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Abstract 

Background  Neurodegeneration with brain iron accumulation (NBIA) disorders are a group of neurodegenera‑
tive diseases that have in common the accumulation of iron in the basal nuclei of the brain which are essential 
components of the extrapyramidal system. Frequent symptoms are progressive spasticity, dystonia, muscle rigidity, 
neuropsychiatric symptoms, and retinal degeneration or optic nerve atrophy. One of the most prevalent subtypes of 
NBIA is Pantothenate kinase-associated neurodegeneration (PKAN). It is caused by pathogenic variants in the gene 
of pantothenate kinase 2 (PANK2) which encodes the enzyme responsible for the first reaction on the coenzyme A 
(CoA) biosynthesis pathway. Thus, deficient PANK2 activity induces CoA deficiency as well as low expression levels of 
4′-phosphopantetheinyl proteins which are essential for mitochondrial metabolism.

Methods  This study is aimed at evaluating the role of alpha-lipoic acid (α-LA) in reversing the pathological alterations 
in fibroblasts and induced neurons derived from PKAN patients. Iron accumulation, lipid peroxidation, transcript and 
protein expression levels of PANK2, mitochondrial ACP (mtACP), 4′′-phosphopantetheinyl and lipoylated proteins, as 
well as pyruvate dehydrogenase (PDH) and Complex I activity were examined.

Results  Treatment with α-LA was able to correct all pathological alterations in responsive mutant fibroblasts with 
residual PANK2 enzyme expression. However, α-LA had no effect on mutant fibroblasts with truncated/incomplete 
protein expression. The positive effect of α-LA in particular pathogenic variants was also confirmed in induced neu‑
rons derived from mutant fibroblasts.
Conclusions  Our results suggest that α-LA treatment can increase the expression levels of PANK2 and reverse the 
mutant phenotype in PANK2 responsive pathogenic variants. The existence of residual enzyme expression in some 
affected individuals raises the possibility of treatment using high dose of α-LA.
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Background
Neurodegeneration with Brain Iron Accumulation 
(NBIA) is a heterogeneous group of inherited dis-
eases characterized by progressive neurodegeneration 
and abnormal iron deposition in the brain, mainly in 
globus pallidus and substantia nigra [1, 2]. NBIA dis-
orders comprise 15 different subtypes [3], including 
pantothenate kinase-associated neurodegeneration, 
PLA2G6-associated neurodegeneration (PLAN) and 
β-propeller-associated neurodegeneration [4] as the most 
common [4].

Pantothenate kinase-associated neurodegeneration 
(PKAN) is an autosomal recessive disease caused by 
pathogenic variants in the pantothenate-kinase 2 gene 
(PANK2) [5]. PANK2 encodes for a mitochondrial pan-
tothenate kinase (PANK2) involved in the coenzyme A 
(CoA) biosynthesis pathway catalyzing the phosphoryla-
tion of pantothenate [6–9].

The main consequence of PANK2 alteration is a dys-
regulation in CoA homeostasis, which has secondary 
effects on cellular metabolism such as mitochondrial dys-
function, iron homeostasis disruption, lipid metabolism 
dysregulation or an impaired antioxidant system [10, 11].

CoA deficiency in PKAN affects posttranslational 
modifications of mitochondrial enzymes that need a 
4′-phosphopantetheine cofactor [12]. As a consequence, 
expression levels of essential 4′-phosphopantetheinyl 
proteins in mitochondria—such as mitochondrial ACP 
(mtACP) in type II mitochondrial Fatty Acid Synthe-
sis (mtFAS II), α-Aminoadipate semialdehyde synthase 
(AASS) in lysine metabolism and mitochondrial 10-for-
myltetrahydrofolate dehydrogenase (10-FTHFDH or 
ALDH1L2) involved in folate metabolism [13]- are mark-
edly reduced.

PKAN is also characterized by an increase in oxida-
tive stress and reactive oxygen species (ROS) produc-
tion leading to lipid peroxidation/iron accumulation 
and eventually neuronal death by ferroptosis [14, 15]. 
Although neurons have mechanisms to counteract the 
effect of oxidative stress and ROS, it has been observed 
that they are downregulated in neurodegenerative dis-
eases [16]. Among the cellular antioxidant systems, it has 
been described NRF2 as a transcription factor that regu-
lates the synthesis of several antioxidant proteins such 
as catalase, superoxide dismutase (SOD) or glutathione 
peroxidases (GPX). NRF2 has a protective effect on neu-
rodegenerative diseases and its activation through anti-
oxidants treatment could be an alternative to curb the 

disease progression [17, 18]. In this respect, it has been 
described that antioxidant treatments may be beneficial 
for neurodegenerative disorders such as PLAN, Friedre-
ich’s ataxia, or Alzheimer’s disease [19–23]. In addition, 
it has been shown that lipid peroxidation induction pro-
motes iron accumulation in cellular models of NBIA [22]; 
in turn, ROS overproduction due to iron accumulation 
induces lipid peroxidation in a negative series of events 
that build on and reinforce each other [22]. Both pro-
cesses promote lipofuscin accumulation which is associ-
ated with ageing and neurodegeneration [22, 24].

Unfortunately, existing treatments for PKAN are pri-
marily palliative to pharmacologically treat the main 
symptoms of the disease. Recently, it has been reported 
that several commercial supplements (pantothenate, 
pantethine, vitamin E, omega 3, carnitine and thia-
mine) were able to eliminate iron accumulation, increase 
PANK2 and mtACP, and improve pathological alterations 
in mutant cells with residual PANK2 expression levels 
[25].

The main goal of this work was to evaluate the ben-
eficial effect of alpha-lipoic acid (α-LA), another well-
known nutritional supplement, on cellular models 
derived from PKAN patients. α-LA is an essential cofac-
tor for mitochondrial metabolism with powerful anti-
oxidant properties and promising therapeutic benefits in 
preventing or treating various diseases, including neuro-
degenerative diseases [26]. Thus, α-LA has been reported 
to reduce mitochondrial dysfunction, ROS formation and 
neuronal damage [27]. The potential therapeutic utility of 
α-LA in PKAN is also discussed.

Methods
Reagents
Sudan Black, Prussian Blue, ( ±) α-LA, Luperox® DI 
(tert-Butyl peroxide), anti-fatty acid synthase (FAS), 
and trypsin were purchased from Sigma Chemi-
cal Co. (St. Louis, MO). BODIPY® 598/591 C11, 
MitoTracker Deep Red FM, DAPI, were purchased 
from Invitrogen/Molecular Probes (Eugene, OR). 
MitoPeDPP® was purchased from Dojindo Molecu-
lar Technologies, Inc. (Rockville,MD) Anti-PANK2, 
anti-MTND1, anti-NDUFA9, anti-NFS1, anti-ISCU, 
anti-LYRM4anti-NRF2, PDH hand complex I activ-
ity kit and aconitase kit were purchased from Abcam 
(Cambridge, UK), Anti-mitochondrial 10-formyltet-
rahydrofolate dehydrogenase (ALDH1L2), anti-
alpha-aminoadipic semialdehyde synthase (AASS), 
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anti-FOXN4, anti-hnRNPA/B,anti-NF-Y, anti-Tau, 
anti-GPX4 and anti-AASDHPPT were purchased from 
Thermo-Fisher (Waltham, MA). Anti-lipoic acid was 
acquired from Merck (Darmstadt, Germany). Anti-
PLA2G6 and anti-SOD were purchased from Santa 
Cruz Biotechnology (Dallas, TX, USA). Anti-actin was 
acquired from MyBiosource (San Diego, California, 
USA). OxyBlot Protein Oxidation Detection Kit was 
acquired from Merck (Darmstadt, Germany). A cocktail 
of protease inhibitors (complete cocktail) was purchased 
from Boehringer Mannheim (Indianapolis, IN). The 
Immun Star HRP substrate kit was from Bio-Rad Labora-
tories Inc. (Hercules, CA).

Ethical statements
Approval of the ethical committee of the Hospital Uni-
versitario Virgen Macarena y Virgen de Rocío de Sevilla 
(Spain) was obtained, according to the principles of the 
Declaration of Helsinki and all the International Con-
ferences on Harmonization and Good Clinical Practice 
Guidelines.

Cell culture
Three lines of fibroblasts derived from patient skin biop-
sies from the Movement Disorder Unit of Hospital Uni-
versitario Virgen del Rocío, Sevilla, Spain, and from the 
Movement Disorders Bio-Bank available at the Neuro-
genetics Unit of the Neurological Institute ‘Carlo Besta’ 
(INCB), Milan, Italy and three controls lines of primary 
human skin fibroblasts were purchased from ATCC. 
Patient 1 (P1 presents a heterozygous pathogenic variant 
c.747dup (p.Arg249ProfsX43) that causes a stop codon, 
and a heterozygous variant c.1475C > G (p.Ala492Gly) 
that causes a missense variant which is predicted to be 
damaging by prediction tools such as PolyPhen2 [28]. 
The second patient (P2) is also heterozygous carrying 
changes in position 240-241delCA (p.Tyr80_Ser81de-
linsTer) and 650C > T (ThrT217Ile) which have been 
previously described [29]. The third patient (P3) P3 
presents a homozygous pathogenic variant c.1259delG 
causing a frameshift p.Gly420Valfs*30 [14]. Control val-
ues were represented as means ± SD of three control 
lines. Fibroblasts were grown in Dulbecco’s modified 
Eagle’s medium DMEM (Gibco™, ThermoFisher Scien-
tific, Waltham, MA, USA) supplemented with 10% FBS 
(Gibco™, ThermoFisher Scientific, Waltham, MA, USA), 
100 mg/ml penicillin/streptomycin. Fibroblasts were cul-
tured at 37ºC and 5% CO2. iNs were cultured in Neuronal 
Differentiation medium (NDiff227; Takara-Clontech, 
Kusatsu, Prefecture of Shiga, Japan) supplemented with 
neural growth factors and small molecules at different 
concentration [30]. Experiments were performed with 
less than 12 passage fibroblasts cultures. Patients and 

controls fibroblasts were treated with 10 μM of α-LA for 
twenty days.

Iron and lipofuscin accumulation
Iron accumulation was assessed by Perls’ Prussian blue 
staining [31]. Images were taken by light and fluores-
cence microscopy Axio Vert A1 microscope (Zeiss, 
Oberkochen, Germany) and analyzed by FIJI-ImageJ 
software. Iron content was also examined by colorimetric 
Ferrozine-based assay [32]

Lipofuscin accumulation was determined by Sudan 
Black B (SBB) staining as previously described [33]. SSB 
staining quantification was assessed by light microscopy.

Immunoblotting
Western blotting was performed using standard Meth-
ods. After transferring protein to a nitrocellulose mem-
brane. The membrane was incubated with primary 
antibodies diluted 1:1000, and then with the correspond-
ing secondary antibody coupled to horseradish peroxi-
dase at a 1:2500 dilution. Specific protein complexes were 
identified by ChemiDoc™ MP Imaging System (Bio-Rad, 
Hercules, CA, USA) using the Immun Star HRP sub-
strate kit (Biorad Laboratories Inc., Hercules, CA, USA). 
ImageLab™ version 5.0 software (Bio-Rad, Hercules, CA, 
USA) was used to analyze protein expression levels.

Immunofluorescence microscopy
iNs were plated on μ-Slide 4 well (Ibidi Inc., Martin-
sried, Germany). Cells were rinsed once with PBS, fixed 
in 3.8% paraformaldehyde for 10 min at room tempera-
ture. Then, cells were permeabilized with Triton X-100 
0,1% for 10 min. Next, cells were incubated with block-
ing solution 5% donkey serum for 1 h. Primary antibodies 
diluted 1:200–1:500 in blocking solution were incubated 
overnight at 4 °C. Unbound antibodies were removed by 
washing twice with PBS. Cells were incubated with sec-
ondary antibodies, diluted 1:300 in blocking solution, for 
2 h at room temperature. Finally, cells were stained with 
1 μg/mL DAPI for 15–20 min. Images were taken with a 
DeltaVision system with an Olympus IX-71 fluorescence 
microscope with a 60 × oil objective and analysed by Fiji-
ImageJ software.

Oxidative stress analysis
Oxidized proteins were detected using the Oxyblot Pro-
tein Oxidation Detection Kit following the manufac-
turer’s instructions. Lipid peroxidation was evaluated 
using 4,4-difluoro-5-(4-phenyl-1,3-butadienyl)-4-bora-
3a,4a-diaza-s-indacene-3-undecanoic acid (BODIPY® 
581/591 C11), a lipophilic fluorescent dye [34, 35]. Cells 
were incubated with 1–5 µM BODIPY® 581/591 C11 for 
30 min at 37 °C. Control fibroblasts treated with 500 µM 
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Luperox® for 15 min were used as positive control of lipid 
peroxidation. Lipid peroxidation in fibroblasts was evalu-
ated by an Axio Vert A1 fluorescence microscope with 
a 20X objective. Images were analysed with Fiji-ImageJ 
software.

Mitochondrial lipid peroxidation was determined using 
[3-(4-phenoxyphenylpyrenylphosphino) propyl]triphe-
nylphosphonium iodide fluorescent probe (MitoPeDPP®) 
developed by Shioji et  al. [36] Fibroblasts were treated 
with 300  nM MitoPeDPP® and 100  nM MitoTracker™ 
Deep Red FM, Cells were incubated with Luperox® for 
15  min to induce a positive control. Images were taken 
in vivo at DeltaVision system with an Olympus IX-71 flu-
orescence microscope with 20 × objective and analysed 
by Fiji-ImageJ software.

Real‑time quantitative PCR (qPCR)
PANK2 gene expression in fibroblasts was analysed by 
qPCR using mRNA extracts. mRNA was isolated with 
Trizol™ (Invitrogen, Carlsbad, CA, USA), following 
manufacturer’s instructions. RNA was retrotranscribed 
using Iscript cDNA synthesis Kit (Bio-Rad,Hercules, CA, 
United States) to obtain complementary DNA (cDNA). 
qPCR was performed using TB Green™ Premix Ex Taq™ 
(Takara Bio Europe S.A.S., Saint-Germain-en-Laye, 
France). CFX Connect Real-Time PCR Detection System 
(Bio-Rad, Hercules, CA, USA) was used to detect accu-
rate quantification of gene expression. PANK2 primers 
were 5′ TTC​CCA​CTC​ATG​ACA​TGC​CT-3′ (Forward 
primer) and 5′-GTG​ACC​GTC​CAT​TGA​ATC​CG-3′ 
(Reverse primer) amplifying a sequence of 215 nucleo-
tides. Actin was used as a housekeeping control gene and 
the primers were 5′-AGA​GCT​ACG​AGC​TGC​CTG​AC-3′ 
(Forward primer) and 3′-AGC​ACT​GTG​TTG​GCG​TAC​
AG-5′ (reverse primer).

Complex I activity
Complex I activity in whole cells was measured using 
the Complex I Enzyme Activity Dipstick Assay Kit 
(ab109720, ABCAM, Cambridge, MA, USA) according to 
manufacturer’s instructions. Three biological replicates 
were used per measurement. Results are expressed as 
enzyme activity with respect to control. The signal inten-
sity was analyzed by a Molecular Imager ChemiDoc™ 
MP Imaging System (Bio-Rad, Hercules, CA, USA).

PDH activity
PDH complex activity in whole cells was measured using 
the Pyruvate dehydrogenase (PDH) Enzyme Activity 
Dipstick Assay Kit (ab109882, ABCAM, Cambridge, MA, 
USA) according to manufacturer’s instructions. Three 
biological replicates were used per measurement. Results 
are expressed as enzyme activity with respect to control. 

The signal intensity was analyzed by a Molecular Imager 
ChemiDoc™ MP Imaging System (Bio-Rad, Hercules, 
CA, USA).

Generation of induced neurons from PKAN (P1) fibroblasts 
by direct reprogramming
Neurons were generated from PKAN and control fibro-
blasts by direct reprogramming as previously described 
by Drouin-Ouellet et al. [37–39]. Controls and patients-
derived fibroblasts were seeded in µ-Slide 4 Well (Ibidi 
Inc., Martinsried, Germany). The day after, dermal fibro-
blasts were infected with one-single lentiviral vector 
containing neural transcription factors (Acsl1 and Brn2) 
and two shRNA against the REST complex, generated 
as previously described [40]. Cells were infected with a 
multiplicity of infection (MOI) of 30. The plasmids were 
a gift from Dr. Malin Parmar (Developmental and Regen-
erative Neurobiology, Lund University, Sweden). After 
24 h, medium was replaced with fresh fibroblast medium. 
Fibroblasts medium was replaced with neural differentia-
tion medium after 48  h (NDiff227; Takara-Clontech) as 
described. Twenty-seven days post-infection neuronal 
cells were identified by the expression of Tau. DAPI + and 
Tau + cells were considered induced neurons. Images 
were taken at DeltaVision system with an Olympus IX-71 
fluorescence microscope with 60 × oil objective and ana-
lysed by Fiji-ImageJ software.

Statistical analyses
Statical analysis was routinely performed as formerly 
described by our research group [41]. We used non-
parametric statistics that do not have any distributional 
assumption in cases when the number of events was 
small (n < 30) [42]. In these cases, multiple groups were 
compared using a Kruskal–Wallis test. In cases when 
number of events was higher (n > 30), we applied para-
metric tests. In these cases, multiple groups were com-
pared using a one-way ANOVA. Statistical analyses were 
conducted using the GraphPad Prism 9.0 (GraphPad 
Software, San Diego, CA). The data are reported as the 
mean ± SD values or as representative of at least three 
independent experiments. P-values of less than 0.05 were 
considered significant.

Results
α‑LA supplementation reduces iron accumulation 
and increases PANK2 and mtACP expression levels 
in a dose‑dependent manner in mutant fibroblasts 
with residual enzyme activity
In previous work, we analyzed the PANK2 enzyme 
expression levels in skin fibroblasts derived from three 
different PKAN patients [12, 43]. Two PKAN patients, 
patient 1 (P1) and patient 2 (P2), carried double 
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heterozygous pathogenic variants showing low residual 
PANK2 expression levels, while patient 3 (P3) carried a 
frameshift pathogenic variant in both alleles that results 
in a truncated PANK2 protein and ultimately, in a total 
absence of protein expression. Intracellular iron accumu-
lation was observed in the three mutant cell lines [12, 43].

First, to assess the effect of α-LA on iron accumula-
tion, Control and PKAN fibroblasts (P1, P2 and P3) were 
treated with increasing doses of α-LA (1  μM, 10  μM, 
50  μM, 100  μM) and Prussian Blue staining was per-
formed. As it is illustrated in Fig. 1a and Additional file 1: 
Fig.  S1, iron accumulation was markedly reduced with 
α-LA supplementation in a dose-dependent manner in 
P1 and P2 but not in P3 fibroblasts. The positive effect 
of α-LA (10  μM) on intracellular iron accumulation in 
PKAN fibroblasts was confirmed by a colorimetric Ferro-
zine-based assay (Fig. 1b).

To address if the positive effect of α-LA on iron accu-
mulation in responsive fibroblasts cell lines was asso-
ciated with PANK2 and mtACP up-regulation, P1 
fibroblasts were treated with increasing doses of α-LA 
and the expression levels of these proteins were exam-
ined by Western blotting. As shown in Fig.  2a, α-LA 
supplementation increased the expression levels of both 
PANK2 and mtACP proteins in P1 fibroblasts in a dose-
dependent manner. The positive effect of α-LA supple-
mentation on both PANK2 and mtACP expression levels 
was observed since 10 μM.

α‑LA activates PANK2 gene expression
Next, to assess if α-LA supplementation had a positive 
effect at the transcriptional level, we examined PANK2 
RNA expression levels by RT-qPCR. PANK2 RNA levels 
were significantly reduced in P1, P2 and P3 mutant fibro-
blasts (Fig.  3a). Interestingly, α-LA treatment increased 
PANK2 RNA levels in the three PKAN fibroblasts cell 
lines. To support these results, we next examined the 
expression levels of three transcription factors that have 
been associated with PANK2 expression [44]. Under 
α-LA supplementation, expression levels of FOXN4, 
hnRNPA/B and NF-Y were notably increased in all three 
PKAN fibroblast cell lines (Fig. 3b).

α‑LA supplementation increases mitochondrial 
4′‑phosphopantetheinyl proteins expression levels 
in mutant fibroblasts with residual enzyme levels
Recently, our group described that mitochondrial phos-
phopantetheinyl-proteins are downregulated in PKAN 
patient-derived fibroblasts [12]. To evaluate if α-LA has 
an effect on this alteration, we treated the three PKAN 
fibroblast cell lines with α-LA and performed a Western 
blot assay. As it is shown in Fig.  4, expression levels of 
mitochondrial 4′-phosphopantetheine carrier proteins 

such as mtACP, ALDH1L2 and AASS were markedly 
reduced in PKAN patient-derived fibroblasts in com-
parison to controls. Interestingly, α-LA treatment 
significantly restored the expression levels of 4′-phospho-
pantetheinyl proteins in PKAN fibroblasts, P1 and P2, 
with residual expression levels, but not in P3 fibroblasts 
harbouring a homozygous nonsense pathogenic vari-
ant that results in a truncated protein product. In con-
trast, the expression levels of AASDHPPT, the enzyme 
in charge of transferring phosphopantetheine from CoA 
to target proteins, were markedly increased in all PKAN 
fibroblast cell lines, presumably to compensate for the 
low levels of CoA. As expected, α-LA treatment cor-
rected the expression levels of AASDHPPT in responsive 
pathogenic variants (P1 and P2) but not in non-respon-
sive fibroblasts (P3) (Fig. 4a).

Mitochondrial complex I function improves after α‑LA 
treatment in responsive PKAN fibroblasts
Given that mtACP is also directly involved in mitochon-
drial complex I assembly [45], we next analyzed if mtACP 
expression correction by α-LA was also able to improve 
complex I activity that is reduced in PKAN fibroblasts 
[12]. We also quantified the expression levels of MT-ND1 
and NDUFA9, two proteins forming part of Complex I. 
As it is shown in Fig. 5a, α-LA supplementation induced 
an increase in the expression of MT-ND1 and NDUFA9 
that were markedly reduced in PKAN fibroblasts. In 
addition, complex I enzymatic activity was partially res-
cued by α-LA in responsive mutant cells P1 and P2 but 
not in P3 (Fig. 5c).

Iron‑sulfur cluster biosynthesis disruption is corrected 
by α‑LA supplementation
The polyvalent protein, mtACP, is also involved in Fe/S 
cluster biogenesis assembly and stabilization [46, 47]. 
Consequently, other iron-sulfur complex proteins can 
be affected in PKAN fibroblasts. As expected, cysteine 
desulfurase (NFS1), iron-sulfur cluster assembly enzyme 
(ISCU) and LYR motif-containing protein 4 (LYRM4) 
expression levels were reduced (Fig.  6a, b). Interest-
ingly, α-LA supplementation corrected NFS1, ISCU and 
LYRM4 protein expression levels in P1 and P2 fibroblasts 
but not in P3 fibroblasts. Additionally, we examined the 
effect of α-LA on both mitochondrial and cytosolic aco-
nitase activity, an Fe-S dependent-enzyme [48]. Both 
cytosolic and mitochondrial aconitase activities were sig-
nificantly reduced in PKAN mutant fibroblasts. As pre-
dicted, α-LA treatment was able to restore their activities 
to control levels only in responsive mutant cells P1 and 
P2 with residual PANK2 enzyme expression (Fig. 6c).
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a

b

Fig. 1  Effect of α-LA supplementation on iron accumulation in three mutant PANK2 cells. a Control (C1) and three PKAN fibroblast cell lines 
(P1, P2 and P3) were treated with increasing α-LA concentrations (1, 10, 50, 100 μM) for 20 days. Then, cells were stained with Prussian Blue as 
described in Material and Methods and examined by bright-field microscopy. Scale bar = 15 μm. Quantification of Prussian Blue staining is shown in 
Additional file 1: Fig. 1 b Iron accumulation determined by colorimetric Ferrozine-based assay. Significance between PKAN and control fibroblasts is 
represented as ****p < 0.0001, **p < 0.005, *p < 0.05 fibroblasts and ####p < 0.0001, #p < 0.05 between untreated and treated fibroblasts
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α‑LA supplementation increases the lipoylation 
of mitochondrial proteins
Several studies support that α-LA biosynthesis by 
mtFAS II is essential for mitochondrial protein lipoyla-
tion [45, 49, 50]. Given that mtACP also partici-
pates in mtFAS II, the endogenous α-LA biosynthesis 
and protein lipoylation are downregulated processes 
in PKAN fibroblasts [12, 43]. Corroborating these 
results, lipoylation of pyruvate dehydrogenase (PDH) 
and alpha-ketoglutarate dehydrogenase (KGDH) were 
markedly reduced in PKAN fibroblasts (Fig. 7a). Inter-
estingly, α-LA supplementation significantly increased 
PDH and KGDH lipoylation in P1 and P2 fibroblasts 
cell lines but not in P3 fibroblasts cell line (Fig. 7a, b). 
Consistently, α-LA supplementation also was also able 
to restore PDH activity in P1 and P2 fibroblasts but not 
in P3 fibroblasts (Fig. 7c, d).

α‑LA treatment recovers cells from oxidative stress
Iron accumulation and cellular metabolism dysregulation 
alter cellular oxidative status in PKAN cells [51]. It has 
been described that PKAN fibroblasts and iPSC derived 
neurons show lipid peroxidation, carbonylated proteins, 
deficient antioxidant system and altered mitochondria 
membrane potential [6, 52, 53]. To address the effect of 
α-LA on cellular oxidative stress in PKAN fibroblasts 
we perform several assays. First, cellular, and mitochon-
drial lipid peroxidation was evaluated by Bodipy and 
MitoPeDPP assays, respectively.

Both cellular and mitochondrial lipid peroxida-
tion were notably increased in mutant PKAN cells. As 
expected, α-LA supplementation significantly reduced 
lipid peroxidation in cellular membranes in P1 and P2 
fibroblasts (Fig. 8) and mitochondrial membranes (Fig. 9) 
in P1 with residual PANK2 expression levels. However, 

Fig. 2  Dose–response effect of α-LA on PANK2 and mtACP protein expression levels. a Controls (C1, C2) and patient P1 fibroblasts were treated 
with increasing concentrations of lipoic acid for 20 days. PANK2 and mtACP protein expression levels of P1 levels were analysed by Western blotting. 
Actin was used as loading control. b Densitometry of the Western blotting of PANK2 and mtACP. Data represent the mean ± SD of three separate 
experiments. *p < 0.05, ***p < 0.001 between PKAN patients and controls. #p < 0.05 and ##p < 0.005 between untreated and treated fibroblasts. A.U., 
arbitrary units
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a
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b

55kDa

42kDa

37kDa

42kDa

Fig. 3  Effect of α-LA supplementation on PANK2 gene expression. Control and PKAN fibroblasts (P1, P2, P3) were treated with lipoic acid at 10 μM 
for twenty days. a PANK2 transcripts were quantified by RT-qPCR. b NF-Y, FOXN4 and hnRNPA/B transcription factors expression levels were analyzed 
by Western blotting. Actin was used as a loading control. c Densitometry of Western blotting. *p < 0.05, **p < 0.01, ***p < 0.005 ****p < 0.001 between 
PKAN patients and controls. #p < 0.05, ##p < 0.01, ###p < 0.005 between untreated and treated fibroblasts. A.U., arbitrary units
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α-LA is not able to reduce cellular lipid peroxidation in 
P3 carrying a PANK2 truncated protein.

Furthermore, we measured protein oxidation in lipoic-
treated and untreated cellular extracts using an Oxyblot 
assay. Carbonylated protein levels were notably increased 
in PKAN fibroblasts (Fig. 10). As predicted, α-LA supple-
mentation significantly reduced protein oxidation levels 
in P1 and P2 but not in P3 fibroblasts (Fig. 10).

Additionally, lipofuscin accumulation was determined 
by Sudan Black B assay in treated and untreated PKAN 
fibroblasts. Results showed that α-LA was able to reduce 
lipofuscin accumulation (Fig. 11).

α‑LA activates cellular antioxidant system
Given that the antioxidant system is decreased in neu-
rodegenerative diseases [7, 54, 55], we also examined 
the effect of α-LA on several antioxidant proteins such 
as GPX4, SOD or PLA2G6 in PKAN fibroblasts. As 
expected, α-LA restored GPX4 and SOD expression in 
responsive PKAN fibroblasts, but we did not observe any 
effect in the case of P3 suggesting that it was dependent 
on PANK2 expression. However, α-LA did not show any 
effect on PLA2G6 expression levels. We also assessed the 
expression levels of NRF2, a transcription factor involved 
in antioxidant proteins regulation [56]. NFR2 expression 
levels were downregulated in PKAN fibroblasts, and they 
were restored by α-LA supplementation in responsive 
mutant cells P1 and P2 with residual PANK2 expression 
but not in P3 with a truncated PANK2 protein expression 
(Fig. 12).

α‑LA supplementation also has beneficial effect on PKAN 
induced neurons (iNs)
To further demonstrate the beneficial effect of α-LA in 
PANK2 pathogenic variants with residual expression lev-
els, control and patient responsive fibroblasts P1 were 
transdifferentiated to induced neurons by direct repro-
gramming. Thus, control and PANK2 mutant fibroblasts 
were infected with lentiviral vectors expressing proneu-
ral genes Ascl1 and Brn2 and also promoting the knock 
down of the REST complex [37]. After transdifferentia-
tion, cells manifested a typical neuron-like morphology 
and showed positive immunoreactivity against Tau, a 
neuron-specific protein. In contrast, undifferentiated 
fibroblasts did not show Tau staining. Positive cells for 
Tau were used to evaluate neuronal conversion efficiency, 
which was approximately 55% in control cells and 25% in 

PANK2 mutant cells. Neuronal purity was almost 40% in 
control cells and 50% in PANK2 mutant cells.

Next, the beneficial effect of α-lipoic acid in mutant 
PANK2 induced neurons derived from P1 fibroblasts, 
which respond positively to α-LA supplementation, was 
evaluated by examining iron accumulation using Prus-
sian Blue staining. PANK2 mutant induced neurons 
showed increased Prussian Blue staining indicating iron 
accumulation. As expected, iron accumulation was elimi-
nated after 10 μM α-LA treatment (Fig. 13a, b).

To corroborate the beneficial effect of α-LA treatment 
in iNs, protein lipoylation was addressed. As shown in 
Fig. 14a and b, α-LA treatment was able to significantly 
increase the expression of lipoylated proteins in mutant 
PANK2 induced neurons.

Discussion
In this study, we evaluated the effect of α-LA treatment 
on the pathological alterations in two cellular models of 
PKAN disease: Skin fibroblasts derived from three PKAN 
patients and iNs obtained by direct reprogramming.α-LA 
is a pleiotropic compound required for cell growth, 
mitochondrial activity and coordination of fuel metabo-
lism as well as regulating gene transcription [57–59]. It 
is synthesized de novo using intermediates from mtFAS 
II, S-adenosylmethionine and iron-sulfur cluster [59]. 
α-LA is characterized by an antioxidant power; it is the 
reason why it has neuroprotective and anti-inflammato-
ries properties [60]. In this sense, α-LA can reduce pro-
inflammatory factors and scavenge ROS and reactive 
nitrogen species (RNS), as well as restore mitochondrial 
function and reduce cellular damage [61]. Furthermore, 
it has been shown that α-LA reduces lipid peroxidation 
and increases cellular antioxidant activity [62]. α-LA 
also acts as a cofactor of pyruvate dehydrogenase (PDH), 
α-ketoglutarate dehydrogenase (KDH), branched-chain 
ketoacid dehydrogenase and H-protein of the glycine 
cleavage system (GCS) [27, 63, 64]. In addition, several 
studies have shown that α-LA also has a chelating effect 
on metals like iron or copper reducing iron accumulation 
in the cerebral cortex and a positive impact on oxidative 
stress [65].

For all the above-mentioned reasons α-LA is a prom-
ising candidate for treatment of neurodegenerative dis-
eases such as PKAN.

Given that PKAN is characterized by intracellular 
iron accumulation, we first assessed α-LA effect on iron 

(See figure on next page.)
Fig. 4  Effect of α-LA treatment on 4′-phosphopantetheinyl proteins expression levels. a Control and PKAN fibroblasts (P1, P2, P3) were treated with 
α-LA at 10 μM for twenty days. Protein extracts were separated on a SDS polyacrylamide gel and immunostained with antibodies against mtACP, 
ALDH1L2, AASS, FAS and AASDHPPT. Actin was used as a loading control. (b) Densitometry of Western blotting. *p < 0.05, **p < 0.005, ***p < 0.001 
****p < 0.0001 between PKAN patients and controls. #p < 0.05, ##p < 0.005, ###p < 0.001 ####p < 0.0001 between untreated and treated fibroblasts. A.U., 
arbitrary units
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d

b

c

a

Fig. 5  Effect of α-LA on mitochondrial complex I. Control and PKAN fibroblasts (P1, P2, P3) were treated with α-LA at 10 μM for twenty days. a 
MT-ND1 and NDUFA9, mitochondrial complex I subunits, analysed by Western blotting. b Densitometry of Western blotting. c Mitochondrial 
complex I activity in whole cellular extracts was measured as described in Material and Methods. d Quantification of mitochondrial complex I 
activity. Data represent the mean ± SD of two separate experiments. **p < 0.005, ***p < 0.001 ****p < 0.0001 between PKAN patients and controls; 
##p < 0.005, ###p < 0.001 ####p < 0.0001 between untreated and treated cells
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b

a

c

Fig. 6  Effect of α-LA treatment on Fe-S cluster assembly complex proteins and aconitase activity. Control and PKAN fibroblasts (P1, P2, P3) were 
treated with α-LA at 10 μM for 20 days. a Representative image of NFS1, ISCU and LYRM4 protein levels, proteins involved in Fe-S cluster assembly, 
analysed by Western blotting of treated and untreated control and PKAN fibroblasts. b Densitometry of Western blotting. c Both mitochondrial 
and cytosolic aconitase activity were determined by colorimetric assay. Data represent the mean ± SD of three separate experiments. *p < 0.05, 
**p < 0.005, ***p < 0.005 ****p < 0.0001 between PKAN patients and controls; #p < 0.05, ##p < 0.005, ###p < 0.001 between untreated and treated cells
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homeostasis in PKAN fibroblasts and iNs. The results 
showed that α-LA supplementation reduced significantly 
iron accumulation both in fibroblasts and iNs cellular 

models with residual PANK2 expression levels. These 
results are consistent with the reduction of age-associ-
ated iron accumulation observed in rat cerebral cortex 

Fig. 7  Effect of α-LA supplementation on mitochondrial lipoylated proteins and PDH activity. Control and PKAN fibroblasts (P1, P2, P3) were treated 
with α-LA at 10 μM for 20 days. a Representative image of lipoylated proteins expression levels assessed by Western blotting. b Densitometry of 
the Western blotting. c PDH activity in whole cellular extracts was measured as described in Material and Methods. Data represent the mean ± SD 
of two separate experiments. ****p < 0.0001 between PKAN patients and controls; ##p < 0.005, ###p < 0.001 ####p < 0.0001 between untreated and 
treated cells
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under α-LA treatment [66]. α-LA also prevented iron 
accumulation induced by ferric ammonium citrate in a 
zebrafish model [67].

As previously reported by our group, PANK2 tran-
scripts and protein expression levels are downregu-
lated in PKAN fibroblasts [12]. A reduction of PANK2 
protein levels has been also observed in other studies 
using fibroblasts and neurons [14, 68]. Our findings 
revealed that α-LA supplementation increases several 

transcriptions factors -FOXN4, hnRNPA/B and NYA- 
that activate PANK2 transcription [44] and restores 
PANK2 protein expression levels in responsive cell 
lines.

The partial correction of PANK2 expression levels is 
supposed to increase CoA biosynthesis allowing the 4′- 
phosphopantetheinylation of essential mitochondrial 
proteins such as mtACP [50]. Our results confirmed 
that several 4′-phosphopantetheine-carrier protein 

Fig. 8  Effect of α-LA treatment on lipid peroxidation. Control and PKAN fibroblasts (P1, P2 and P3) were treated with α-LA at 10 μM for 20 days. 
a Representative images of lipid peroxidation in treated and untreated control and PKAN cells using BODIPY® 581/591 C11 staining. Control cells 
treated with Luperox® (500 μM) for 15 min were used as a positive control of mitochondrial lipid peroxidation. Scale bar = 15 μm. b Fluorescence 
quantification of oxidized form of BODIPY® C11. Data represent the mean ± SD of three separate experiments (50 cell images for each condition). 
***p < 0.001, ****p < 0.0001 between PKAN patients and controls. #p < 0.05, ###p < 0.001, between untreated and treated fibroblasts. A.U., arbitrary 
units

Fig. 9  Effect of α-LA treatment on mitochondrial lipid peroxidation. Control and P1 PKAN fibroblasts were treated with α-LA at 10 μM for 20 days. 
a Representative images of mitochondrial lipid peroxidation in lipoic acid treated and untreated control and PKAN cells by MitoPeDPP staining. 
Scale bar = 15 μm. Cells also were stained with Mitotracker Deep Red. b Fluorescence quantification of MitoPeDPP. Control cells treated with 
Luperox® (500 μM) for 15 min were used as a positive control of mitochondrial lipid peroxidation. Data represent the mean ± SD of three separate 
experiments (50 cell images for each condition). *p < 0.01 between PKAN patients and controls. #p < 0.01 between untreated and treated fibroblasts. 
A.U., arbitrary units

(See figure on next page.)
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expression levels were indeed increased in responsive 
pathogenic variants after α-LA supplementation.

It has been demonstrated that mtACP is involved in 
several crucial processes such as mtFAS II, Fe-S clus-
ter assembly or mitochondrial respiratory complexes 
assembly [69]. In addition, other studies have reported 
a decreased oxygen consumption rate in PKAN patient-
derived fibroblasts [43]. Likewise, decreased complex 
I activity has been described in PKAN cellular models 
[12]. In this work, we observed a positive effect of α-LA 
supplementation on respiratory complex I activity and 
increased expression levels of complex I subunits in 
PKAN fibroblasts. The positive bioenergetics effect of 
α-LA on PKAN cells is consistent with previous studies 
in which α-LA was also able to reduce the effect of nitric 
oxide (NO) excess on oxygen consumption rate (OCR) 
and ATP production in primary aortic endothelial cells 
from C57BL/6 J mice [70].

On the other hand, as mtACP also participates in 
iron-sulfur cluster assembly [50], we evaluated the effect 
of α-LA supplementation on the downregulated pro-
teins involved in iron-sulfur cluster assembly and aco-
nitase activity, an iron-sulfur dependent enzyme. Our 
results showed that iron-sulfur cluster metabolism and 

iron-sulfur group-dependent enzyme activities were 
restored in PKAN responsive fibroblasts after α-LA 
supplementation.

Disruption in type II mtFAS and iron-sulfur biogenesis 
affect α-LA production and consequently protein lipoyla-
tion in mutant PKAN cells [12, 59]. α-LA treatment on 
PKAN cellular models restored PDH and KGDH lipoyla-
tion as well as PDH activity. These findings suggest that 
α-LA can activate PDH and KGDH through mtFAS rees-
tablishment. However, studies have described that α-LA 
also inhibits pyruvate dehydrogenase kinase (PDK) and 
hence, increases PDH activity [71–73]. Even though fur-
ther investigation is needed to understand how α-LA 
inhibits PDK. In addition, it has been reported that α-LA 
protects these lipoylated enzymes from inactivation by 
ROS and 4-hydroxy-2-nonenal (HNE), the main product 
of lipid peroxidation [74–76].

Lipid peroxidation, lipofuscin accumulation or pro-
tein oxidation are consequences of oxidative stress. Our 
results indicated that α-LA attenuates these physiopatho-
logical alterations in responsive PKAN fibroblasts with 
residual PANK2 expression levels. Clinical trials sup-
port that α-LA administration reduces malondialdehyde 
(MDA) in serum, a biomarker of lipid peroxidation [65] 
and it can also decrease the alcohol-induced lipid peroxi-
dation and protein oxidation [77].

Regarding the α-LA effect on protein oxidation, there 
are different parameters to access the protein oxidation 
level such as protein hydroperoxides (POOH), protein 
carbonyl groups [78] and the content of protein thiol 
groups (P-SH). α-LA has a positive effect on human 
serum albumin oxidation decreasing POOH, and PCO 
and increasing P-SH. However, a high concentration of 
α-LA could have a protein prooxidant effect in human 
serum albumin [79].

Besides being a scavenger of ROS deactivating vari-
ous free radicals such as the superoxide anion (O2

−), 
the hydroxyl radical (•OH), singlet oxygen (1O2), perox-
ynitrite (ONOO–), and hypochlorous acid (HClO) [80], 
our work also showed that α-LA was able to regenerate 
antioxidant proteins such as SOD or GPX in PKAN fibro-
blasts. Corroborating this, several studies observed an 
increase in SOD, GPx and catalase expression after α-LA 
supplementation in diabetic rats as well as in hemodialy-
sis patients [81, 82]. In turn, GSH also protects cells from 
oxidative stress, reducing ROS and inhibiting lipid per-
oxidation. Interestingly, it has been observed that GSH/
GSSG ratio is reduced in neurodegenerative diseases and 
it can be restored by α-LA treatment [83, 84].

The positive effect of α-LA was also confirmed on iNs 
obtained by direct reprogramming. Our results showed 
that α-LA supplementation reduces iron accumulation 
and increases protein lipoylation levels in iNs. Other 

b
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Fig. 10  Effect of α-LA treatment on carbonylated protein levels. 
Control and PKAN fibroblasts (P1, P2, P3) were treated with α-LA at 
10 μM for 20 days. a A representative image of carbonylated protein 
content in treated and untreated control and PKAN fibroblasts by 
Oxyblot Protein Oxidation Kit b Oxyblot quantification by ImageJ. 
Data represent the mean ± SD of three separate experiments. 
**p < 0.005 ***p < 0.001 between PKAN patients and controls. 
##p < 0.005 between untreated and treated fibroblasts. A.U., arbitrary 
units
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studies have demonstrated a neuroprotective effect of 
α-LA in dopaminergic neurons of Parkinson’s disease 
model [85] and in brain tissues of diabetic rats [86].

It is well known that α-LA is one of the most efficient 
antioxidants [61] due to its good bioavailability, blood–
brain barrier crossing ability and lack of toxic effects at 
therapeutic doses. Many clinical studies proved benefi-
cial effect of α-LA in many pathological conditions such 
as diabetes, atherosclerosis, heart diseases, cataract, and 
neurodegenerative diseases [87].

In addition, as mentioned before, α-LA acts as antioxi-
dant to directly scavenge almost all forms of free radicals 

(oxygen and nitrogen), chelate transition and heavy metal 
ions and mediate the recycling of other endogenous anti-
oxidants such as vitamin E, glutathione, and ascorbate 
[26]. Furthermore, α-LA modulates various signalling 
cascades either by receptor mediated or non-receptor-
mediated processes [61]. However, further studies are 
needed to clarify if the positive effect of lipoic acid on 
PKAN with residual expression levels is due to the activa-
tion of specific pathways.

However, taking into account that α-LA supplemen-
tation has no effect on iron accumulation or lipid per-
oxidation in PKAN fibroblasts with truncated PANK2 

b

a
C1 P1 P2 P3
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+
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Fig. 11  Effect of α-LA treatment on lipofuscin accumulation. Control and PKAN fibroblasts (P1, P2, P3) were treated with α-LA at 10 μM for 20 days. 
a Representative images of lipofuscin staining by SBB of untreated and treated control and three PKAN patient fibroblasts. Scale bar = 20 μm. b 
SBB staining quantification. Data represent the mean ± SD of three separate experiments (50 cell images for each condition). *p < 0.05, **p < 0.05, 
****p < 0.001 between PKAN patients and controls. #p < 0.05 between untreated and treated fibroblasts. A.U., arbitrary units
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Fig. 12  Effect of α-LA on antioxidant protein expression levels. Control and PKAN fibroblasts (P1, P2, P3) were treated with α-LA at 10 μM for 
20 days a Expression levels of PLA2G6, SOD, GPX4 and NRF2 in treated and untreated control and PKAN cells. Actin was used as loading control. b 
Densitometry of the Western blotting. Data represent the mean ± SD of three separate experiments. **p < 0.01, ***p < 0.005, ****p < 0.0001 between 
PKAN patients and controls. #p < 0.05, ##p < 0.01, ###p < 0.005 between untreated and treated fibroblasts. A.U., arbitrary units
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expression levels, it is unlikely that the positive effect of 
this organosulfur compound was due to its direct chelat-
ing or antioxidant properties. In contrast, our results sug-
gest that α-LA supplementation, through the activation 
of PANK2 transcription, induces the partial restoration of 
PANK2 enzyme and mtACP protein levels. For this rea-
son, α-LA treatment is only beneficial in PANK2 patho-
genic variants with residual PANK2 expression levels.

Conclusion
α-LA exhibits significant antioxidant activity in several 
diseases, including neurodegenerative disorders. In our 
work, we show that α-LA supplementation can improve 

the pathological alterations in cellular models of PANK2 
pathogenic variants with residual PANK2 expression by a 
mechanism involving the up-regulation of PANK2 tran-
scription and enzyme expression levels.

If the positive effect of α-LA is due to a direct antioxi-
dant effect or indirectly stimulates critical transcriptions 
factor regulating PANK2 expression are key questions 
which need more investigation. Likewise, further stud-
ies and controlled clinical trials are required to assess the 
clinical benefit of α-LA in PKAN.

a

b

Fig. 13  Effect of α-LA on iron accumulation in PKAN induced neurons (iNs). Control and PKAN iNs (P1) were treated with α-LA at 10 μM for 15 days 
a Representative images of iron accumulation by Prussian Blue staining in α-LA treated and untreated control and PKAN iNs. Scale bar = 15 μm. 
b Quantification of iron levels by FIJI-ImageJ. iNs showed positive immunoreactivity against Tau. Data represent the mean ± SD two separate 
experiment (50 cell images for each condition). **p < 0.01between PKAN patients and controls. #p < 0.05 between untreated and treated fibroblasts. 
A.U., arbitrary units
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Fig. 14  Effect of α-LA on protein lipoylation levels on induced neurons (iNs). Control and PKAN iNs (P1) were treated with α-LA at 10 μM for 15 days 
a Representative images of protein lipoylation levels in α-LA treated and untreated control and P1 PKAN iNs. Scale bar = 15 μm. b Quantification of 
fluorescence intensity by FIJI-ImageJ. iNs showed positive immunoreactivity against Tau. Data represent the mean ± SD of 50 cell images for each 
condition. ***p < 0.0001between PKAN patients and controls. ###p < 0.001 between untreated and treated fibroblasts. A.U., arbitrary units
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