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Abstract 

Background  Metastasis, the leading cause of cancer-related death in patients diagnosed with ovarian cancer (OC), is 
a complex process that involves multiple biological effects. With the continuous development of sequencing technol-
ogy, single-cell sequence has emerged as a promising strategy to understand the pathogenesis of ovarian cancer.

Methods  Through integrating 10 × single-cell data from 12 samples, we developed a single-cell map of primary and 
metastatic OC. By copy-number variations analysis, pseudotime analysis, enrichment analysis, and cell–cell com-
munication analysis, we explored the heterogeneity among OC cells. We performed differential expression analysis 
and high dimensional weighted gene co-expression network analysis to identify the hub genes of C4. The effects of 
RAB13 on OC cell lines were validated in vitro.

Results  We discovered a cell subcluster, referred to as C4, that is closely associated with metastasis and poor progno-
sis in OC. This subcluster correlated with an epithelial–mesenchymal transition (EMT) and angiogenesis signature and 
RAB13 was identified as the key marker of it. Downregulation of RAB13 resulted in a reduction of OC cells migration 
and invasion. Additionally, we predicted several potential drugs that might inhibit RAB13.

Conclusions  Our study has identified a cell subcluster that is closely linked to metastasis in OC, and we have also 
identified RAB13 as its hub gene that has great potential to become a new therapeutic target for OC.
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Introduction
Ovarian cancer (OC) has the worst prognosis and high-
est mortality rate among gynecological cancers, causing 
about 200,000 deaths annually worldwide [1]. Despite the 
recent advances in the treatments of OC, the 5-year sur-
vival rate of OC remains below 50% owning to its high 
recurrence and metastasis rate [2]. Most of the deaths 
result from recurrence with metastasis [3]. Therefore, it 
is imperative to develop new treatments against cancer 
metastasis.

The tumor heterogeneity is prevalent among cells and 
contributes to tumor differentiation into different cell 
subtypes, interacting with the tumor microenvironment 
(TME), and finally leading to metastasis [4]. Intratumoral 
heterogeneity (ITH) closely correlated to the invasive 
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and metastatic ability of tumors, and impacts the clinical 
diagnosis and treatment of patients. A series of studies 
have revealed the heterogeneity and explored the mecha-
nism of OC at bulk sequence level [5, 6]. But the tradi-
tional bulk sequence methods just focus on the tissue 
resolution in studying ITH. Single-cell sequence tech-
nology detects heterogeneity of tumor cells by single-cell 
resolution, identifies rare cells, delineates cell subclusters, 
tracks cell lineages, locates mutated genes, and discovers 
new biomarkers, providing us with a new perspective to 
study tumor metastases [7]. Benjamin et  al. revealed a 
single cell landscape of high grade serous OC and devel-
oped molecular subtypes among patients, which helps 
guide individualized treatment [8]. Tang et al. conducted 
a multiomic study on ovarian cancer and found that 
tumor heterogeneity was strong in OC [9]. In addition, a 
series of studies have explored the mechanisms and treat-
ment of OC at single cell resolution [10–12]. However, 
limited by the sample size and the high ITH of OC, few 
of them focused on the commonalities among multiple 
patients.

In this study, through integrating of single-cell 
sequence data from 12 patients, we constructed a cell 
atlas containing normal epithelium, primary carcinoma, 
and metastatic carcinoma. The cancer cell developmen-
tal trajectory of metastasis was described by pseudotime 
trajectory analysis at different stages, and a cell subclus-
ter with commonality in patients and closely associated 
with metastasis was discovered. Cell–cell communica-
tion analysis revealed the immune escape and pro-mes-
enchymal growth properties of this subcluster. Based on 
it, an overexpressed gene named RAB13 that had not 
been reported in OC was identified. We further verified 
the effects that RAB13 promoting metastasis on OC cell 
lines, which showed that RAB13 promoted cell migration 
and invasion in vitro. Then, we explored the relationships 
between the expression level of RAB13 and clinical phe-
notypes with TCGA datasets, which indicated RAB13 
was significantly associated with worse prognosis and 
tumor progression. Finally, two cytoskeleton inhibitors 
that may target RAB13 were predicted. In conclusion, 
our study helps to further explore the mechanisms for 
OC metastasis, and provides a new potential treatment 
target of OC.

Materials and methods
Collection of OC and normal ovary samples
Tissues from one patient with ovarian cancer and one 
with normal ovary sample were collected for single cell 
suspension preparation. The fresh tissues were collected 
at the time of resection and then transported by MACS 
Tissue Storage Solution (MACS, Cat. no.130-100-008F) 
on ice. Tissues were subsequently washed for 2–3 times 

with phosphate buffered saline (PBS; Hyclone, Cat. no. 
SH30256.01) and minced on ice. The Tumor Dissociation 
Kit (MACS, Cat. no.130-095-929) was used to digest the 
tissues in order to prepare single-cell suspensions. Next, 
the tissues were dissociated at 37 °C with a shaking speed 
of 30 rpm for 6 min. The dissociated cells were digested 
and collected with 0.25% trypsin (Gibco, Cat. No. 
25200056) for 2 min. Cell suspensions were filtered using 
a 40 μm nylon cell strainer (Falcon, Cat. no. 352340), the 
red blood cells were thus removed. Single-cell suspen-
sions were stained with AO/PI fluorescent dyes (Logos 
Biosystems, Cat. no. LB F23001) to check viability with 
LUNA (Logos Biosystems, Cat. no. LUNA-STEM). And 
then diluted them to approximately 1 × 106 cells/ml 
with PBS containing 0.02% BSA for single-cell sequenc-
ing. Cells were loaded according to the standard protocol 
of the Chromium single cell 3′ kit, capturing 5,000 cells 
to 10,000 cells/chip position (V3 chemistry). Libraries 
for scRNA-seq were generated using the 10 × Genom-
ics Chromium platform and sequenced on an Illumina 
Novaseq 6000 system.

Public data sources
The public scRNA-seq datasets were downloaded from 
Gene Expression Omnibus database [13], with acces-
sion numbers GSE154600, GSE158937 and GSE181955 
(Additional file 5: Table S1). Moreover, the bulk RNA-seq 
expression dataset and phenotype dataset of TCGA ovar-
ian cancer were downloaded from UCSC Xena [14, 15].

Quality control and data integration
Further quality control was applied to cells: cells were 
filtered for detected genes (min: 300-max: 6000), mito-
chondrial gene percent (0–15%), hemoglobin gene 
percent (0–0.1%) and ribosomal gene percent (min: 
1–100%). Then genes expressed in less than 3 cells were 
removed as well. The two samples with low data quality 
(due to their high mitochondrial gene percent and unu-
sual cell proportion), GSM4675274 and GSM4816046, 
were removed. Subsequently, cells were integrated by 
CCA method, using ‘IntegrateData()’ function of R pack-
age ‘Seurat’ [16].

The chromosomal copy‑number variations estimation
The chromosomal copy-number variations (CNVs) were 
estimated by R package ‘inferCNV’ [17]. B cells, T cells, 
myeloid cells, endothelial cells, fibroblasts and benign 
epithelial cells were used as reference. The CNVs scores 
were obtained by accumulating the CNVs levels of cells 
within each subcluster.
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Gene set functional analysis
The gene set functional analyses were conducted with 
R package ‘clusterProfiler’ [18] and ‘GSVA’ [19]. Gene 
Ontology (GO), Kyoto Encyclopedia of Genes and 
Genomes (KEGG) and Reactome pathway database were 
used for GSVA analyses. Hallmark gene sets and Reac-
tome gene sets were obtained from R package ‘msigdbr’ 
[20].

Survival analysis
The top 10 marker genes for each cell subcluster were 
extracted. Subsequently, subcluster feature scores of the 
379 OC patients from the TCGA cohort were calculated 
by GSVA. Combining with the overall survival time, we 
finally performed a Kaplan–Meier survival analysis by R 
package ‘survival’.

Pseudotime analysis
Single-cell pseudotime trajectory was constructed using 
R package ‘monocle3’ (monocle3 v1.0.1) [21]. UMAP 
method was applied to reduce dimensions, and function 
of ‘plot_cells’ was used for visualization. The ‘graph_test’ 
function was used to screen for DEGs. The threshold of 
Morans index was set at > 0.3 and the q-value (corrected 
p value) threshold was set at < 0.001.

Cell–cell communication analysis
We used R package ‘CellChat’ (CellChat v1.1.3) to per-
form cell–cell communication analysis [22]. For analysis, 
500 cells from each cell subcluster were selected ran-
domly by function ‘subset’. Cellchat database including 
‘Secreted Signaling’, ‘ECM-Receptor’ and ‘Cell–Cell Con-
tact’ were used. The minimum cell count was set at 10 for 
filtering.

HdWGCNA analysis
High dimensional weighted gene co-expression network 
analysis (hdWGCNA) was used to construct a scale-free 
network at single cell level by R package ‘hdWGCNA’. 
After set the threshold of scale-free topology model fit 
as > 0.85, soft threshold was selected as 5 for the best con-
nectivity. GSVA was used to score TCGA cohort with 
modules. Correlations between modules and phenotype 
were evaluated by Spearman test. The function ‘Hub-
GeneNetworkPlot’ was used to construct a protein–pro-
tein interaction (PPI) network.

Differential expression analysis
Five hundred cells from primary and metastatic sam-
ples were selected by random sampling. Then differ-
ential expression analysis was performed by R package 

‘DESeq2’. Genes with log2FoldChange absolute values > 1 
and adjusted p value < 0.01 were regarded as differential 
expressed genes (DEGs).

Drug sensitivity prediction
We performed the prediction analysis of drug sensitiv-
ity of the commonly used or potential chemotherapy 
drugs for OC by R package “pRRophetic”. TCGA cohort 
including 379 patients was divided into two groups by the 
median of gene module GSVA score.

Quantitative real‑time PCR (RT‑qPCR)
Total RNA was isolated using the kit (Invitrogen, Cals-
bad, CA). Next, cDNAs were synthesized according to 
protocols (Toyobo, Shanghai, China). Then, qRT-PCR 
was conducted on an ABI 7500 Real-Time PCR system 
(Applied Biosystems, Foster City, USA). qRT-PCR prim-
ers for RAB13 were as follows: forward primer 5′-ACA​
TCT​CCA​CCA​TCG​GAA​TTGAT-3′ and reverse primer 
5′-TGT​CTT​GAA​CCG​CTC​TTG​GC-3′. Finally, the rela-
tive expression of the genes was analyzed by the compar-
ative 2−ΔΔCT method.

Cell culture and small interfering RNA (siRNA) transfection
Human OC cell lines SK-OV-3, A2780 and ovarian 
epithelial cell line OSE were obtained from ATCC. 
SK-OV-3, A2780 and OSE cell lines were maintained 
in RPMI-1640 (Gibco, MD, USA), supplemented with 
10% FBS (HyClone, USA) and 100  μg/ml streptomycin/
penicillin (Gibco, MD, USA) under standard culture 
conditions (5% CO2, 37  °C). After the cell lines reached 
a confluency of 50–60%, they were transfected with 
50  pmol/mL of siRNAs using lipofectamine 3000 (Inv-
itrogen, Carlsbad, CA, USA) for 8 h. Then, the transfec-
tion system was removed and cells were cultured under 
standard culture conditions. Protein analysis and func-
tional experiments were performed digested cells 48  h 
after seeding. RNA analysis was performed on harvested 
cells 24 h after seeding. The siRNAs against RAB13 were 
obtained from JTSBIO Co., Ltd. (Wuhan, China) and the 
sequences of siRAB13 were as follows: si1 (sense: 5′-CAA​
GAG​GAA​GGU​GCA​GAA​GTT-3′; anti-sense: 5′-CUU​
CUG​CAC​CUU​CCU​CUU​GTT-3′); si2 (sense: 5′-GUG​
ACA​AGA​AGA​ACA​CCA​ATT-3′; anti-sense: 5′-UUG​
GUG​UUC​UUG​UCA​CTT​-3′).

Western blot and antibodies
RIPA buffer (Thermo Fisher Scientific, Waltham, MA, 
USA) was used to extract protein from cell samples. 
The protein was measured using BCA assay (Thermo 
Fisher Scientific, Waltham, MA, USA). An equal amount 
of 30  µg of protein was added to each sample and sub-
sequently separated by SDS-PAGE (sodium dodecyl 
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sulfate–polyacrylamide gel electrophoresis). After trans-
ferred onto polyvinylidene fluoride membranes (Gene 
Molecular Biotech, Inc., Shanghai, China), membranes 
were blocked with 5% nonfat milk in TBST for 2  h at 
room temperature. Then were incubated with primary 
antibodies at 4  °C overnight, as following dilutions: 
anti-RAB13 (1:2000, ab180936, Abcam), anti-GAPDH 
(1:5000, KC-5G5, KangChen). Next, the membranes were 
incubated with horseradish peroxidase-conjugated rabbit 
IgG secondary antibodies (1:5000, CST) for 1 h at room 
temperature. The expression levels were detected by ECL 
kit (Roche Diagnostics, Basel, Switzerland) using WB 
imaging system.

Wound‑healing assay
The transfected cells were cultured in a 6-well plate 
to 100% confluence and then scribed vertically using 
a micropipette tip. Then the cell culture was changed 
to serum-free culture in order to exclude proliferation 
effects. The wound healing rate was observed and photo-
graphed 48 h later.

Transwell migration and invasion assays
We performed Transwell assays using 24-well plates 
with Transwell chamber system (Corning, USA). The 
upper chambers were plated with 100  μL Matrigel and 
placed at 37  °C for 12  h for the invasion assay. 3 × 104 
transfected cells were inoculated in the upper chamber 
with 200μL serum-free culture medium. 600μL culture 
medium with 20% FBS was plated in the lower chamber. 
After incubation at 37 °C, 5% CO2 for 48 h (24 h for the 
migration assay), the cells in upper chamber were washed 
off and the chamber was immersed in 4% crystal violet 
for 15  min. Then migrated or invaded cells were pho-
tographed under microscope. Four randomly selected 
views were counted for statistical analysis per well.

Results
Single‑cell RNA sequence data integration and clustering
For subsequent analysis, scRNA-seq data from 12 
patients (including six omental metastatic tissues, five 
primary ovarian cancer and one normal ovarian epithe-
lium) were integrated by canonical correlation analy-
sis (CCA). A total of 155,173 cells were acquired after 
quality control and filtering. After defining the num-
bers of principal components (nPCs = 30) and resolu-
tion (resolution = 0.2), uniform manifold approximation 
and projection (UMAP) method was used for non-linear 
dimension reduction and 18 cell clusters were identified 
(Additional file  1: Fig. S1). Based on canonical mark-
ers, six cell types from 12 patients were finally separated 
(Fig. 1A, B: B cells (markers: CD79A, MS4A1), endothe-
lial cells (markers: PECAM1, VWF), epithelial cells 

(markers: EPCAM, CD24, KRT19), fibroblasts (mark-
ers: COL1A1, COL1A2, DCN), myeloid cells (markers: 
FCER1G, FCER3A, CD14) and T cells (markers: CD3D, 
CD3E) (Fig. 1C).

Interestingly, with the progress of the disease, the 
composition of epithelial cells was decreasing, while the 
composition of immune cells and mesenchymal cells 
was increasing relatively. It was in line with our conven-
tional understanding that metastatic tumors have a more 
complex TME (tumor microenvironment) (Fig. 1D). This 
suggested that the smaller proportion of metastatic can-
cer cells may have a more aggressive malignant behavior 
compared with primary cancer cells.

Heterogeneity between cancer cell clusters of OC
Next, we performed inferring chromosomal copy-num-
ber variations (CNVs) analysis among all epithelial cells 
with reference cells of endothelial cells, immune cells 
(myeloid cells, T cells and B cells) and normal epithelial 
cells (Fig. 1E). Based on the CNV levels, malignant cells 
were separated from all epithelial cells. Then, the malig-
nant cells were reclustered into seven subclusters named 
C1 to C7 by UMAP analysis according to the similarity 
of gene expression (Fig.  2A). The CNV scores in most 
malignant cells were obviously higher than that in nor-
mal epithelial cells. In addition, C4 has the highest CNVs 
score among all subclusters (Fig. 2B and Additional file 2: 
Fig. S2), which suggests that C4 may have a higher malig-
nant potential than other subclusters. As is shown in 
Fig. 2C, subclusters C2 and C3 were mainly presented in 
primary sites; C1, C6 and C7, contained cells from the 
primary sites and the metastatic sites; except them, C4 
mainly existed in metastatic sites and C5 was a patient-
specific subcluster from only one metastatic site. This 
indicated that the malignant cells were highly spatially 
heterogeneous, while we were aiming to explore the com-
monalities of metastatic ovarian cancer from different 
patient sources.

To explore the functions among the subclusters, we 
then performed a gene set variation analysis (GSVA). 
The results showed that different cancer subclusters were 
associated with diverse biological processes (Fig.  2D). 
C2, C5 and C7 enriched immunity related pathways 
such as ‘antigen process and presentation’, ‘inflamma-
tory response’, ‘cytokine-cytokine receptor interactions’ 
and ‘interferon gamma response’. Therefore, we regarded 
them as immune-active subclusters. C4 existed with an 
invasive signature including malignant biological proper-
ties such as Hedgehog signaling, epithelial–mesenchymal 
transition, angiogenesis, and adherence junction, which 
were previously considered to be correlated with angio-
genesis, chemotherapy resistance and tumor invasion [23, 
24]. C6 enriched proliferative and DNA repair pathways 
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Fig. 1  Single-cell atlas of 12 patients. A, B UMAP of the all 155,173 cells. Colored by cell type or patient. NM: normal epithelium; PT: primary tumor; 
MT: metastatic tumor. C Violin plot showed the markers of each cell type. D Bar plot showed the cell proportion among patients. E Chromosomal 
landscape of inferred CNVs among cancer cell subclusters
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such as ‘cell cycle’, ‘G2M checkpoint’, ‘DNA repair’ and 
‘homologous recombination’, indicating it was at a high 
proliferative status. As described in previous study, the 
proliferative DNA repair subcluster C6 was an untreated 
cell cluster which had better chemotherapy response and 
prognosis [25]. Thus, functional analysis revealed that 
C4 was an invasion-associated subcluster. Studying this 
subcluster may help us understand the mechanism of OC 
metastasis and develop new therapeutic targets.

Then, using the bulk RNA-seq data and clinical data 
from The Cancer Genome Atlas (TCGA), we investi-
gated the relationship of subclusters with patient progno-
sis (Additional file  3: Fig. S3). Among the 7 subclusters 
identified from these 12 patients, only two subclusters 
were significantly linked to prognosis, of which C4 was 
negatively associated with overall survival (OS) time 
(log-rank test, p = 0.013), while C7 was positively asso-
ciated with OS time (log-rank test, p = 0.011) (Fig.  2E). 
To investigate the transition between benign epithelium, 

Fig. 2  Heterogeneity of transcriptomes among OC cells. A Dimplot showed the UMAP of epithelial cell subclusters. B Violin plot demonstrated the 
difference in CNV scores among benign and malignant cell subclusters. C Malignant cell proportion among patients. D Hallmark and Reactome 
pathways of malignant cell subclusters determined by GSVA. E Kaplan–Meier analysis for patients from TCGA cohort with high and low GSVA score 
based on the top 20 markers of C4 (top) and C7 (bottom). F, G Pseudotime trajectory analysis highlights subcluster C4 that mainly derived from 
metastatic samples with the largest pseudotime
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primary cancer and metastatic cancer, we performed 
a pseudotime trajectory analysis of all epithelial cell 
groups. Through placing the normal epithelial cells at the 
beginning of the trajectory, cells were separated by can-
cer progression (Fig. 2F, G). We suggested that the ends 
of pseudotime trajectories including C3, C4 and C7 were 
different end states of cancer cells. Based on this, we 
obtained three main transition trajectories and identified 
532 differentially expressed genes of them (Additional 
file  6: Table  S2). We also considered that pseudotime 
trajectory analysis was susceptible to the interindividual 
variation [25], but most subclusters except for C5 were 
derived from multiple samples (Fig. 2C). In this section, 
we explored the heterogeneity among OC cells and iden-
tified a specific OC cell subcluster, C4, which was related 
to metastasis and worse prognosis.

C4 promotes tumor metastasis through cell–cell 
communication with mesenchymal cells
We then performed cell–cell communication analy-
sis to elucidate the interactions of different subclusters 
and the TME cells. The results showed that most of the 
tumor cells except for C7 had a low number of cell inter-
actions with immune cells (including B cells, T cells, and 
myeloid cells). This indicated that C7 was an immune-
activated subcluster, corroborating with its previously 
mentioned association with a better prognosis. Mean-
while, C4 had the biggest cell interaction number with 
mesenchymal cells (including vascular endothelial cells 
and fibroblasts) and few interactions with immune cells 
(Fig. 3A, B), suggesting that C4 may have a higher level 
of immune escape and promote angiogenesis and tumor 
invasion through cellular communication with mes-
enchymal cells. Furthermore, we found that pathways 
related to chemokines, cytoskeleton and angiogenesis, 
including CXCL, Laminin, Collagen and VEGF, ranked 
highest in contribution, besides pathways common to all 
subgroups such as MK and SPP1 (Additional file 4: Fig. 
S4). For the CXCL pathway, C1, C2, C6 and C7 all had 
more communications with immune cells, suggesting 
that they may have a better immune response (Fig. 3C). 
In contrast, C4, C5, and C6 did not produce signals in 
the immune related pathway, and their communications 
focused on the Laminin and Collagen pathways interact-
ing with fibroblasts (Fig.  3D, E). In addition, the VEGF 
pathway that mainly interacted with endothelial cells 
was much stronger in C4 than that in the other six sub-
clusters (Fig. 3F). We also identified the receptor-ligand 
interactions of these pathways (Fig.  3G, H). We noticed 
C4 expressed higher levels of VEGFA and VEGFB, 
while its receptors, FLT1, PGF and KDR were specifi-
cally expressed in endothelial cells, indicated that C4 
was a subcluster promoting angiogenesis and metastasis. 

Moreover, C4 significantly overexpressed the laminin 
family genes, which were considered correlating to 
extracellular matrix (ECM) remodeling and tumor inva-
sion [26]. In summary, our work indicated that C4 was 
an invasive subcluster, promoting angiogenesis, ECM 
remodeling and tumor metastasis through cell–cell 
communication.

HdWGCNA identifies the hub genes of C4 related 
to metastasis
Next, high dimensional weighted gene co-expression 
network analysis (hdWGCNA) was used to identify the 
main molecular characteristics of C4. With a soft thresh-
old of 5, the scale-free network of C4 was constructed 
for the best connectivity and a total of 10 gene modules 
were identified (Fig.  4A–C). The module Epi7 had the 
strongest correlation with lymphatic and venous invasion 
and was negatively correlated with overall survival time 
(Fig.  4D). The GSVA scores of Epi7 module among all 
epithelial cells were calculated, the result showed that C4 
scored the highest (Fig. 4E). We then constructed a PPI 
network, demonstrating the hub genes and the interac-
tions of module Epi7 (Fig. 4F), the GTPase, microtubules, 
microfilaments and cytoskeleton related genes such as 
TUBB, RAB13 and VIM were in a central position. Then 
we performed GO and KEGG enrichment analyses for 
Epi7, the functions mainly focused on cytoskeleton and 
GTPase related pathways (Fig. 4G, H). In conclusion, we 
explored the gene expression modules within C4, and 
identified the hub genes leading to metastasis.

Downregulation of RAB13 suppresses migration 
and invasion abilities of OC cells
By differential expression analysis (DEA) between 
primary and metastatic OC cells, we identified 31 
upregulated genes in metastatic cancer cells (Fig.  5A, 
Additional file  7: Table  S3). Taking the intersec-
tion with the hub genes of Epi7, we obtained 2 genes, 
RAB13 and HES1 (Fig.  5B, C). KM curves plotted by 
Kaplan–Meier Plotter [27], demonstrated a signifi-
cantly negative correlation between RAB13 and over-
all survival time (logrank p = 0.00091), while HES1 
was not significant (Fig.  5D). We further explored the 
mRNA expression of RAB13 in human OC cell lines 
SK-OV-3, A2780 and normal ovarian cell line OSE. 
The RT-qPCR results showed that RAB13 was signifi-
cantly upregulated in SK-OV-3 and A2780 compared 
with OSE (Fig. 5E). Meanwhile, we collected the immu-
nohistochemical  pictures of RAB13 in OC from HPA 
database [28], which showed the same trend with the 
mRNA levels (Fig. 5F). To verify the function of RAB13 
in ovarian cancer, we detected the cellular phenotypic 
changes in OC cell lines that knocked down RAB13. 
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In both SK-OV-3 and A2780 cell lines, RAB13 was 
efficiently knocked down by two siRNAs (Fig.  5G, H). 
Subsequently, we found that the knockdown of RAB13 
reduced the ability of OC cells to migrate and invade 
by wound-healing assay and Transwell assays. (Fig. 5I–
K). These results demonstrated that RAB13 plays an 

important role in the invasion and migration of OC 
cells.

Functions of RAB13 and potential drugs prediction
We then analyzed the correlations between RAB13 and 
the enrichment scores of TCGA patients based on GOBP 

Fig. 3  Cell–cell Communications between OC and TME cells. A, B Cell communications among cancer cell subclusters and TME. The thickness of 
the line indicates numbers of signaling targeting malignant cells or TME cells. C–F Circle plots demonstrating the interactions of CXCL, Collagen, 
Laminin and VEGF pathways. G, H Bubble plots showing the ligands and receptors of VEGF and Laminin pathways

(See figure on next page.)
Fig. 4  Identification of gene co-expression modules among OC cells. A, B Weighed gene co-expression network analysis was constructed among 
malignant cells. (See “Materials and methods” section) C The first 20 eigengenes of each module, ranked by eigengene-based connectivity (kME). 
D Heatmap showed the relationships between modules and clinical phenotypes. E UMAP of the expression of Epi7 among all epithelial cells. F 
Protein–protein interaction network demonstrated the interactions within Module Epi7. G, H Dot plot of the GO (G) and KEGG (H) functional enrich 
analysis of the module Epi7. (*p < 0.05, **p < 0.01, ***p < 0.001 in a spearman test.)
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Fig. 4  (See legend on previous page.)
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and KEGG pathways (Fig.  6A). RAB13 negatively cor-
related with apoptosis pathways such as ‘programmed 
cell death in response to reactive oxygen species’. Fur-
thermore, RAB13 positively correlated to cytoskeleton 
pathways and tumorigenic pathways such as ‘regulation 
of actin cytoskeleton’, ‘mTOR signaling pathway’, ‘VEGF 
signaling pathway’, ‘synaptic vesicle cytoskeletal trans-
port’ and ‘positive regulation of wound healing’. In sum-
mary, RAB13 might promote migration and invasion 
through cytoskeleton pathways. Then, we explored the 
correlation between RAB13 and the sensitivity to conven-
tional chemotherapy, including cisplatin and docetaxel 
(Fig.  6B, C), and the results were not significant. Addi-
tionally, we investigated the potential cytoskeleton inhib-
itors from the Genomics of Drug Sensitivity in Cancer 
(GDSC) based on the gene module of RAB13 (Fig. 6D–
F), and found two drugs (IPA.3 and GSK269962A) with 
better response sensitivities for the high-expressed 
groups, which further revealed  that our findings could 
help develop new therapeutic strategies for OC patients.

Discussion
Intercellular and inter-patient heterogeneity of ovarian 
cancer is particularly strong due to different origins and 
the influence of complex biological factors [29]. Mean-
while, the heterogeneity has posed a major obstacle to 
the study of universal treatments for ovarian cancer and 
is one of the most important reasons for treatment fail-
ure, metastasis and recurrence of OC [30]. Single-cell 
sequence technologies provide us a new perspective to 
study tumor cell clusters and intracellular interactions.

In this study, we explored the heterogeneity within 
ovarian cancer, especially between primary and meta-
static cancer cells, and we found that there were het-
erogeneous subclusters within cancer cells. Such as C7, 
whose genetic signature was associated with a better 
prognosis, although they originate mainly from meta-
static tumors. Since its functional analysis showed that it 
was associated with immune response related pathways, 
we suggested that it was in a low immune escape state. 
In addition, C5 essentially originated from metastatic 
tumors in a single patient, indicating that therapeutic 
measures targeting this cell subcluster would be more 

difficult to be widely used. Unlike C5, we found another 
subcluster, C4, derived from multiple patients and was 
significantly associated with worse prognosis. The func-
tions of C4 mainly focused on pathways including EMT, 
Hedgehog signaling, angiogenesis, and cytoskeleton, 
which were usually considered being associated with 
tumor progression and metastasis [31–33]. These find-
ings led us to focus our attention on two more specific 
subclusters, C4 and C7.

We also characterized a cell–cell communication 
atlas among malignant cells and TME cells based on 
receptor-ligand pairs. We found that C7 communicated 
with immune cells, while C4 hardly communicated with 
immune cells, indicating it might be an immune escaped 
cell cluster. Meanwhile, the interactions of C4 to mes-
enchymal cells were much more than those in other 
malignant cells. Pathways including VEGF, Laminin and 
Collagen contributed significantly to the communication. 
The VEGF pathway has closely associated with angiogen-
esis and tumor invasion [34]. The laminin and collagen 
pathways correlated to ECM remodeling, as the tumor 
cells degrade ECM to make a path to travel to distant 
places [26, 35]. Therefore, it is suggested that the malig-
nant cells in C4 are the driving population in tumor inva-
sion and migration.

We further revealed the gene modules in C4 and iden-
tified its hub genes named RAB13 (RAB13, Member 
RAS Oncogene Family) and HES1 (Hes Family BHLH 
Transcription Factor 1). As a downstream target gene of 
NOTCH signaling pathway, the role of HES1 in cancer 
has been extensively studied. HES1 has been shown to 
promote cell invasion via STAT3-MMP14 pathway and is 
associated with poor prognosis in colorectal cancer [36]. 
However, in this study, we found that HES1 was not asso-
ciated with the prognosis of OC. Furthermore, the path-
way analysis results indicated that the NOTCH signaling 
pathway was not the most critical pathway in the C4 sub-
cluster. Therefore, we shifted our focus to another gene, 
RAB13. It is a member of the Rab family of small G pro-
teins and plays an important role in cell–cell junctions, 
which was associated with tumor progression and metas-
tasis in breast and cervical cancer [37, 38].

Fig. 5  RAB13 is overexpressed in OC and promotes OC cells migration and invasion. A Volcano plot revealed the DEGs between primary and 
metastatic OC cells (left) and the five genes with the greatest difference (right). B Intersection of the upregulated genes in metastatic OC cells 
and the hub genes of Epi7. C RAB13 and HES1 in the UMAP plot colored by expression level with pseudotime trajectory. D KM curve of overall 
survival time and RAB13 (top) or HES1 (bottom), n = 1656. E, F The mRNA expression levels of RAB13 were higher in OC cell lines than normal 
ovary cell line (*p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001 in t-test. N = 3), as well as the tissue protein levels based on the Human Protein 
Atlas (HPA) database. G, H Western blot analysis and qRT-PCR analysis of the expression of RAB13. The expression level of protein was quantified by 
grey analysis. (*p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001 in t-test. N = 3). I, J The wound healing assay and Transwell migration assay showed 
decreased migration ability of SK-OV-3 and A2780 cell lines treated with si-RAB13. (*p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001 in t-test. N = 3). 
K The Transwell invasion assay showed decreased invasion ability of SK-OV-3 and A2780 cell lines treated with si-RAB13. (*p < 0.05, **p < 0.01, 
***p < 0.001, ****p < 0.0001 in t-test. N = 3)

(See figure on next page.)
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Fig. 5  (See legend on previous page.)
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Our study found that RAB13 plays a significant role in 
regulating pathways related to cytoskeleton remodeling 
and tight junctions (Fig. 6A), which are known to affect 
the movement and migration of cells [39–41]. Katja et al. 
found that RAB13 inhibits protein kinase 1 to suppress 
the phosphorylation of vasodilator-stimulated phos-
phoprotein (VASP), and the phosphorylated VASP is 
necessary for the transmembrane proteins claudin and 
occludin to attach tight junctions to the actin cytoskel-
eton via binding with tight junction protein 1 [39, 42]. 
Moreover, Ayoku et al. demonstrated that RAB13 could 
form a complex with its downstream effector RAB13 
binding protein (JRAB), which recruits the actin cytoskel-
eton-binding protein filamin to the site [40, 41]. Filamin 
promotes the formation of membrane protrusions and 
leads to directed cell migration [43]. Based on these stud-
ies, we suggest that RAB13 may enhance cell migration 
ability through two closely related mechanisms as shown 
in Fig. 7. However, the effects of RAB13 in OC have been 
hardly reported yet. In our study, we validated the effect 
of RAB13 for the first time in OC, and demonstrated its 

role in promoting OC cell migration and invasion. Con-
sistently with previous hypothesis, molecular functions 
of RAB13 in OC were indicated to correlate with cell 
movement and migration, since the enrichment results 
showed pathways positively related to cytoskeleton and 
negatively related to tight junction. This provides a basis 
for further exploration of the potential value of RAB13 in 
the treatment of ovarian cancer.

Furthermore, RAS family, has a mutation rate of 
15% in OC, and these mutations can lead to metabolic 
reprogramming, which is one of the most important 
hallmarks of cancer cells [44]. Metabolic reprogram-
ming occurs through multiple metabolic changes such 
as in glucose, fatty acid and glutamine, which can affect 
the interactions between cancer cells and TME, leading 
to malignant biological process including cell migra-
tion, angiogenesis and immune escape [45]. As find-
ings in this study (Fig.  4H), metabolic pathways play 
an important role in C4, which is the driving cell clus-
ter of OC metastasis. The functions of RAB13 are also 
enriched in metabolic pathways such as Glycerolipid 

Fig. 6  Functions and Drug Response Prediction of RAB13 based on TCGA cohort. A Correlations between RAB13 and the enrichment scores of 
GOBP (left bottom) as well as KEGG (right top) pathways. B–F Boxplots displaying the sensitivity of the conventional chemotherapy drugs (B, C) or 
potential cytoskeleton inhibitors (D–F) among OC patients
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Metabolism, Sphingolipid Metabolism (Fig. 6A). How-
ever, as a member of RAS family, the character of 
RAB13 in cancer metabolism has been rarely discussed, 
especially in OC. This would be an interesting research 
direction, such as studying the metabolomics of OC 
cells or patients grouped by RAB13 expression level 
and detecting the differential expressed metabolites 
and genes by mass spectrometry and next-generation 
sequence.

In addition to conventional treatments including plati-
num and paclitaxel chemotherapy, new drugs such as 
PARP inhibitors and VEGF inhibitors have been intro-
duced to clinical use and have significantly improved the 
prognosis of many OC patients [46, 47]. However, despite 
improvements for the therapeutic methods, the progno-
sis of most OC patients still remains poor [46]. Here, we 
aimed to find an approach that will benefit most patients. 
Since C4 is a cell cluster with prevalence among OC 
patients, we suggested that its marker RAB13 might be 
a new therapeutic target. We further predicted the sen-
sitivity of several compounds targeting cytoskeleton and 
found two of them were significant including IPA.3 and 
GSK269962A, which may provide new options for the 
treatment of OC.

Conclusions
This study provided a new perspective on understand-
ing the progression and metastasis of OC. Further-
more, we revealed a specific cell cluster associated with 
a high propensity to metastasize and its marker, RAB13 
has great potential to become a new therapeutic target 
for OC.

Supplementary Information
The online version contains supplementary material available at https://​doi.​
org/​10.​1186/​s12967-​023-​04094-7.

Additional file 1: Figure S1. UMAP of integrated data identified 18 cell 
clusters.

Additional file 2: Figure S2. Chromosomal landscape of inferred CNVs 
among malignant OC cell clusters.

Additional file 3: Figure S3. Kaplan–Meier analysis for patients from 
TCGA cohort with high and low GSVA score based on the top 20 markers 
of 7 cell subclusters.

Additional file 4: Figure S4. The rank of pathways contribution to cell–
cell communication.

Additional file 5: Table S1. Clinical data of 14 samples used in the single-
cell sequence analyses.

Additional file 6: Table S2. Genes were arranged in descending order of 
the morans_I calculated by pseudotime analysis.

Fig. 7  RAB13 promotes cell migration via regulating the tight junction and actin cytoskeleton. RAB13 inhibits the phosphorylation of VASP and 
suppress the binding of TJP1 with claudin and occludin by suppressing the ability of PKA, leading to decreased cell adhesion; Meanwhile, RAB13 
forms a complex with JRAB and inhibits the remodeling of cytoskeleton by affecting filamin, thereby promoting the migration ability of cancer cells

https://doi.org/10.1186/s12967-023-04094-7
https://doi.org/10.1186/s12967-023-04094-7


Page 14 of 15Guo et al. Journal of Translational Medicine          (2023) 21:254 

Additional file 7: Table S3. Differentially expressed genes between pri-
mary and metastatic cancer cells with their log2FoldChange and p-value.

Acknowledgements
We would like to thank Jianming Zeng (University of Macau) and all members 
of his bioinformatics team, biotrainee, for generously sharing their experience 
and codes.

Author contributions
JHG, YG, XTZ, and WTY conceived and designed the study. JHG carried out 
all experiments and wrote the manuscript. JHG, ZFL and XYH participated in 
bioinformatics analysis. XYH, JL supported the study. GY and WTY supervised 
the study. YG, XTZ, and WTY revised the manuscript. All authors read and 
approved the final manuscript.

Funding
The study is supported by the Capital’s Funds for Health Improvement and 
Research (No.2022-2-2116).

Availability of data and materials
The code used in our study can be obtained from the corresponding author. 
The data sets used in the present research were summarized in the Additional 
file 5: Table S1 and the single-cell raw data have been deposited in the SRA 
data sets (PRJNA756768).

Declarations

Ethics approval and consent to participate
The study was conducted in accordance with the Declaration of Helsinki, as 
revised in 2013. The study was approved by the medical ethics committee 
of the Beijing Obstetrics and Gynecology Hospital Capital Medical University. 
Informed consent was not required for this study.

Consent for publication
All authors gave their consent for publication.

Competing interests
The authors declare that the research was conducted in the absence of any 
commercial or financial relationships that could be construed as a potential 
competing interests.

Received: 23 November 2022   Accepted: 28 March 2023

References
	1.	 Sung H, et al. Global cancer statistics 2020: GLOBOCAN estimates of 

incidence and mortality worldwide for 36 cancers in 185 countries. CA 
Cancer J Clin. 2021;71(3):209–49.

	2.	 Siegel RL, Miller KD, Jemal A. Cancer statistics, 2020. CA Cancer J Clin. 
2020;70(1):7–30.

	3.	 Siegel RL, et al. Cancer statistics, 2021. CA Cancer J Clin. 2021;71(1):7–33.
	4.	 Tabassum DP, Polyak K. Tumorigenesis: it takes a village. Nat Rev Cancer. 

2015;15(8):473–83.
	5.	 Bashashati A, et al. Distinct evolutionary trajectories of primary high-

grade serous ovarian cancers revealed through spatial mutational profil-
ing. J Pathol. 2013;231(1):21–34.

	6.	 Chen K, et al. Integration and interplay of machine learning and bioinfor-
matics approach to identify genetic interaction related to ovarian cancer 
chemoresistance. Brief Bioinform. 2021;22(6):bbab100.

	7.	 Ross EM, Markowetz F. OncoNEM: inferring tumor evolution from single-
cell sequencing data. Genome Biol. 2016;17:69.

	8.	 Izar B, et al. A single-cell landscape of high-grade serous ovarian cancer. 
Nat Med. 2020;26(8):1271–9.

	9.	 Wang Y, et al. Single-cell dissection of the multiomic landscape of high-
grade serous ovarian cancer. Cancer Res. 2022;82(21):3903–16.

	10.	 Zhao H, et al. Single-cell RNA-seq highlights a specific carcinoembryonic 
cluster in ovarian cancer. Cell Death Dis. 2021;12(11):1082.

	11.	 Olbrecht S, et al. High-grade serous tubo-ovarian cancer refined with 
single-cell RNA sequencing: specific cell subtypes influence sur-
vival and determine molecular subtype classification. Genome Med. 
2021;13(1):111.

	12.	 Geistlinger L, et al. Multiomic analysis of subtype evolution and 
heterogeneity in high-grade serous ovarian carcinoma. Cancer Res. 
2020;80(20):4335–45.

	13.	 Gene expression omnibus database. 2022. https://​www.​ncbi.​nlm.​nih.​
gov/​geo. Accessed 10 Dec 2021.

	14.	 UCSC Xena. 2022. http://​xena.​ucsc.​edu/. Accessed 13 Jul 2021.
	15.	 Goldman MJ, et al. Visualizing and interpreting cancer genomics data via 

the Xena platform. Nat Biotechnol. 2020;38(6):675–8.
	16.	 Stuart T, et al. Comprehensive integration of single-cell data. Cell. 

2019;177(7):1888-1902.e21.
	17.	 Patel AP, et al. Single-cell RNA-seq highlights intratumoral heterogeneity 

in primary glioblastoma. Science. 2014;344(6190):1396–401.
	18.	 Wu T, et al. clusterProfiler 4.0: a universal enrichment tool for interpreting 

omics data. Innovation (Camb). 2021;2(3):100141.
	19.	 Hänzelmann S, Castelo R, Guinney J. GSVA: gene set variation analysis for 

microarray and RNA-seq data. BMC Bioinformatics. 2013;14:7.
	20.	 Molecular signatures database. 2022. http://​www.​gsea-​msigdb.​org/​gsea/​

msigdb/. Accessed 27 Jan 2022.
	21.	 Trapnell C, et al. The dynamics and regulators of cell fate decisions are 

revealed by pseudotemporal ordering of single cells. Nat Biotechnol. 
2014;32(4):381–6.

	22.	 Jin S, et al. Inference and analysis of cell-cell communication using cell 
chat. Nat Commun. 2021;12(1):1088.

	23.	 Raghavan S, et al. Carcinoma-associated mesenchymal stem cells pro-
mote chemoresistance in ovarian cancer stem cells via PDGF signaling. 
Cancers. 2020;12(8):2063.

	24.	 Gardi NL, et al. Discrete molecular classes of ovarian cancer suggestive of 
unique mechanisms of transformation and metastases. Clin Cancer Res. 
2014;20(1):87–99.

	25.	 Zhang K, et al. Longitudinal single-cell RNA-seq analysis reveals stress-
promoted chemoresistance in metastatic ovarian cancer. Sci Adv. 
2022;8(8):eabm1831.

	26.	 Gritsenko PG, Ilina O, Friedl P. Interstitial guidance of cancer invasion. J 
Pathol. 2012;226(2):185–99.

	27.	 Kaplan-Meier plotter. 2022. http://​kmplot.​com/. Accessed 10 Feb 2022.
	28.	 Huaman protein atlas. 2022. http://​www.​prote​inatl​as.​org/. Accessed 14 

Sep 2022.
	29.	 Xu J, et al. Single-cell RNA sequencing reveals the tissue architec-

ture in human high-grade serous ovarian cancer. Clin Cancer Res. 
2022;28(16):3590–602.

	30.	 Foster JM, et al. The contemporary management of peritoneal metastasis: 
A journey from the cold past of treatment futility to a warm present and 
a bright future. CA Cancer J Clin. 2022. https://​doi.​org/​10.​3322/​caac.​
21749.

	31.	 Mo Y, et al. Circular RNA circPVT1 promotes nasopharyngeal carcinoma 
metastasis via the β-TrCP/c-Myc/SRSF1 positive feedback loop. Mol 
Cancer. 2022;21(1):192.

	32.	 Liu P, et al. The FUS/circEZH2/KLF5/ feedback loop contributes to CXCR4-
induced liver metastasis of breast cancer by enhancing epithelial–mes-
enchymal transition. Mol Cancer. 2022;21(1):198.

	33.	 Wang X, et al. The NQO1/p53/SREBP1 axis promotes hepatocellular carci-
noma progression and metastasis by regulating Snail stability. Oncogene. 
2022;41(47):5107–20.

	34.	 Yang Y, Cao Y. The impact of VEGF on cancer metastasis and systemic 
disease. Semin Cancer Biol. 2022;86(Pt 3):251–61.

	35.	 Fang Y, et al. LAMC1-mediated preadipocytes differentiation promoted 
peritoneum pre-metastatic niche formation and gastric cancer metasta-
sis. Int J Biol Sci. 2022;18(7):3082–101.

	36.	 Weng MT, et al. Hes1 increases the invasion ability of colorectal cancer 
cells via the STAT3-MMP14 pathway. PLoS ONE. 2015;10(12): e0144322.

	37.	 Chrisafis G, et al. Collective cancer cell invasion requires RNA accumula-
tion at the invasive front. Proc Natl Acad Sci USA. 2020;117(44):27423–34.

	38.	 Wang H, et al. Rab13 sustains breast cancer stem cells by supporting 
tumor-stroma cross-talk. Cancer Res. 2022;82(11):2124–40.

https://www.ncbi.nlm.nih.gov/geo
https://www.ncbi.nlm.nih.gov/geo
http://xena.ucsc.edu/
http://www.gsea-msigdb.org/gsea/msigdb/
http://www.gsea-msigdb.org/gsea/msigdb/
http://kmplot.com/
http://www.proteinatlas.org/
https://doi.org/10.3322/caac.21749
https://doi.org/10.3322/caac.21749


Page 15 of 15Guo et al. Journal of Translational Medicine          (2023) 21:254 	

•
 
fast, convenient online submission

 •
  

thorough peer review by experienced researchers in your field

• 
 
rapid publication on acceptance

• 
 
support for research data, including large and complex data types

•
  

gold Open Access which fosters wider collaboration and increased citations 

 
maximum visibility for your research: over 100M website views per year •

  At BMC, research is always in progress.

Learn more biomedcentral.com/submissions

Ready to submit your researchReady to submit your research  ?  Choose BMC and benefit from: ?  Choose BMC and benefit from: 

	39.	 Köhler K, Louvard D, Zahraoui A. Rab13 regulates PKA signaling during 
tight junction assembly. J Cell Biol. 2004;165(2):175–80.

	40.	 Nakatsuji H, et al. Involvement of actinin-4 in the recruitment of JRAB/
MICAL-L2 to cell-cell junctions and the formation of functional tight junc-
tions. Mol Cell Biol. 2008;28(10):3324–35.

	41.	 Sakane A, et al. Junctional Rab13-binding protein (JRAB) regulates cell 
spreading via filamins. Genes Cells. 2013;18(9):810–22.

	42.	 Köhler K, Zahraoui A. Tight junction: a co-ordinator of cell signalling and 
membrane trafficking. Biol Cell. 2005;97(8):659–65.

	43.	 Baldassarre M, et al. Filamins regulate cell spreading and initiation of cell 
migration. PLoS ONE. 2009;4(11): e7830.

	44.	 Mukhopadhyay S, Vander Heiden MG, McCormick F. The metabolic 
landscape of RAS-driven cancers from biology to therapy. Nat Cancer. 
2021;2(3):271–83.

	45.	 Tan S, et al. Exosomal cargos-mediated metabolic reprogramming in 
tumor microenvironment. J Exp Clin Cancer Res. 2023;42(1):59.

	46.	 Lheureux S, et al. Epithelial ovarian cancer. Lancet. 
2019;393(10177):1240–53.

	47.	 Winterhoff B, et al. Single-cell sequencing in ovarian cancer: a new fron-
tier in precision medicine. Curr Opin Obstet Gynecol. 2019;31(1):49–55.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub-
lished maps and institutional affiliations.


	Single-cell transcriptomics in ovarian cancer identify a metastasis-associated cell cluster overexpressed RAB13
	Abstract 
	Background 
	Methods 
	Results 
	Conclusions 

	Introduction
	Materials and methods
	Collection of OC and normal ovary samples
	Public data sources
	Quality control and data integration
	The chromosomal copy-number variations estimation
	Gene set functional analysis
	Survival analysis
	Pseudotime analysis
	Cell–cell communication analysis
	HdWGCNA analysis
	Differential expression analysis
	Drug sensitivity prediction
	Quantitative real-time PCR (RT-qPCR)
	Cell culture and small interfering RNA (siRNA) transfection
	Western blot and antibodies
	Wound-healing assay
	Transwell migration and invasion assays

	Results
	Single-cell RNA sequence data integration and clustering
	Heterogeneity between cancer cell clusters of OC
	C4 promotes tumor metastasis through cell–cell communication with mesenchymal cells
	HdWGCNA identifies the hub genes of C4 related to metastasis
	Downregulation of RAB13 suppresses migration and invasion abilities of OC cells
	Functions of RAB13 and potential drugs prediction

	Discussion
	Conclusions
	Anchor 34
	Acknowledgements
	References


