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ABSTRACT: The prediction of chemical reaction pathways has
been accelerated by the development of novel machine learning
architectures based on the deep learning paradigm. In this context,
deep neural networks initially designed for language translation
have been used to accurately predict a wide range of chemical
reactions. Among models suited for the task of language translation,
the recently introduced molecular transformer reached impressive performance in terms of forward-synthesis and retrosynthesis
predictions. In this study, we first present an analysis of the performance of transformer models for product, reactant, and reagent
prediction tasks under different scenarios of data availability and data augmentation. We find that the impact of data augmentation
depends on the prediction task and on the metric used to evaluate the model performance. Second, we probe the contribution of
different combinations of input formats, tokenization schemes, and embedding strategies to model performance. We find that less
stable input settings generally lead to better performance. Lastly, we validate the superiority of round-trip accuracy over simpler
evaluation metrics, such as top-k accuracy, using a committee of human experts and show a strong agreement for predictions that
pass the round-trip test. This demonstrates the usefulness of more elaborate metrics in complex predictive scenarios and highlights
the limitations of direct comparisons to a predefined database, which may include a limited number of chemical reaction pathways.

■ INTRODUCTION
The synthesis of chemical compounds allows for the develop-
ment of new pharmaceutical drugs that improve patient
conditions while minimizing side effects.1,2 However, due to
the large number of possible molecular combinations that could
produce valid drugs (up to ∼1060), searching for the safest and
most efficient compounds is a challenging problem.3−5 Testing
all possible combinations of chemical precursors is intractable.
For this reason, research techniques based on artificial
intelligence and machine learning have been developed and
proved successful in the task of chemical reaction prediction.6−8

In the last few years, the use of artificial intelligence in the field
of biochemistry has started to accelerate the discovery of new
compounds and to increase the variety of commercial drugs
while decreasing their research costs.9−12 Some of the areas
enhanced by machine learning algorithms are molecule
generation,13,14 chemical reaction optimization,15−17 direct
reaction prediction,18−20 and retrosynthesis prediction.21−25

Previous studies in machine learning for chemistry have
proposed a wide range of models based on different branches
of artificial intelligence such as evolutionary algorithms,26

unsupervised learning,27,28 graph neural networks,19,29 and
natural language processing (NLP).15−18

In particular, neural machine translators (NMT) are a class of
NLP models trained with large sets of documents to translate
sequences of text from one language to another. NMT models
are trained with text-like data, in which sequences of tokens,

following specific syntactic rules and encoding specific semantic
relationships, are provided to their input layer. To apply NMT
models to the case of chemistry, different string-based molecular
representations developed in the last few decades can be
used30−34 (for a review, see ref 35). The task given to the models
is to translate a set of target molecule strings (e.g., reactants) to
their corresponding target molecules (e.g., product). In this
context, language models are trained to capture the underlying
relationships between molecular substructures present in the
reaction strings and learn enhanced token representations which
may be used in downstream predictive tasks.36,37 The most
popular string format in the field is the simplified molecular-
input line-entry system (SMILES),30 in which atoms and bonds
are listed following the different branches of a molecular graph
and cycle loops are indexed along the string. Thanks to the
procedure designed by Lowe for extracting chemical structures
from patents,38,39 millions of chemical reactions from the United
States Patent and Trademark Office (USPTO) have been
recovered and published as SMILES sequences.40
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There are several model architectures suitable for machine
translation, such as recurrent neural networks (RNNs),41 long
short-term-memory networks (LSTMs),42 and transformers.43

While RNNs and LSTMs process information sequentially, i.e.,
sentences are processed token by token, transformers present a
self-attention mechanism that allows whole input sequences to
be processed at once. Transformers have an encoder−decoder
structure and combine positional encoding with multiple
attention heads to determine how different input tokens relate
to each other.36,37 One of the main advantages of using
transformers for sequence processing is that it prevents the loss
of contextual information, as often observed in recurrent
models.43 Moreover, in the model computations, the maximum
path length between tokens does not depend on their distance,
which provides an advantage for long-range dependency
modeling.44

Among NMT models, transformers obtain the most out-
standing results for the task of chemical reaction prediction.
Stemming from the seminal work of Schwaller and colleagues18

who introduced the molecular transformer, numerous studies
have shown the high potential of attention-based models for the
task of direct product prediction,18,22,24 single-step22,24,45−48

and multi-step23,49 retrosynthesis, reaction classification,50 and
atom mapping.28 In the following, we state the relevant research
advances related to the use of transformers for chemical reaction
prediction and point out existing knowledge gaps, which
motivated the current study.
First, by shuffling the first atom listed in the SMILES string

and the direction of graph enumerations, it is possible to build
many non-canonical SMILES strings for a single molecule.24

This allows us to perform almost unlimited data augmentation
with chemical reactions. Yet, data augmentation might have
limits and may impact model performance differently, depend-
ing on the task and evaluation metric. Previous studies have
debated the importance of data augmentation for different
predictive scenarios.18,24,51 For example, it was shown that
retrosynthesis prediction benefits more from data augmentation
than direct product prediction in terms of top-k accuracy.24 This
raises the question as to how different combinations of tasks,
data augmentation levels, and evaluation metrics contribute to
model performance.
Second, another increasingly popular string format for

molecules is SELFIES, standing for Self-Referencing Embedded
Strings.31 SMILES can produce strings that do not correspond
to any valid molecule (actually, most random sequences of
SMILES symbols are invalid), and this may be seen as a
weakness.35 SELFIES solve this issue by producing a syntax in
which all generated strings are valid chemical molecules. Any
valid SMILES string can bemapped to a SELFIES string without
losing chemical information. However, although SELFIES is
built to improve the quality of the input molecules as well as the
stability of generated reactions, a robust syntax may restrict the
regions of the data space that are explored by the model during
training.
Third, to have a tractable representation space, language

models require sentences to be parsed into smaller sets of
characters, i.e., tokens. Different NLP tokenization strategies
exist, such as character-based encoding, byte-pair encoding,52

word-piece,53 or sentence-piece,54 some of which are better
suited for the task, language, and syntax given to the model. In
the case of chemistry, the most common one is atom-level
tokenization, where each token represents an atom, a type of
chemical bond, or a closed loop in an atom chain. Considering

reactions as sentences and molecules as words, this tokenization
strategy is conceptually close to a character-based encoding. A
potential limitation of this strategy is that it requires information
carried by tokens to heavily rely on their context.55 In
consequence, a lot of data are required to build useful context-
independent representations of atoms. Conversely, byte-pair
encoding joins atoms and bonds that are consistently repeated
over the dataset, forming tokens that represent frequent
molecular substructures,56 instead of representing all atoms
separately. By recognizing these substructures, tokenizers can
capture close-range atomic relationships within the molecules
and transfer them into the predictive model, without requiring
the model to learn them by itself. However, they also carry a
higher computational cost associated with the combinatorially
large number of molecule substructures.
Fourth, a popular technique to increase model performance is

to provide pre-trained knowledge to the model at training time.
Instead of learning the parameters of its input layer from scratch,
a language model can use the output of a different model as a set
of static features. Pre-trained token embeddings, when used as
an underlying input representation, were shown to improve
performance in various NLP tasks.57,58 In the case of chemistry,
simple language models, such as word2vec,59 can be trained
beforehand with a large set of molecules to ensure that the
trained model is always aware of semantic and syntactic
relationships between atoms and bonds inside molecule strings.
This input strategy makes sure that chemical knowledge is
present in the input representation of themodel but also restricts
its freedom, since the parameters of the input layer are kept fixed
during training.
Arguably, SELFIES format, BPE tokenization, and pre-trained

embeddings can be considered more stable and robust input
settings than SMILES format, atom-level tokenization, and
embeddings trained from scratch, respectively. Indeed, the
former settings include pre-determined knowledge that the
model should not discover by itself during training, which
ensures more stable representations. For example, using
SELFIES relieves the model from learning to generate valid
molecules. In other words, during training, SELFIES shapes the
loss landscape in the model parameter space and offers a
restricted set of paths that themodel can exploit to reach its goals
in a robust way. Similarly, pre-trained embeddings and BPE
tokenization restrict the regions of parameters that the model
can explore, by ensuring that the representations of input tokens
are chemically valid.
Conversely, these input settings may reduce the diversity of

molecules that can be represented and generated by the model
during and after training. In other words, these input settings
transfer less expressivity to the trained model. For example, the
SELFIES format only allows the generation of valid molecules,
which may prevent the model from making insightful mistakes
during training. Similarly, a model trained with BPE
tokenization can only produce molecules out of specific patterns
that were identified prior to training and hence cannot extend its
predictions to previously unseen patterns. This may restrict the
generalization capabilities of the model and/or lead to local loss
minima during training. For these reasons, testing all
combinations of the mentioned input settings enables us to
compare the impact of expressivity and stability to model
performance. There is a trade-off between model stability and
expressivity,60 and which one provides the best performance for
chemical reaction prediction remains an open question.
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Finally, it has been pointed out that simple evaluation metrics
such as top-k accuracy are not well-suited to evaluate model
performance for retrosynthesis.23,24,61 Indeed, in most cases,
several reactants must be predicted. In addition, several sets of
reactants might lead to the same product, and the target
reactants of the training and testing datasets represent only one
possibility. New metrics that address these problems were
proposed, one of them being the round-trip accuracy.23 Round-
trip evaluates the performance of a retrosynthesis prediction
model by computing the proportion of model predictions (i.e.,
reactants) that lead to the original product, once fed to a trained
forward-synthesis prediction model. Round-trip analysis can be
seen as asking a chemist expert to judge whether the predicted
reactants could lead to the desired product. It was shown that the
molecular transformer reaches higher round-trip accuracy than
top-1 accuracy,23 which suggests that the model can correctly
identify alternative retrosynthetic pathways. However, it is still
possible that the round-trip test produces false positives, i.e., the
forward prediction model recovers the correct product
fortuitously from a bad set of predicted reactants. Hence, to
confirm the superiority of round-trip analysis over simple
metrics, it is crucial to determine whether it correlates with
human expert judgements, especially in cases where simple
metrics do not agree with round-trip accuracy.
The main contributions of the current study can be

summarized as follows:

• First, we present an analysis of the performance of the
molecular transformer for product, reactant, and reagent
prediction tasks, under different scenarios of data
availability and data augmentation. We show that the
impact of data augmentation and adding reagent
information depends on the prediction task and on the
metric used to evaluate model performance.

• Second, we evaluate the impact of input stability and
expressivity to model performance by using different
input formats (SMILES vs SELFIES), tokenization
strategies (atom-level vs byte-pair encoding), and input
embeddings (learnt vs pre-trained). We show that more

expressive input schemes generally lead to better
performance.

• Lastly, a committee of human experts validated round-trip
analyses for predictions that led to divergent evaluations
as compared to top-1 accuracy. We quantitatively
demonstrate that the model can identify alternative
reaction pathways: for most predictions where round-
trip and top-1 accuracies disagree, human experts are on
the round-trip side. To the best of our knowledge, this is
the first time this new metric is confronted to the
judgment of a large pool of chemistry experts.

■ METHODOLOGY
2.1. Reaction Prediction Model. We used the molecular

transformer18 for the predictive scenarios presented in this study
(Figure 1). This model was originally set up in the OpenNMT
ecosystem,62 which we used here (version 2.1). The molecular
transformer has a four-layer encoder−decoder structure with an
embedding dimension of 256, a feedforward dimension of 2048,
eight self-attention heads with scaled dot-product, and uses the
softmax function as the global attention operation, for a total of
11.7 M parameters. All model predictions were generated using
the beam search algorithm with a beam size of 10.24 Model
hyper-parameters were fixed in all experiments.
Figure 1 summarizes the predictive scenarios that we used in

our experiments. We evaluated model performance using
different datasets (purple boxes), input formats, tokenization
schemes, embedding strategies (yellow, orange, and red boxes),
and evaluation metrics (dark green boxes). The different
experiments run in this study are detailed in the next
subsections.
Throughout these experiments, the model was trained with a

batch size of 4096 tokens, on one of the following tasks:
• Product prediction: the model must predict the product
of the reaction, given its reactants (with/without
reagents).

• Reactant prediction: the model must predict all reactants,
given the product (with/without reagents) of the
reaction. Note that, although including reagent informa-

Figure 1. Product, reactant, and reagent prediction models were trained with different combinations of input settings. Dashed boxes represent
interchangeable configurations of data augmentation, tokenization and embedding strategies, molecule formats, and evaluation metrics.
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tion in a reactant prediction task is often an unrealistic
scenario in practice, it is still interesting to evaluate its
impact on model performance, as it represents a very
favorable information scenario. Besides, a model trained
in these settings might be useful when only a limited set of
reagents are available. We also evaluated whether the
model could predict at least one of the reactants of the
reaction (lenient-reactant prediction).

• Reagent prediction: the model must predict all reagents,
given the reactants and the product of the reaction. This
task investigates whether the molecular transformer can
anticipate optimal reaction conditions.

Since the molecular transformer was trained on differently
sized datasets and with different input settings, we let the
number of training steps be determined by early stopping, with a
patience of 10, in order to prevent over- or under-fitting. More
specifically, training was stopped whenever neither token-level
prediction accuracy nor perplexity improved in the scope of 10
validation epochs. A validation epoch was run every 10k steps
multiplied by the level of data augmentation.
2.2. Reaction Datasets and Data Augmentation. We

used the USPTO-MIT dataset which, after removing incon-
sistencies and duplicates from the original dataset of Lowe,38

contains 480k valid reactions.63 These reactions are divided into
three datasets of 410k, 30k, and 40k reactions for training,
validation, and testing, respectively.64 To identify products,
reactants, and reagents in reactions, we used the work of ref 65,
which separated reagents from reactants in USPTO-MIT using
atom mappings. We then built the source, i.e., the input
molecule(s), and the target, i.e., the molecule(s) to predict, for
each task presented in Section 2.1. When a model was trained
and evaluated with reagent information, it was present in the
training, validation, and testing datasets. As in the original work
of the molecular transformer,18 we did not separate reactants
and reagents using a special token when they appeared together
in the model input (e.g., for product prediction). Instead, all
molecules were separated by the same token (“.”), which was
part of the model vocabulary. To evaluate model performance,
in addition to the USPTO-MIT testing dataset, we also used
USPTO-50k,66 whenever possible.
To analyze the impact of data augmentation on model

performance, we augmented the training dataset of each task
presented in Section 2.1. We created alternative versions of
chemical reactions by using non-canonical SMILES notation
and random permutations of reactants and reagents. We only
performed data augmentation on the source input of the
reactions (i.e., not the target). This led to five different versions
of the training dataset for each task, containing 1, 2, 5, 10, and 20
times the size of the original data. In the first experiment, we
simply compared the effect of data augmentation for each task
described in Section 2.1. The results of this experiment are
presented in Section 3.1.
In another experiment, we performed a detailed analysis of the

impact of data augmentation on model performance for the
reactant prediction task. We evaluated the models using two
different metrics, namely, top-k accuracy and round-trip
accuracy, a measure that is more suited for retrosynthesis
scenarios (see Section 2.4 for more details about all evaluation
metrics that were used in this work). We used the reactant
prediction models trained in Section 3.1, i.e., with any level of
data augmentation and including reagent information or not.We
evaluated these models on both the USPTO-MIT and USPTO-

50k test datasets. To perform the round-trip analysis, we
matched the product prediction and reactant prediction models.
For example, to evaluate the reactant prediction model that was
trained without reagent information and with 5-fold data
augmentation, we used the product prediction model that was
trained without reagent information and with 5-fold data
augmentation. The results of this experiment are presented in
Section 3.2.
Finally, we performed a detailed analysis of model perform-

ance for reagent prediction. We divided the testing dataset in
different subsets of samples, binning reactions by the number of
reagents they contain. We computed precision, recall, and f1-
score at the molecule-prediction level (see Section 2.4 for more
details) to reveal the types of error the model was experiencing
for different numbers of predicted reagents. We evaluated the
reagent prediction models trained in Section 3.1. Since the
USPTO-50k dataset does not include reagents, we only
performed this analysis with the USPTO-MIT testing dataset.
The results of this analysis are presented in Section 3.3.
2.3. Input Format, Tokenization, and Embedding. In

this set of experiments, we trained and evaluated the molecular
transformer on all tasks presented in Section 2.1, using all
possible combinations of the following molecule formats, input
embedding strategies, and tokenization schemes.

• Input format: the format of the molecules could either be
SMILES or SELFIES. To generate the SELFIES datasets,
we encoded the corresponding SMILES reactions using
the code of ref 31. In very rare cases, some molecules
(included in Table S9, Supporting Information) could not
be encoded, in which case they were replaced by the token
“?”.

• Tokenization scheme: reactions were parsed either by
atom-based or byte-pair encoding (BPE). For BPE, we
used the SMILES pair encoding (SPE) algorithm56 to
identify the most frequent substrings present in the
training dataset. We applied the same algorithm to
identify frequent SELFIES substrings. To build the
vocabularies, we only included substrings that occurred
at least 2000 times in the training dataset. This led to
vocabularies of around 1500 tokens, 10 times the size of
the corresponding atom-level vocabularies.

• Input embedding strategy: the model could either learn
the parameters of its input embedding layer from scratch
(i.e., during training) or use a pre-trained input
embedding layer. In the latter case, the input embedding
layer was replaced by the static output of word2vec59 and
frozen during training. The word2vec model (embedding
size: 256 and window size: 5) was trained using a corpus
of single (SMILES or SELFIES)molecules extracted from
the training dataset and parsed by the selected
tokenization scheme (i.e., atom-level or BPE).

The trained models were evaluated both with the USPTO-
MIT testing dataset and USPTO-50k. The results of these
experiments are presented in Section 3.4.
2.4. Evaluation Metrics. We used different metrics to

evaluate model performance.
• Standard metric: to compare our results to the existing
literature, we used top-k accuracy. An exact match with
the target was imposed, after canonicalizing the prediction
of the model and the target molecules. More precisely, to
consider a model prediction as a hit, all target molecules
must be present in the molecules predicted by the model,
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and no molecule predicted by the model must be absent
from the set of target molecules. Then, top-k accuracy was
defined as the proportion of target samples of the testing
dataset for which at least one hit was present in the
corresponding top-k model predictions.

• Round-trip accuracy:23 for the reactant prediction task,
we fed the top-1 predictions of any reactant prediction
model to the corresponding product prediction model
(i.e., the model that was trained with the same amount of
data augmentation and under the same conditions of
reagent availability). When evaluating the reactant
prediction model that was trained with reagent
information, the input of the product prediction model
was the concatenation of the predicted reactants and the
true reagents of the reaction. Round-trip accuracy was
defined as the proportion of reaction samples from the
testing dataset for which the top-1 prediction of the
product prediction model matched the input of the
reactant prediction model.

• Precision, recall, and f1-score at rank k: for the reagent
prediction task, we also evaluated model performance at
the molecule level, since the number of target reagents
varies a lot across samples (which means top-k accuracy
might not be the best metric to assess model perform-
ance). For each test sample, we considered the set of N
unique molecules present in the top-k model predictions.
The true positive score (T) was defined as the number of
predicted molecules in this set that matched any of theM
corresponding target molecules. Precision (P), recall (R),
and f1-score (F) were computed as P = T/N, R = T/M,
and F = 2PR/(P + R), respectively.

• Expert validation: for the reactant prediction task, all
reactions for which round-trip analysis produced a
positive result, but simple accuracy did not, were
independently analyzed by two groups of 10 experts
each. One group was composed of experts with a master’s
degree and the other one of experts with a PhD degree,
both in the field of chemistry. Every reaction was seen
exactly once by one master and one PhD. Experts were
asked to associate one of the three possible scores to each
predicted reaction: wrong, correct, or semi-correct.
“Wrong” meant that the proposed reaction was not
physically consistent. “Correct” meant that the predicted
reactants offered a valid alternative pathway to the ones
included in the USPTO-MIT dataset. “Semi-correct”
meant that the reaction was physically consistent but did
not feature the expected outcome, i.e., predicted residuals
that would not usually be considered. The results of the
expert validation experiment are presented in Section 3.5.

■ RESULTS AND DISCUSSION
3.1. Reaction Prediction Accuracy and Data Augmen-

tation. The molecular transformer model was trained on each
prediction task described in Section 2.1, using the data
augmentation schemes described in Section 2.2. Figure 2
shows the top-1 accuracy computed on theUSPTO-MIT testing
dataset, for all combinations of task and data augmentation.
Results for top-k accuracy (k > 1) and using the USPTO-50k
dataset are shown in Figures S1−S8 (Supporting Information).
For the product prediction task (Figure 2, blue), data

augmentation has a minor impact on model performance and
only when reagent information is not included (1% improve-

ment, from 84 to 85% top-1 accuracy). When reagent
information is included, top-1 accuracy stays around 88% for
any level of data augmentation. These results are similar to those
presented in the original work of the molecular transformer.18

For comparison, Tetko and colleagues24 used up to 100-fold
data augmentation on the USPTO-MIT dataset, augmenting
both source and target inputs, and product prediction top-1
accuracy increased up to 91%.
For the reactant prediction task, data augmentation has more

impact than for product prediction (Figure 2, yellow). Model
performance increases from 52 to 55% top-1 accuracy when
reagent information is not included and from 68 to 69% when it
is. Note that we do not use the USPTO-50k dataset to train our
models, but the larger USPTO-MIT dataset. This explains the
higher performance than what is usually reported for retrosyn-
thesis prediction accuracy without reagent information
(between 42 and 54% when trained with the USPTO-50k
dataset, depending on whether reaction class information is
provided as the input24). A more detailed analysis of reactant
prediction is carried out in Subsection 3.2.
When using the USPTO-50k dataset to evaluate product and

reactant prediction performance, data augmentation has a
similar but less consistent effect on top-k accuracy (Figures S1−
S8, Supporting Information). Surprisingly, models trained
without reagent information reach higher performance as
compared to when the USPTO-MIT testing dataset is used
for evaluation. The product prediction model improves from 86
to 87% top-1 accuracy, and the reactant prediction model
improves from 57 to 59% top-1 accuracy (Figure S5, Supporting
Information). For comparison, Tetko and colleagues24 trained
their model for reactant prediction on the USPTO-50k dataset,
augmenting both source and target samples by 100-fold and
reported an increase in top-1 accuracy from 48 to 54%. This is
lower but still comparable to the performance we obtain using
the whole USPTO-MIT data for training. Models trained with
reagent information reach lower performance (up to 80 and 38%
top-1 accuracy for the product and reactant prediction tasks,
respectively) as compared to when the USPTO-MIT dataset is
used for evaluation. We attribute this poorer performance to the
absence of reagent information in the USPTO-50k dataset.
For the reagent prediction task, results show a significant drop

in performance compared to the other tasks. Top-1 accuracy
only reaches up to 20% (Figure 2, red). We attribute this poor
performance to the larger and more variable number of reagents
per reaction. Besides, reagent atoms, unlike reactants, cannot be

Figure 2. Effect of data augmentation on top-1 accuracy, computed
with the USPTO-MIT testing dataset (“reag+”�reagent information
included, and “reag−“�reagent information not included).
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mapped to the product atoms. Surprisingly, data augmentation
has a detrimental effect on model performance. A possible
reason is that both reactants and products appear in the source
input in the reagent prediction task. Permuting molecules might
be too confusing for the model, since it becomes very
challenging to distinguish the product from the reactants and,
hence, to identify the type of reaction taking place. A more
successful strategy could have been to keep the order in which
molecules appear in the reaction when augmenting the data. A
more detailed analysis of reagent predictions is carried out in
Subsection 3.3.
3.2. Analysis of Reactant Predictions. To further

investigate the performance of the molecular transformer for
the task of reactant prediction, we evaluated the reactant
prediction models trained in Section 3.1 with round-trip
accuracy. Figure 3 shows top-1 and round-trip accuracy for

the reactants and lenient-reactant prediction tasks, for all data
augmentation levels. Reactant prediction accuracy is consis-
tently improved by around 15% when reagent information is
included, independent of the level of data augmentation (Figure
3, top, blue vs orange). When a lenient match is used to compute
top-1 accuracy, model performance also increases by around
15% (Figure 3, top, triangles vs circles).
Regarding round-trip accuracy, model performance (up to

88%, Figure 3, bottom) is higher than top-1 accuracy. Round-
trip accuracy even outperforms top-10 accuracy (86%, Figure
S4, Supporting Information). This suggests that the reactant

predictionmodel produces valid sets or reactants, even if they do
not appear in the testing dataset. Remarkably, data augmenta-
tion and reagent information no longer affect model perform-
ance. Round-trip accuracy does not depend on whether reagent
information is provided to the models (Figure 3, bottom, blue vs
orange), and performance slightly decreases with data
augmentation. The best performance is observed with un-
augmented data when reagent information is included (88%)
and with 2-fold data augmentation when it is not (87%). These
results can be compared to ref 23, in which 70 to 81% round-trip
accuracy was obtained, depending on the data used to train and
test the model. Note that the task used in their study was to
predict both reactants and reagents from the products, which
may explain the higher performance obtained in our case.
We also measured round-trip accuracy with the USPTO-50k

dataset. Although top-1 accuracy is higher when evaluated with
USPTO-50k than with the USPTO-MIT testing dataset, round-
trip accuracy shows almost no difference. When reagent
information is absent, the model reaches up to 87% round-trip
accuracy with USPTO-50k (see Figure S10, Supporting
Information), which is similar to the 88% obtained with the
USPTO-MIT testing dataset (Figure 3, bottom). This suggests
that, although top-1 accuracy flags some predictions of the
reactant prediction model as incorrect because of discrepancies
between datasets, round-trip accuracy considers that most of
these predictions are valid alternatives to the targets present in
the testing datasets. Even when the models are trained with
reagents (which are absent from USPTO-50k), round-trip
accuracy still reaches up to 80% (Figure S10, Supporting
Information). Round-trip accuracy is validated by chemistry
experts in Section 3.5.
3.3. Analysis of Reagent Predictions.We investigated the

reasons of the poorer performance of the molecular transformer
for reagent prediction (Figure 2, red). One reason might be that
the nature of the task is very different, since reagents have no
atom mapped to the product because they only play a transient
role in the reaction. However, another reason might be that the
number of reagents per reaction is quite large and varies a lot
across USPTO-MIT. Indeed, the number of reagents per
reaction ranges from 0 to 21 (median = 3, mean = 3.03, and std =
2.22), whereas the number of reactants ranges from 1 to 5
(median = 2, mean = 1.78, and std = 0.47). For this reason, we
conducted an in-depth analysis of reagent prediction, monitor-
ing the performance of the reagent prediction model for
different subsets of the USPTO-MIT testing dataset and binning
reactions by the number of reagents they contain. We evaluated
the model that was trained with the original training dataset (no
data augmentation) as it reached the best accuracy. In general,
the predictive performance of the model is worse for reactions
that require many reagents and better for reactions with few
reagents (Figure 4).
Then, we carried out an analysis of the model reagent

predictions at themolecule level. Figure 5 (top) shows precision,
recall, and f1-score at rank 1 for the same subsets of the testing
dataset as in Figure 4.More details about how thesemetrics were
computed are included in Section 2.4. The results of this analysis
for different ranks (k > 1) are shown in Figures S15−S18
(Supporting Information). Average scores were computed by
pooling the scores of each group of reactions, weighting them by
the number of reactions per group.
We observe an inverted U-shape for the f1-score, which is the

result of a regular increase of precision and a regular decrease of
recall, with the number of reagents (see Section 2.4 for the

Figure 3. Top-1 and round-trip accuracy for the reactant prediction
task, using the USPTO-MIT testing dataset, for different levels of data
augmentation. Top. Top-1 accuracy. “Strict” requires an exact match
between the model prediction and the target. “Lenient” requires that at
least one molecule predicted by the model matches a target molecule.
Bottom. Round-trip accuracy. The diagram shows how round-trip
accuracy was computed. When reagents were part of the datasets, the
true reagents were added to the predicted reactants before being sent to
the product predictionmodel. P�true product, [Rc]�true reactant(s),
[Rg]�true reagent(s), P̂�predicted product, and �predicted
reactant(s).
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formulas). This suggests that, for reactions with few reagents,
although it is easier to recall the target reagent(s), the model is
confused by the large number of possible reagent species (see
Figure 5, bottom), which has a detrimental effect on precision.
For reactions with many reagents, the model might no longer be
able to identify all reagents necessary for the reactions (low
recall) because there are too many target molecules and not
enough training samples (see Figure 5, bottom). Nevertheless,
the model still reaches a precision score of above 60% at rank 1
for reactions with more than five reagents per reaction (see

Figure 5, top). This means that, even though the model was
trained with a minority of reactions with many reagents (see
Figure 5, bottom), 60% of the proposed reagents are correct.
3.4. Input Format, Tokenization, and Embeddings.We

trained the model for all tasks described in Section 2.1 using the
original dataset (i.e., no data augmentation), for all combina-
tions of molecule formats, tokenization schemes, and embed-
ding strategies described in Section 2.3. Model performance on
the USPTO-MIT testing dataset is shown in Table 1. Results
with the USPTO-50k dataset and for top-k accuracy (k > 1) are
included in Tables S1−S8 (Supporting Information).
For all tasks involving product or reactant prediction, the best

model performance is obtained for the combination of the
SMILES format, atom-level tokenization, and input embeddings
trained from scratch (see Table 1, bold). The lowest model
performance is obtained with the combination of the SELFIES
format, BPE tokenization, and pre-trained embeddings.
Intermediate values are found for different combinations.
More precisely, enabling any of the latter input settings is
detrimental for model performance: using the SELFIES format
is always worse than using the SMILES format, using BPE
tokenization is always worse than using atom-level tokenization,
and using pre-trained embeddings is always worse than using
embeddings trained from scratch.
For comparison, a recent study67 showed that BPE

tokenization reached worse or similar reactant prediction
performance as compared to atom-based tokenization, even
with small vocabulary sizes (i.e., smaller than 100). Another
study68 found that using SMILES slightly outperforms SELFIES
for retrosynthesis and attributed it to the larger average length of
the SELFIES string. Finally, using a BERTmodel pre-trained on
PubChem69 compounds, ref 70 showed that classification

Figure 4. Top-k accuracy for reagent prediction, binning reactions of
the USPTO-MIT testing dataset by the number of target reagents. The
model was trained using the original USPTO-MIT dataset. The result
of models trained with augmented training data are shown in Figures
S11−S14 (Supporting Information).

Figure 5. Statistical analysis of reagent prediction with the molecular transformer. Top. Precision, recall, and f1-score at rank 1 for reagent predictions,
grouping samples of the USPTO-MIT test dataset by the number of target reagents they contain. Bottom. Number of reactions (blue line) and number
of different reagent species (orange line) for each group of reactions. Chemical reactions with more than 12 reagents were discarded because their
volume is not sufficient.
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performance on MoleculeNet71 tasks slightly worsened with
BPE tokenization, with a vocabulary size of 1866, and did not
improve with the SELFIES format.
Although different vocabulary sizes and differences in input

lengths could explain these results, we speculate that the reason,
as stated in the Introduction section, is how stable or expressive a
model becomes when trained with different input settings.
Although SELFIES increases input length, BPE tokenization
shortens it, and using pre-trained embedding has no effect on
input length. Still, all of them lead to worse model performance
for product and reactant prediction tasks, for which the ability to
generate a rich set of different molecules is crucial.
For reagent prediction, however, although the combination of

the SMILES format, atom-level tokenization, and input
embeddings trained from scratch provides almost the best
model performance (20% top-1 accuracy), other combinations
slightly outperform these settings. Notably, the combination of
the SMILES format, BPE tokenization, and pre-trained input
embeddings reaches 21% top-1 accuracy. Again, we speculate
that this might be explained by the trade-off between input

stability and expressivity. In reagent prediction, generating a rich
set of molecules is less crucial, since there are fewer reagent
species in USPTO-MIT (12k in the training dataset and 13.4k in
the whole dataset), compared to products and reactants. This
favors more stable settings. Besides, reagent molecule strings are
shorter than reactants and products, and expressing reagents
using BPE tokenization requires only a few tokens, whichmay be
beneficial during training.
3.5. Validation of Round-Trip Analysis with Human

Experts. Although the model reaches high round-trip accuracy
scores in the reactant prediction tasks (see Section 3.2), it is still
possible that the chemical reactions suggested by the round-trip
analysis are not physically consistent. Therefore, to confirm the
validity of the round-trip analysis, we cross-checked 447
randomly selected reactions whose predicted reactants did not
match the target compounds of the USPTO-MIT dataset but
succeeded in the round-trip experiment. As described in Section
2.4, we asked two groups of experts (master’s degree, PhD
degree) to evaluate these reactions. The results of these
evaluation are shown in Figure 6. In total, 81% (n = 362) of
the reactions were classified as “not wrong”, i.e., either “correct”
or “semi-correct”, by both groups of experts. Results were similar
for both groups taken separately (89% for the master group and
87% for the doctorate group, as shown in Figure 6, left).
An example of reaction deemed correct by both groups is

shown in Figure 6 (right, bottom-right quadrant), where the
palladium-catalyzed coupling of the amine and aromatic iodine
(Buchwald−Hartwig) reaction was recognized and confirmed
by both expert groups. Only 4% (n = 18) of the valid round-trip
pathways were judged as incorrect by both groups. An example
of such a reaction is shown in Figure 6 (right, bottom-left
quadrant), in which the algorithm made a clear mistake by
duplicating a part of the reactants. Finally, 15% (n = 67) of
predicted pathways had contradictory judgments. Examples of
such reactions are shown in Figure 6 (right, top-left quadrant),
where a member of the PhD group correctly identified that a Boc
protecting group can result in methylamine in strongly reducing
conditions, and Figure 6 (right, top-right quadrant), where the
peptic coupling would require a saponification step before being
valid.
Overall, these results confirm that the reactant prediction

performance of the molecular transformer is higher when
validated for alternative retrosynthetic pathways, such as in the

Table 1. Top-1 Accuracy Using Different Molecule Formats,
Tokenization Schemes, and Embeddings Strategiesa

atom-Level BPE

FS PT FS PT

Product Prediction (with Reagents)
SMILES 0.879 0.865 0.854 0.512
SELFIES 0.768 0.721 0.654 0.313

Product Prediction (without Reagents)
SMILES 0.837 0.827 0.807 0.589
SELFIES 0.745 0.695 0.623 0.379

Reactant Prediction (with Reagents)
SMILES 0.678 0.643 0.660 0.421
SELFIES 0.610 0.545 0.540 0.301

Reactant Prediction (without Reagent)
SMILES 0.525 0.504 0.514 0.401
SELFIES 0.472 0.449 0.427 0.311

Reagent Prediction
SMILES 0.196 0.135 0.183 0.211
SELFIES 0.187 0.122 0.174 0.196

aFS�input embeddings trained from scratch, and PT�pre-trained
input embeddings.

Figure 6. Round-trip validation by a committee of chemistry experts. Left. Number of reactions judged as wrong, semi-correct, and correct by the
master and PhD groups. Right. Examples of reactions for which the master and doctorate groups agreed or disagreed.
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round-trip analysis. This highlights the importance of using a
broader set of metrics and evaluation benchmarks apart from
direct comparisons to a predefined database, which may include
a limited number of chemical reaction pathways. Given these
results, we could have also considered the subset of reaction
predictions that passed neither the round-trip test nor the simple
accuracy test. Some of these reactions may be judged as valid by
chemistry experts. Moreover, this experiment could have been
extended tomore recent models of chemical reaction prediction,
such as ref 72, and increase the validity of the current results. We
leave the investigation of such scenarios for future work.

■ CONCLUSIONS
In this work, we performed detailed analyses of the capabilities
of transformer models for chemical reaction prediction, using
various predictive scenarios and input settings. We showed that
data augmentation is not beneficial in all prediction scenarios
and that its impact on performance depends on the metric that is
used to evaluate the model. Moreover, we showed that using
more stable but less expressive input settings might not always
lead to better performance, which should be considered when
choosing the type of embeddings, tokenization, and data format
for the task of interest. Finally, we show that, for complex
predictive scenarios such as retrosynthesis prediction, more
elaborate evaluationmetrics such as the round-trip analysis show
better agreement with chemical experts than simple metrics
based on the mere data present in the evaluation benchmark.
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