usage (GB)

Wall-clock time
(min)

Caenorhabditis elegans 100 93 0.9 0.9 6.5

Oryza sativa 373 62 3.4 2.8 21.4

Solanum lycopersicum 824 72 5.4 5.6 43.4

Homo sapiens 3,055 50 20.8 25.0 136.0 (2h16m)

a
Default ntLink parameters were used for each example run, except for Solanum lycopersicum, which used k=64, w=250. One round of ntLink,

including the gap-filling option, was run with each dataset.

Curr Protoc. Author manuscript; available in PMC 2024 April 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Coombe et al. Page 33

Table 2.

Common statistics used in the analysis of genome assemblies. Each statistic is classified as de novo (no

reference required) or reference-based (reference genome required). All de novo statistics can be calculated

using abyss-fac or QUAST, while the reference-based statistics are assessed using QUAST.

Statistic de novo or reference-
based Description

n de novo The number of sequences in the assembly.

NG50 length de novo At least half of the genome size is assembled in pieces of the NG50 length and larger. In
other words, if you add up the lengths of the contigs that are the NG50 length and larger,
it will sum to at least half of the expected genome size.

NGA50 length reference-based Analogous to the NG50 length, but uses alignment blocks instead of contig lengths
for the calculation. Therefore, it summarizes both the contiguity and correctness of the
assemblies.

Misassemblies reference-based Number of large-scale errors in the assembly as compared to the supplied reference.
These QUAST extensive misassemblies can be classified into 3 categories: relocations,
inversions and translocations.

Scaffold NG50/
NGA50 length

de novo (NG50)
and reference-based

(NGA50)

The “Scaffold NG50” and “Scaffold NGA50” lengths (as described above) are computed
directly on the full scaffold lengths.

Contig NG50/NGA50
length

de novo (NG50)
and reference-based

(NGA50)

Prior to calculating the NG50 or NGA50 lengths, the assembly sequences are broken at
ambiguous codes (“N”s). By default, QUAST will break the sequences at regions of >=
10 “N”s when calculating these contig statistics.

N’s per 100 kbp de novo Number of ambiguous bases (“N”s) in the assembly per 100 kbp of sequence.

Curr Protoc. Author manuscript; available in PMC 2024 April 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Coombe et al. Page 34

Table 3.

Expected results from scaffolding the C. elegans Flye assembly using ntLink with the steps documented in

Basic Protocol 1. Compared to the baseline, scaffolding using ntLink with overlap detection increases the

assembly NGA50 length approximately 1.7-fold, while also reducing the number of misassemblies.

Assembly Number of sequences >= 3 kbp NG50 length (Mbp) NGA50 length
(Mbp)

Number of misassemblies

Baseline assembly 63 3.6 2.3 75

Baseline assembly + ntLink 33 6.8 3.7 66

Curr Protoc. Author manuscript; available in PMC 2024 April 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Coombe et al. Page 35

Table 4.

Expected results from scaffolding the C. elegans Flye assembly using ntLink with gap-filling based on the

steps documented in Basic Protocol 2. Using the gap-filling feature of ntLink in addition to scaffolding

increased the Contig NG50 and NGA50 lengths to be equivalent with their “Scaffold” statistic counterparts.

Furthermore, while the intermediate ntLink scaffolds file prior to gap-filling had a sharp increase in the

number of N’s per 100 kbp (14.4 compared to 0.0 in the baseline), the gap-filling step sealed the majority of

the gaps (14.4 vs. 0.02 N’s per 100 kbp before and after gap-filling, respectively).

Assembly Number of
sequences >= 3

kbp

Scaffold
NG50 length

(Mbp)

Contig
NG50
length
(Mbp)

Scaffold
NGA50
length
(Mbp)

Contig
NGA50
length
(Mbp)

Number of
misassemblies

N’s per
100 kbp

Flye baseline 63 3.6 3.6 2.3 2.3 75 0.00

Flye + ntLink
(before gap-filling)

33 6.8 4.0 3.7 2.5 66 14.36

Flye + ntLink 33 6.8 6.8 3.9 3.9 64 0.02

Flye + ntLink +
Racon

33 6.9 6.9 3.0 3.0 58 0.01

Curr Protoc. Author manuscript; available in PMC 2024 April 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Coombe et al. Page 36

Table 5.

Expected results from assessing the ntLink mappings of the sample C. elegans long reads to the draft ABySS

assembly in Alternate Protocol 1.

Total number of read mappings 622,975

Average mapping block length (bp) 5,647.7

Average number of distinct mapped reads per contig 105.2

Curr Protoc. Author manuscript; available in PMC 2024 April 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Coombe et al. Page 37

Table 6.

Results from analyzing the baseline and Tigmint-long corrected C. elegans ABySS assembly. Following

Tigmint-long misassembly correction using mappings from ntLink, the number of misassemblies decreases by

more than 2-fold.

Assembly Number of sequences >= 3
kbp

Scaffold NG50 length
(bp)

Scaffold NGA50
length (bp)

Number of misassemblies

ABySS baseline 4,552 30,293 27,015 433

ABySS + Tigmint-long 4,793 27,564 27,015 162

Curr Protoc. Author manuscript; available in PMC 2024 April 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Coombe et al. Page 38

Table 7.

Sources and Solutions to Potential Errors

Problem Possible Cause Solution

Error “make: *** No rule to make
target”

Input files are not in the current working directory, or
full paths to files are used.

Make soft links to ensure that input files are
available in the current working directory,
and do not use absolute or relative paths to
input files.

Error “zsh: no such option: pipefail” An older version of zsh is installed, or zsh is missing. Install zsh or update to the newest version.

“UnsatisfiableError” when installing
ntLink using conda

Incompatible versions of tools were previously
installed in the conda environment.

Install ntLink in a fresh conda environment.

“source file is in invalid format!”
when running ntLink

Input long reads or draft assembly files are in an
unexpected format.

Ensure that the input long reads are
in correctly-formatted FASTA or FASTQ
format (gzipped or uncompressed), and
the draft assembly is in FASTA format
(uncompressed).

“ModuleNotFoundError: No module
named <package_name>” error

A required python module is not installed properly. Ensure that the expected python version is
being used (ex. with which python3), and
install the missing package (using conda or
pip).

“Error 127” in ntLink terminal output
after abyss-scaffold step

ABySS is not installed, or not found in your PATH
environment variable.

Install ABySS if needed, and ensure that
the ABySS executables are found in your
PATH.

Running ntLink -h prints the make
help page instead of the ntLink help
page

ntLink requires parameters to be specified in
the form “variable_name=variable_value”, so using
options with the form “-<letter>” will specify options
to make itself, not the ntLink program.

Run ntLink help to see the full ntLink help
page.

Contiguity gains post-ntLink are
minimal

Incorrect selection of k/w If ntLink makes minimal joins, it is likely
that the k and w parameters specified are
not optimal. See the Critical Parameters
section for more details about setting k and
w.

Error when running Tigmint-long:
“samtools: error while loading shared
libraries”

An older version of samtools is installed. Update the samtools installation.

Curr Protoc. Author manuscript; available in PMC 2024 April 01.

	Abstract
	INTRODUCTION
	STRATEGIC PLANNING
	Hardware
	Software
	Files

	BASIC PROTOCOL 1
	ntLink scaffolding using overlap detection
	Necessary Resources:
	Hardware
	Software
	Files
	Sample Files

	Protocol steps with step annotations:

	BASIC PROTOCOL 2
	ntLink scaffolding with gap-filling
	Necessary Resources:
	Hardware
	Software
	Files
	Sample Files

	Protocol steps with step annotations:

	BASIC PROTOCOL 3
	Running in-code iterations of ntLink scaffolding
	Necessary Resources:
	Hardware
	Software
	Files
	Sample Files

	Protocol steps with step annotations:

	ALTERNATE PROTOCOL 1
	Generating long-read to contig mappings with ntLink
	Necessary Resources:
	Hardware
	Software
	Files
	Sample Files

	Protocol steps with step annotations:

	ALTERNATE PROTOCOL 2
	Using ntLink mappings for genome assembly correction with Tigmint-long
	Hardware
	Software
	Files

	Protocol steps with step annotations:

	SUPPORT PROTOCOL 1
	Installing ntLink
	Necessary Resources:
	Hardware
	Software

	Protocol steps with step annotations:
	Option A: Installing ntLink using the conda package manager
	Option B: Installing ntLink from the source code
	Checking your installation
	Running test demo

	GUIDELINES FOR UNDERSTANDING RESULTS
	COMMENTARY
	Background Information:
	Critical Parameters:
	k (k-mer size) and w (window size)

	Troubleshooting:
	Advanced Parameters:
	z (minimum contig length)
	a (minimum number of anchoring reads)
	v (verbose benchmarking mode)
	soft_mask (soft mask filled gaps)

	Time Considerations:

	References
	Figure 1.
	Figure 2.
	Table 1.
	Table 2.
	Table 3.
	Table 4.
	Table 5.
	Table 6.
	Table 7.

