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Advances in flexible electronic devices and robotic software
require that sensors and controllers be virtually devoid of
traditional electronic components, be deformable and stretch-
resistant. Liquid electronic devices that mimic biological
synapses would make an ideal core component for flexible
liquid circuits. This is due to their unbeatable features such as
flexibility, reconfiguration, fault tolerance. To mimic synaptic

functions in fluids we need to imitate dynamics and complexity
similar to those that occurring in living systems. Mimicking ionic
movements are considered as the simplest platform for
implementation of neuromorphic in material computing sys-
tems. We overview a series of experimental laboratory proto-
types where neuromorphic systems are implemented in liquids,
colloids and gels.

1. Introduction

Complex systems can be correspondingly abstracted in algo-
rithmic formats to describe phenomena that have traditionally
been cognition avoided. Such as the complexities of biological
sensorial-actuation networks, through which phenomena such
as “intelligence” are hypothesized even in organisms without a
nervous system. The sensor-actuator collections represent the
first order of cybernetic systems, which have been extensively
studied and replicated.[1] Such applications of computational
concepts and the development of experimental devices in that
field enclasp “unconventional computing”.[2,3]

The term “neuromorphic” was invented by Carver Mead in
the 1990s to refer to very large-scale of integration computing
systems (VLSI) with mixed analog/digital signals, inspired by the
neuro-biological architecture of the brain.[4] A neuromorphic
feature of an engineered system mimics the structure or
function of a single or multiple components of the Metazoan
nervous system. Typically, this involves attempts to replicate
the phenomenon of synaptic plasticity: self modulation of the
excitability of neuron-neuron junctions (synapses), towards
replicating state retention (‘learning’) via a process of entrain-
ment with graduated input (‘neuromodulation’). Neuromorphic
devices, as an unconventional computational model, are worth

researching owing to certain features of their biological
counterparts, such as massive parallelism, emergence, and low
power consumption, which are highly desirable for
imitation.[5–13]

‘Neuromorphic engineering’ emerged as an interdisciplinary
field of research that focusing on building electronic neural
processing systems that directly imitate the biophysics of real
neurons and synapses,[14–16] or ultimately allow direct communi-
cation with neurons.[17] Recently, the definition of the term
neuromorphic has expanded in two additional directions.[18]

Initially, the term neuromorphic was used to describe spike-
based processing systems that were engineered to discover
large-scale computational neuroscience models. Second, neuro-
morphic computations involve specific electronic neural archi-
tectures that implement neural and synaptic circuits.[19]

Neuromorphic computing hardware requires physical mod-
els at three different levels: (1) individual components such as
artificial synapses and neurons, (2) Networks of these neurons
and synapses, and (3) Learning rules and training methods.[20]

Historically, early attempts at understanding the mammalian
brain focused on the physical aspects of neurons including the
McCulloch–Pitts neuron[21] and Rosenblatt perceptron,[22] which
formed the basis for further development. Briefly, the cell body
of a neuron collects and sums the charges generated by
synaptic connections in the dendrites until the total charge
reaches a threshold after which the neuron fires a spike along
the axon.[23] The resulting spike is transmitted to other neurons
connected to that synapse, which depending on the synaptic
weight can augment or inhibit the signal. A more accurate
Hodgkin-Huxley physiological model[24] includes differential
equations with more than 20 different parameters such as the
concentrations of K+ and Na+ ions, which became the basis for
subsequent approximations.[25,26] Subsequent research in neuro-
science shifted the focus to the conceptual basis of higher
levels of learning, cognition, and behaviour of neuronal
populations, which the resulting models became the basis for
Neural network architecture (ANN) (for example, Hopfield net-
works) and learning rules (for example, Hebbian learning).[27]

In this regard, systems such as Spiking Neural Networks
(SNN), the third generation of neural networks,[28] are extremely
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representative. However, there is important cross-fertilisation
between the technologies needed to develop efficient SNNs
and the more traditional non-spiking neural network technolo-
gies, known as artificial neural networks (ANNs), which are
usually time-based.[29]

Early successes in neuromorphic computing have relied
heavily on conventional electronic materials. In particular,
spiking neural networks composed of silicon-based Comple-
mentary Metal Oxide Semiconductor (CMOS).[30–32] Since CMOS
chips have disadvantages such as inefficient and high energy
consumption synaptic operations based on volatile random
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access memory (RAM), considerable effort has been focused on
non-volatile memory (NVM) as a basis for neuromorphic
computing.[33] Among the empirical understanding of NVMs we
should mention the Resistive Switching Devices (RSDs), to
whom the memristors[34] belong, which has a transition
between different impedance modes that can be related, for
example, to binary information. Such a voltage-controlled,
reversible, stable transmission depends on several nano scale
phenomena.[35] The simultaneous presence of NVM and multi-
mode switching in memristors[36,37] gives CMOS-memristive
hybrid circuits promising for edge computing and the Internet
of Things, so that local processing of analog and digital data on
mobile devices reduces the need for cloud access.[38]

Conventional Von-Neumann computers based on CMOS
technology do not have the inherent capabilities to learn or
deal with complex data such as the human brain.[29] To
overcome the limitations of digital computers, considerable
research efforts have been made around the world to develop
profoundly different approaches, inspired by biological princi-
ples. One such approach is the development of neuromorphic
systems, namely computer systems that mimic the type of
information processing in the human brain.[39]

To mimic the synaptic functions of the brain, nonlinearity,
memory features and rich systems dynamics are needed.[41,42]

Dynamics, understood as evolution of systems in time (or time-
ordering of evolution steps) is the turning point of all neuro-
morphic computing systems. Exotic concepts, like time crystals
(time crystal is a quantum system of particles whose lowest-
energy state is one in which the particles are in repetitive
motion),[43] are considered as universal models for neuro-
morphic information processing.[44] This concept is fully in line
with idea of polychronization: computation with spiking
neurons operating in desynchronized fashion, thus forming a
complex spatiotemporal fabric of oscillations[45] so important for

cognitive processes.[46] One of the ways to achieve perfect
mimicking of neuronal dynamics and information processing is
replication of ionic movements in the nervous system (Figure 1).
Therefore, it is important to note that ions move easily in
liquids[47] and in soft matter in general.[48] Gels, viscous and non-
homogeneous media are especially interesting in this context -
complex diffusion and other transport phenomena, described
in terms of fractional calculus, are ideal for mimicking complex
dynamics of neural systems.[49,50] The term iontronics has been
coined to describe electronic-like devices and systems based on
ion as information carriers.[51] In numerous cases iontronic
devices are based on membranes with pores of controllable
dimensions, which leads to anomalous transport
phenomena.[52,53] These phenomena, in turn, embodied in
devices called nanofluidic memristors, are proposed as a bio-
inspired information processing platform.[54,55]

Electrochemical process devices have shown promising
synaptic properties that are useful in artificial synaptic devices
because the electrochemical reactions of ions can mimic the
movement of ions in the nervous system.[56,57] Along with
synaptic functionalities, interaction of metal ion with neural
extracellular matrix in the brain was postulated to be respon-
sible for metal, most probably via modulation of synaptic
plasticity.[58] Resistive switching and extremely fast (at least as
compared with living neurons) responses up to the range of
hundreds of kHz have been observed in electrochemical
devices, which allow the expansion of biological functions.[59]

The Liquid State Machine (LSM)[60] is a nervous system-
inspired algorithm that mimics the brain’s ability to process
spatio-temporal data. Of course, this particular term ‘liquid’
does not mean that the physical system is in a liquid state, but
rather refers to the surface of a liquid that is affected by input
forces and creates a pattern of reciprocal waves. A single LSM
network can be used as a general intelligent processor that

Figure 1. Schematic of (a) biological synapse, compared to organic artificial synapses with working mechanisms of (b) charge trapping, (c) conductive
filament, (d) ion migration, (e) floating gate, and (f) dipole alignment. Reproduced with permission.[40] Copyright 2019, American Chemical Society (ACS)
Publications.
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processes different data streams on a single stream to extract
different features.[61] The flow of the LSM model training process
is as follows:
1. Initialization. Each neuron in the fluid is randomly selected

as an inhibitor or excitator, depending on the ratio of
inhibitory or excitatory neurons. The entire set of connec-
tions and their corresponding synaptic strengths are
initialized.

2. A set of inputs u(t) are fed into the input layer.
3. The liquid response is calculated based on step (1).
4. The responses in the previous time step are fed into the

output layer and are also stored for the next time step (to
calculate liquid response).

5. The Liquid response is used to train the next category, using
a specific training algorithm and update rule.

6. Repeat steps 2–5 on all of the input training sets.[61]

The liquid state machine (LSM)[60] mimics the cortical columns
in the brain. Cortical microstructures are thought to represent
non-linearly input stream into a high-dimensional state space.
This high-dimension representation is then used as input to
other areas in the brain where learning is possible. The cortical
microcircuits have a sparse representation and (slowly) fading
memory. The microprocessor state is in the ‘forgets’ state for a
certain period of time. While LSMs may be able to mimic certain
functions in the brain, it should be noted that LSMs cannot be
used to explain how and why the brain functions.[62]

Liquid marbles (LMs) are spherical microlitre quantities of
fluid with a coating of superhydrophobic particles that can be
tens to thousands of micrometers in diameter.[63,64] LM devices
are able to perform computation through a variety of non-
standard logics, where the LMs are considered as data or
otherwise, to contain data (i. e. chemical reactants), which may
interact with other LMs via collisions that will result in data
translation or transfer via ricochets or coalescence.[65,66] By
exploiting the principles of collision-based computing,[67] LM
computing devices may be used to implement non-standard,
collision-based conservative logic.[68] The integration of LM
properties, such as collisions that their results may have been
engineered (reflection or integration), and the potential for
chemical reactions between two heterogeneous fluid cores
after collisions, further reinforces the traditional conservative
logic toolkit.[13]

In the present review, we first briefly introduce the liquid,
colloidal, and gel neuromorphic systems, followed by the
review of various liquids, colloids and gels synaptic devices and
their achieved results in neuromorphic computing.

2. Neuromorphic Liquid Systems

In abstract neural networks, information is displayed as
weighted connections or synapses between neurons (Figure 2).
Since the primary computational bottleneck for artificial neural
networks is multiplication of the matrix vector so that the
inputs are multiplied by the weight of the neural network,
conventional processing architectures are not suitable for
simulating neural networks and often require a lot of energy
and time.In addition, in biological neural networks, synapses are
not binary junctions, but represent a nonlinear response
function because neurotransmitters propagate between
neurons.[62] Synapse like liquid devices are summarised in
Table 1, in the following we discuss some of the key
implementations.

Neurons regulate synapse weight depending on stimulation
to store information, and neuromorphic computational con-
cepts use “synaptic plasticity“ to mimic short- and long-term
memory processes. Inspired by this, Cheng Zhang’s group[70]

Figure 2. (a) Schematic diagram of a biological neuron. (b) Schematic
illustration of a biological synapse. (c) Structure diagram of a top gate
electrolyte-gated transistor (d) Schematic diagram of the EDL modulation of
the electrolyte-gated transistor. (e) Schematic diagram of the electro-
chemical modulation of the electrolyte-gated transistor. Reproduced with
permission Copyright.[69] 2021, American Institute of Physics (AIP).

Table 1. Summary and comparison of reported synaptic neuromorphic liquid devices.

Neuromorphic
liquid device

Device
materials

Availability
of stimuli

STP/STD LTP/LTD Functionality
of plasticity

Refs.

MoO3 device 2D MoO3 Electricity No No yes [70]
Memtransistor 2D SnO2 Electricity yes yes yes [71]
Transistor PDVT-10, Ion gel, Si Electricity yes yes yes [72]
Flexible RRAM PEDOT:PSS Electricity yes yes yes [73]
Transistor PEDOT:PF6 Electricity yes yes yes [74]
Memristor Cu/Ag@AgCl Electricity No No yes [75]
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have presented a systematic study of ionic liquid gating of
exfoliated 2D molybdenum trioxide (MoO3) devices and the
resulting electrical properties by electrochemical doping
through ion migration during ionic liquid bias (IL) Related. The
formation of a dual electrical layer in ionic liquid (IL) can induce
charge carriers electrostatically or collect ions inside and
outside the lattice. This process can cause many changes in the
electronic, optical and magnetic properties of the material and
even change the crystal structure of the material. In this study,
the conductivity of the MoO3 was approximately 9-fold for the
two types of ionic liquids studied. In addition, it was possible to
turn on and off quickly through a lithium-containing ionic
liquid, while much slower fusion was induced through oxygen
extraction.[70]

In this study, the positive IL gate voltage increased the
conduction of the channel and was attributed to an O�2 cation
that reacted with H+ to form a hydroxyl (OH� ) bond and at the
same time change the capacitance of MOþ6 to MOþ6 valence
change, thus electron doping the conduction band. Negative
gate bias (at higher voltages) reduced channel conduction and
was attributed to H+ removal through OH� accumulation in the
channel. Because the team measured the vacuum, they
suggested that the change in conductivity in MoO3 was due to
the migration of oxygen in and out of the MoO3 through the IL
gate. The data show that the process of metallization
(production of oxygen vacancy) was faster than the reversible
process (oxygen extraction).[70]

In this study, they used gate pulses as a stimulus to regulate
the drain current (Id) which acts similar to a synaptic memory
process. Short and long-term memory can be adjusted by
tuning the drain voltage, and long-term memory signal
intensity can be adjusted by the gate pulse width. At 1 Vsd, the
current (Id) changes after each pulse, which in neuromorphic
calculations is referred to as the “excitatory postsynaptic
current”. These MoO3 ions with Lithium Ion Liquid (LIL) devices
can detect a long-term current (Id) change from nA to μA
through short pulses. Each of these devices can function as a
single unit and can be turned into a network to store
information in a non-volatile manner. The results of short pulse
experiments in this study also show synaptic plasticity for
computational neuromorphic elements.[70]

In a new study, an integrated device of a memristor and a
transistor containing a new type of gate adjustable memristor
based on the two-dimensional SnO2 semiconductor was
proposed by Chi-Hsin Huang and colleagues[71] to advance the
next generation of neuromorphic computing technology. An
oxide memristor with an tunable gate was developed using
SnO2 atomic ultra-thin polycrystalline nanosheets with a thick-
ness of about 2 nm, which is energy efficient and can be used
in next generation neuromorphic computational applications.

2D-SnO2 polycrystalline memristors, obtained at low tem-
peratures from a vacuum-free liquid metal process, offer several
interesting resistive switching features such as excellent digital
or analog resistive switching, multi-mode storage, and gate
adjustment performance in resistive switching modes. Signifi-
cantly, the gate tunability function that is not achievable in
conventional two terminal memristors provided the capability

to perform heterosynaptic analog switching by adjusting the
gate bias to enable complex neural learning. They have
successfully demonstrated that the gate-tunable synaptic
device dynamically modulated the analog switching behaviour
with good linearity and an improved conductance change ratio
for high recognition accuracy learning.[71]

Artificial neural network simulations for pattern recognition
were obtained with high detection accuracy in gate-adjustable
SnO2 two-dimensional memristors. In addition, the presented
planar 2D-oxide memristors with very low conductivity con-
sume very little energy and have the high potential to develop
as an energy-efficient biological nervous system, such as the
human brain. The gate-adjustable 2-dimensional oxide meme-
transistor presented in this report improves detection accuracy
and develops neuromorphic devices that mimic multiple
synaptic connections in neurons. It also opens up new
opportunities for designing learning schemes with a greater
degree of freedom.[71]

Artificial synapse devices with low energy consumption are
very desirable to imitate the human brain. Thus, Yaqian Liu’s
team[72] developed a self-powered synaptic transistor (SPST)
with a distinct structure to simulate synapse functions. The
voltage required for this transistor to produce a presynaptic
spike is supplied by a triboelectric nanogenerator (TENG),
without the use of additional voltage. The proposed SPST
device consisted of a TENG with PET/Cu/PDMS/Cu/PET structure
as a presynapse stimulation, and the channel between source
and drain electrode in electric-double-layer (EDLT) was pre-
sented as post-synapse. A schematic of the structure of a typical
biological synapse and self-powered synapse transistor (SPST)
device is shown in Figure 3.

The presynaptic spikes of this device, unlike standard
synapse devices, were generated by external mechanical
contacts, resulting in a considerable reduction in synapse
device power usage. Observations revealed that the artificial
synapses performed well with varying touch spike duration
times, and that with increasing stimulation, a short-term
plasticity transition to a long-term plasticity occurred. Further-
more, combining TENG and a synapse device might successfully
simulate tactile synapse functions while consuming insignificant
power and having a basic device architecture. In addition, self-
charging synaptic devices with several TENGs understood logic
modulation and tactile investigation.[72]

The TENG can also serve as a tactile sensor, allowing for the
creation of a self-charging tactile synapse device with a basic
form. With the use of TENG touch, important synaptic functions
such as excitatory postsynaptic current (EPSC), paired-pulse
facilitation (PPF), dynamic filtering, and short-term plasticity
(STP) to long-term plasticity (LTP) were demonstrated in self-
powered synaptic transistor devices. A tactile study was
replicated using TENG as multiple presynaptic, and logic gates
were derived by using and, and or logic gates. Integrating TENG
and synapse transistors is a promising approach for artificial
intelligence and human-computer interaction in e-skin
devices.[72]

A flexible artificial synaptic device with an organic func-
tional layer was proposed by Tian-Yu Wang and colleagues.[73]
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They created a flexible RRAM out of PEDOT :PSS and inves-
tigated its current response to various voltages. Under direct-
current sweep, the device demonstrated excellent resistive
switching characteristics. At low operation voltages, it switched
from high resistance state (HRS) to low resistance state (LRS)
and back to HRS. Also, this organic device demonstrated good
switching characteristics, such as an ON/OFF ratio greater than
100. The set and reset voltages were less than 0.5 V and 0.25 V,
respectively. This flexible synaptic device was used to mimic
long-term plasticity, spike-timing-dependent plasticity learning
rules (STDP), and forgetting function. Both the excitatory and
inhibitory post-synaptic currents had retention times greater
than 60s. The long-term plasticity without significant degrada-
tion was reproducible after applying five cycles of voltage pulse
to the upper electrode.[73]

The synaptic device developed in this study had a structure
of Indium Tin Oxides (ITO)/PEDOT :PSS/Au with a cross-sectional
junction circle of 200 um diameter, as shown in Figure 4.
Polyethylene terephthalate (PET) was adopted as the flexible
substrate. The electrode of Au was deposited on PEDOT:PSS
with a shadow mask by physical vapour deposition. The
controllable conductivity in this device was related to the
transformation and migration of PEDOT+ ions.[73] This team
applied voltage to the top electrode and recorded the

responded current of the bottom electrode to to evaluate the
device’s characteristics. After five repeatable experiments with
300 positive and 300 negative pulses for LTD and LTP, no
obvious degradation was observed in the device. These results
demonstrate the feasibility of RRAM-based organic PEDOT:PSS
flexible bi-terminal, which is used as artificial synapses for
neuromorphic calculations and has great potential for wearable
electronics applications (Figure 4).[73]

There was also an exploration of the space parameters of
soft NV RSDs by using flexible polymers and the chemistry of

Figure 3. (a) Schematic illustration of a biological synapse and the SPST. Touch bottom TENG will produce a pre-synaptic spike to the gate to achieve a self-
powered synapse. (b) Open-circuit voltage (Voc) with varying separation distances. (c) IDS-d transfer characteristic curve of the SPST. Reproduced with
permission.[72] Copyright 2019, Elsevier.

Figure 4. (a) The schematic structure of a bio-synapse and the corresponded
PEDOT:PSS-based RRAM; (b) optical image of our flexible synaptic device in
the bend state. Reproduced with permission.[73] Copyright 2018, MDPI
Publications.
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Ag ions and nanoparticles, leading to several interesting results,
in particular: a stability to cycling above cycles with the system
based on AgNO3, PVDF-HFP and ionic liquid, having ON/OFF
ratio around 10 and a retention time in the order of 1000
seconds;[48] a maximum ON/OFF ratio above for systems based
on AgNO3, PEO and ionic liquid, leading to cyclic stability
around 500 cycles and retention time above seconds;[35] the
formulation of a printable ink leading to a Write Once Read
Many (WORM) flash memory.[76]

An emerging class of devices, organic electrochemical
transistors (OECTs), operate in electrolyte solutions and exhibit
controllable memory effects, holding great promise for bioelec-
tronics and neuromorphic computing. In a study, Matteo
Cucchi’s group[74] have proposed AC-electropolymerization to
produce directionally controlled channels (Figure 5). Through
changing the polymerization parameters, including voltage,
frequency, and salt concentration, it is possible to adjust
physical properties such as strength and capacitance.[74]

The monomers used in this research was 3,4-ethylene-
dioxythiophene (EDOT) and the salt was tetrabutylammonium
hexafluorophosphate (TBAPF6). TBAPF6 is not only a suitable salt
with high potential for electrochemical processes, but also an
oxidizing agent for the monomer and an efficient dopant for
the polymer derived from polymer poly(3,4-ethylenedioxythio-
phene)-tetrabutylammonium hexafluorophosphat. Conductive
fibers of poly-3,4-ethylenedioxy-thiophene doped with hexa-
fluorophosphat (PEDOT:PF6) were prepared by AC electropoly-
merization in an electrolyte solution under AC signals (square
wave 10–200 Hz) with between two gold electrodes.

Polymerization was carried out in three steps:[74]

* By introducing a positive voltage above the monomer
oxidation potential, the radicalization at the electrode/
electrolyte interface was motivated. An electrical double layer
(EDL) was formed as (PF) anions drifted to the electrode and
accumulated.

* An PFþo anion neutralized the radical cation of EDOTþ0 .

* The EDOT:PF6 complex had now reached a state of neutrality
and was reacting with other EDOT

An almost isotropic growth would be induced by DC voltage,
resulting in a closed film covering the entire positive bias
electrode, expanding in any direction which was inconvenient
for transistor channels. However, this study found that an AC
stimulus (square wave, duty cycle 50%) caused the little
amount of polymerization only where the kinetics were fast.
Fibers prefer to grow in areas where the local field is higher
since the reaction rate depends on the concentration of anion.
By growing new fibers, the field would become stronger in the
next cycle (tip effect), and would accelerate reactions at the end
of the fiber rather than the base (Faraday cage). Furthermore,
an AC stimulator enables growth in a selectable spatial direction
to bridge two or more electrodes on the substrate, allowing the
channels to be upgraded multiple times.[74]

For neuromorphic applications, the growth method proved
highly valuable since it allowed for the fabrication of devices
that followed learning principles with arbitrary time constants.
Adjustable neuromorphic features and the ability to decrease
channels to the micrometre size were used to highlight the
advantages of this technique. Finally, they address the issue of
miniaturisation by demonstrating sub-micrometer devices inte-
grated in a dense crossbar array on a flexible substrate.[74]

Soft memory devices for smooth nerve transmission, as well
as wearable applications, attract a lot of attention due to the
ion concentration polarisation mechanism.[77] Muhammad Umair
Khan and his colleagues,[75] proposed a core-shell soft ionic
liquid (IL)-resistive memory device, using Cu/Ag@AgCl/Cu for
electronic synapses. Cu ions were significantly controlled in the
liquid electrolyte by the Ag@AgCl core-shell, leading to a multi-
state resistive switching characteristic.

According to Figure 6, the core shell-based device was
strongly affected by the polarization of ion concentrations,
which is the main cause of synaptic activity. The pulse width,

Figure 5. Set-up and growth of the dendritic networks. a) Setup and materials used to grow the organic dendritic networks. b) Sketch of the polymerisation
process: during the positive polarity of the applied electrical signal, the anions oxidise the monomers at the interface and trigger the reaction; during the
negative polarity, the monomer surrounded by cations is inert. c) Networks grown at 4 V with varying frequency: higher frequencies promote thinner fibres
and a higher degree of bifurcation. Reproduced with permission.[74] Copyright 2021, John Wiley & Sons
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frequency, and amplitude of pulses were studied in both
positive and negative voltage regions. It was discovered that
the core-shell IL soft memory device could open a gateway for
electronic synapses by demonstrating stable synaptic behavior
in bending tests.[75]

3. Neuromorphic Colloid Systems

The reported synapse like colloid devices are summarised in
Table 2. The first study to demonstrate liquid state, colloidal
RSDs goes back to 2016.[82] Chiolerio and co-authors showed
that ZnO nano and microparticles can be used to create flexible
soft RSDs after photocuring, or liquid devices when the system
is still at liquid state, prior to curing. Comparing the degree of
polymerization, from the null state (oligomer, liquid state) to
the soft crosslinking to strong crosslinking, the oxidation state
at the particle surface (including a range of positions from the
metal state to the variable oxygen vacancy density), and the
degree of interaction between Oxygen vacancies and eth-
oxylated groups, it was possible to adjust the electronic
properties of the obtained devices. A new interaction mecha-

nism called the interfacial coupling mechanism (ICM) was
developed.

In one study, Dongshin Kim et al.,[47] demonstrated the use
of [Na+] cations in an aqueous solution to transmit electrical
signals, as liquids can be useful components for neuromorphic
devices. By utilizing ion reservoirs for synaptic properties, they
developed a neuromorphic device that controlled [Na+].
Schematic of the device structure is shown in Figure 7.
According to the applied stimuli, NaCl-based device exhibited
synaptic characteristics of potentiation, depression, STP, LTP,
and STDP. Electrochemical reactions between [Na+] and
Na2TP@Nafion were used to simulate the signal transmission
processes of neurons. To control synaptic properties and
simulate synaptic functions, the device used an aqueous
solution of [Na+].

To control the concentration of [Na+] in the liquid, sodium
terephthalate (Na2TP) was used as a reservoir. The device’s
synaptic functions were then induced by a change in [Na+].
potentiation, depression, excitatory postsynaptic current (EPSC),
paired-pulse facilitation (PPF), and spike timing-dependent
plasticity (STDP), were all observed in the device. The device
operated in four distinct states. In the beginning, [Na+] and
[Cl� ] were distributed randomly in the NaCl solution. Nafion
separates the NaCl solution and Na2TP. In the initial state, [Na+]

Figure 6. Proposed model for working mechanism of the artificial synaptic
device using Ag@AgCl core-shell ionic liquid. The working mechanism of the
core-shell soft ionic liquid neuromorphic device. Reproduced with
permission.[75] Copyright 2021, Nature Publishing Group.

Table 2. Summary and comparison of reported synaptic neuromorphic colloid devices.

Neuromorphic
liquid device

Device materials Availability
of stimuli

STP/STD LTP/LTD Functionality
of plasticity

Refs.

Sodium ion reservoirs Na2TP@Nafion Electricity yes yes yes [47]
Memristor CNT-Cu Electricity No No No [13]
Optoelectronic device Si� Si nanocrystals Light yes yes yes [78]
Photoelectrochemical synapse CdS/MWCNT composites Light yes No yes [79,80]
Transistor LiCoO2/SrTiO3 Electricity No yes No [81]

Figure 7. Schematic device structure and biological synapse. a Left side:
Structure of the device, consisting of a Pt bottom electrode, a Na2TP@Nafion
layer, a NaCl solution, and a top electrode; Right side: Detailed schematic
showing ions in the NaCl solution on the surface of the Na2TP@Nafion layer.
b Chemical structure of Na2TP and insertion or removal of Na+. Comparison
of a biological synapse and an artificial synapse. Reproduced with
permission.[47] Copyright 2020, Nature Publishing Group.
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and [Cl� ] could be displaced by bias polarity when positive bias
pulses were applied to the device.

With repeated stimulation, the ionic current gradually
decreased due to the ion diffusion characteristics in the
solution. [Na+] could not be absorbed in the Na2TP if the
applied voltage was low. As a result, the [Na+] in the solution
remained unchanged, and the device’s conductivity returned to
its original level. When a high enough voltage was supplied,
[Na+] was able to pass through Nafion and react with Na2TP.
The [Na+] was subsequently absorbed into the Na2TP, lowering
the [Na+] in the solution and decreasing the device’s
conductivity. The Na2TP could release the [Na+] absorbed in it
when a negative voltage was applied to the device. The applied
negative voltage increased the concentration of [Na+] in the
solution, resulting in potentiation. The [Na+] in the solution
could be controlled by the number and amplitude of bias
pulses. These EIS results could be used to calculate ion mobility
and concentration. The diameter of the semicircles altered as a
result of the reaction between Na2TP and [Na+] during the bias
voltage was applied.[47]

Richard Mayne and his colleagues[13] fabricated liquid
marbles with neuromorphic properties through copper coatings
and fluid cores containing carbon nanotubes 1 :0 mgml� 1. The
experiment was performed by sandwiching marbles between
two cup electrodes and stimulating them with repeated DC
pulses at 3 :0 V.

This study was presented as a pathway for the development
of microlitre-quantity three-dimensional ballistic-chemical reac-
tors, which exhibited neuromorphic properties and may hence
be used as unconventional computing media. Their results
demonstrated that entrainment copper liquid marbles filled
with carbon nanotubes can cause their electrical resistance to

change rapidly between high to low resistance profiles, through
periodic pulses, upon inverting the polarity of stimulation. The
advantages of their devices, which are enclosed in liquid
marbles, are enormous, but revolve around soft and ballistic
data sources, the contents of which may be considered as
chemical reactors. This technology is of interest to the design
and fabrication of massively parallel wet computers, which
include their applications from computing to biomedicine.[13]

In another research, Hua Tan and colleagues[78] used Si� Si
nanocrystals (NCs) to make synaptic devices, which could be
effectively illuminated by light over an unprecedented region
of the ultraviolet to near-infrared spectrum, which has a
wavelength of about 2 micrometers. These Si-NC-based
synaptic devices with optical stimulation demonstrated a series
of important synaptic functions that mimicked biological
synapses well. Figure 8 schematically shows a biological neural
system with typical synaptic structures and the structure of an
array of Si-NC based synaptic devices.

In this work they have used highly boron-doped Si NCs to
fabricate optically stimulated synaptic devices. The plasticity of
Si-NC-based synaptic devices originated from the dynamic
entrapment and propagation of photogenerated carriers at
defects such as dangling bonds at the NC surface. When pulsed
optical signals in the wide UV to NIR region were used as input
spikes, these Si-NC-based synaptic devices performed important
synaptic functions such as excitatory postsynaptic current
(EPSC), paired-pulse facilitation (PPF), short-term plasticity (STP)
to long-term plasticity (LTP) transition and spike-timing-
dependent plasticity (STDP). It was found that the performance
of the device is mainly controlled by the electronic and optical
behavior of Si NCs. The current ease of use of Si NCs in
broadband, low-energy consumption optoelectronic synaptic

Figure 8. Biological and Si-NC-based synapses. (a) Schematic of biological neurons that are connected with synapses. (b) Schematic of an array of Si-NC-based
synaptic devices. The top electrode, Si NCs and transparent electrode represent the presynaptic axon terminal, vesicle and postsynaptic dendrite terminal,
respectively. Stimulus light is introduced from the transparent-electrode side. (c) Cross-section SEM image of a Si-NC-based synaptic device. The thickness of
the Si-NC film is about 300 nm. (d) Low-resolution TEM image of Si NCs. The selected area electron diffraction (SAED) and high-resolution TEM image are
shown as the insets. (e) Size distribution with a log-normal fit for Si NCs. The mean size of B-doped Si NCs is about 7.5 nm. Reproduced with permission.[78]

Copyright 2018, Elsevier.
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devices has important implications for large-scale Si use in
emerging neuromorphic computing.[78]

Plasticity of photoelectrochemical responses have been
observed in CdS-multiwalled carbon nanotubes composites[79]

as well as tetragonal (hawleyite) and hexagonal (greenockite)
polymorphs of cadmium sulfide.[80] Stimulation of photoelectro-
des fabricated with one of the above mentioned materials on
flexible substrates ((poly)ethylene terephthalate foil coated with
indium-doped tin oxide) in the presence of liquid or gel
electrolytes resulted in photo-current responses that can be
described as spike-rate dependent plasticity: the amplitude of
photo-current pulses increased with the number of light pulses
applied and also with decreasing time interval between pulses
(Figure 9).

Observed synaptic plasticity is a result of two competing
secondary processes following charge-carrier generation: inter-
facial charge transfer (blue arrows in Figure 9d) and charge
trapping (red arrows in Figure 9d). Due to significant difference
of reaction rates, filling the trap states associated with carbon
nanotubes, result in gradual increase in photocurrent ampli-
tude. E excitation of CdS nanoparticles occurs results in the
generation of electron–hole pairs, which undergo subsequent
dissociation under the influence of internal electric field and
give rise to photo-current spikes, however their intensity is
decreased by parasitic processes of charge trapping and charge
carrier recombination. In the case of long-lived charge trap
states the intensity of subsequent photocurrent pulses increase
due to gradual filling of the trap states. Therefore, in the case of
short intervals between light the observed photocurrent
intensity is significantly higher than for pulses separated by
longer intervals. A short break in pulse sequence result in full
reset of the materials - all trap level are emptied and the
subsequent light pulse can generate low intensity photocurrent.

These mechanism is valid locally for every junction between a
CdS nanoparticle and a carbon nanotube, however the overall
effect observed in the experiment results from the collective
behavior of the hybrid material. Very similar effects have been
observed for even simpler materials, like greenockite-hawleite
mixtures[80] and used for more complex computational tasks,
like classification of hand-written digits from MNIST database.
Due to the specific nature of the device (spike-rate dependent
plasticity) spacial patterns of hand-written digits were trans-
formed into temporal patters of light pulse sequences - the
arrangement of black and white pixels was translated into
variable time intervals between subsequent pulses (Figure 10).

Heshan Yu and colleagues[81] have investigated the change
in crystal orientation of thin-film grains by tuning the oxygen
deposition pressure while fabricating epitaxial Li1� xCoO2 (LCO)
thin films on SrTiO3 substrates with different orientations.
Tensile strain analysis in these thin films revealed the depth
dependence in these epitaxial LCO thin films. On the basis of
these high-quality LCO films, synaptic transistors have also been
fabricated and long-duration nonvolatile states of potentiation
and depression have been demonstrated. These findings
revealed a clear dependence on the LCO channel’s crystal
orientation. The signal-to-noise ratio of nonvolatile switching
was significantly improved without increasing energy consump-
tion by reducing the thickness of the LCO channel. The lattice
orientation of the LCO channel strongly influenced the
potentiation and depression states, suggesting that an aniso-
tropic Li-ion diffusion rate is responsible for the device’s
performance.[81]

On of the most complex colloidal neuromorphic devices has
been reported recently by Tanaka et al.[83] The device is
fabricated from single-walled carbon nanotubes modified with
a complex modifier composed of protonated tetraphenyl

Figure 9. The response of the artificial synapse upon illumination (450 nm) with (a) 2 s and with (b) 50 ms time intervals between light pulses. The plasticity of
the studied synaptic system with the fit line described by bi-exponential function (c) The charge trapping mechanism responsible for the synaptic behavior of
the CdS/MWCNT-based device. Reproduced with permission.[79] Copyright 2020, John Wiley & Sons.
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porphyrin and Keggin-type polyoxometalate, namely the
[H4TPP]2[SV2W10O40] (Por-POM) supra-molecular assembly. This
modifier has been reported to exhibit negative differential
resistance and pinched hysteresis loops when deposited as thin
layer on platinum comb electrodes.[84] Modified nanotubes are
deposited as randomly oriented and interpenetrated network
onto a prepatterned glass substrate, as shown in Figure 11. Due
to high flexibility of nanotubes analogous devices can be
fabricated on flexible substrates as well.

Application of a simple sine wave to one randomly selected
input resulted in generation of a series of complex outputs at
remaining device’s terminals (cf. Figure 11). This behaviour
results from the combination of the NDR character of the Por-
POM modifier and a complex, percolated networks of SWCNTs.
Thus, a device transforming a single into into a set of time
series of the character, which is a signature of brain-like
computation at the edge of chaos. This power-law signature
indicates that the signal generated from the input is solely an
intrinsic property of the material. It also indicates the scale-free
nature of electrical processes in the network. Thus, the device
potential can be considered as a reservoir computing system.

In order to verify this hypothesis tho sets of tests have been
performed. The device has been used to generate any arbitrarily
chosen waveform by computing linear combinations of signal
from different outputs. This, however has been achieved with a
significant software support - the weights for these operation
has been computed by ANN, which can be considered as a
digital output layer of the reservoir. Finally, the device, also
equipped with a simple trainable ANN output layer, has been
applied for processing of signals generated by touch sensor
mounted on a robotic arm (Figure 12). The gripper arm of the
Toyota HSR robot has been used for gripping a series of object
of different shape and softness: a toy bus model, a plastic block,
a teddy dog and a plush hedgehog (Figure 12a). Recorded
signals (grasping angle vs grasping force) has been translated
into time-dependent voltage signals (Figure 12b) and applied
to a SWCNT/Por-POM reservoir system, equipped with a trained

Figure 10. A 28×28 pixels image of a handwritten character with a marked row (a) translated into a sequence of bits and corresponding light pulses (b). A
pattern of photocurrent spikes for a given binary input with three thresholds indicated (c). An image of the character reconstructed from the normalized
photocurrent amplitudes (d). Reproduced with permission.[80] Copyright 2019, MDPI Publications.

Figure 11. The full circuit schematic of the outputs obtained from different
electrode pads when a sine wave of 11 Hz, �1 V is applied at the yellow-
coloured electrode pad connected to the SWNT (black line)/Por–POM film
(green circle). A function generator is used where the output from one pole
is fed as the input signal, whereas the other pole is grounded via a 50 Ω
resistor (z value, orange box). All outputs are then taken from the DAQ
system which is grounded via a similar 50 Ω resistor, to complete the full
circuitry. Reproduced with permission.[83] Copyright 2022, John Wiley & Sons.
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ANN perceptron (Figure 12c). As a result, as series of one-hot
vector has been obtained (Figure 12d), representing very high
accuracy of object recognition.

4. Neuromorphic Gel Systems

Biological materials allow learning in response to past experi-
ences. Classical conditioning is an elementary form of associa-
tive learning, which inspires us to explore simplified routes
even for inanimate materials to respond to new, initially neutral
stimuli. Neuromorphic devices implemented in gel systems are
summarised in Table 3, below we discuss key prototypes.

Hao Zeng and colleagues,[85] have demonstrated that soft
actuators made of thermoresponsive liquid crystal networks can
‘learn’ to respond to light based on a conditioning process in
which light is associated with heating. A soft microrobot based
on this concept was demonstrated, including a locomotive
which ‘learns to walk’ under periodic stimulation, as well as
gripping devices capable of ‘recognize’ the colour of irradiation.
This team predicted that actuators that algorithmically mimic
basic aspects of associative learning and whose sensitivity to
new stimuli can be conditioned based on previous experiences
could pave the way for adaptive, autonomous soft micro-
robotics.[85]

Another step towards imitating psychological behaviours in
synthetic materials could be to imitate the process of forget-
ting. Potential approaches could include the use of molecules
or particles with dynamic properties, responsive material-based
logic gates, or more sophisticated intelligent responses. They
showed that artificial memory could be manipulated externally
using chemicals.[85]

The concept of soft robotics was demonstrated by develop-
ing a walker and colour-recognising grippers that evolved to
respond to light as a result of the association process. Mean-
while, an artificial Pavlov’s dog was constructed to show off the
modularity of the concept. This method allowed the construc-
tion of an artificial Pavlov’s dog that could mimic a simple
learning process and modify its behaviour based on its previous
experience. The dynamic response of the actuators combined
with the diversity of the ways in which they respond to stimuli
could provide unexpected pathways toward self-adapting,
intelligent soft micro-robots.[85]

Chuan Qian and colleagues[86] demonstrated an artificial
synapse simulation based on ion-gel gated organic field-effect
transistors (FETs) with poly(3-hexylthiophene) (P3HT) active
channels. Also, key synaptic behaviours including paired-pulse

facilitation (PPF), short-term plasticity (STP), self-tuning, the
spike logic operation, spatiotemporal dentritic integration, and
modulation were successfully mimicked.

In this work, Artificial synapses were constructed using
lateral gated ion-gel OFETs. The model simulated some key

Figure 12. Step wise object binary classification with SWNT/Por–POM
reservoir: (a) The HSR (left) with a schematic of the arm (middle) connected
to the gripper via force-torque sensor gathers tactile data from the change
in the gripper angle and grasping force applied to objects (right) like bus,
block, dog, and hedgehog (HH) toys presented in a red box. (b) The raw
sensory data (left) obtained from each of the objects are converted to time-
series voltage data using LabVIEW by sampling at 5 bits/s (left) in the range
[0, � 5] V as depicted graphically to the right. (c) Time series inputs from
different objects m (HH, dog, bus, and block) are separately inputted into
the SWNT (black line) Por–POM (green circles) reservoir with recurrent
connections (red arrow), left figure. Voltage readouts from a total of i output
pads each of m objects are collected as shown in the right for one of the
electrode pads. (d) One-hot vector encoding is used for binary classification.
Each square box with the lines inside represents the target signal, for each
of HH, dog, bus, and block. The file output is the one-hot vector as the
object to be truly predicted is true given a vector value 1 while the others a
vector value 0. Reproduced with permission.[83] Copyright 2022, John Wiley &
Sons.

Table 3. Summary and comparison of reported synaptic neuromorphic gel devices.

Neuromorphic
liquid device

Device materials Availability
of stimuli

STP/STD LTP/LTD Functionality
of plasticity

Refs.

Actuators Hydrogel/Au NPs light/ heat No No No [85]
Transistor P3HT Electricity yes No yes [86]
Transistor VO2 Electricity yes yes yes [87]
Transistor PS-PMMA-PS Electricity yes yes yes [88]
Transistor In� Zn-O Electricity No No No [89]
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traits of synaptic behaviour, including excitatory postsynaptic
currents (EPSC) and self-tuning. Spike logic, spatiotemporal
dentritic integration, and EPSC regulation were also realised
with two presynaptic inputs. According to the results of XPS
and in situ absorption spectra, electrical measurements revealed
a direct correlation between the change of current and the
[TFSA]� transferred at the interface. The intensity of π–π*

absorption was found to be proportional to the amount of
[TFSA]� penetrated into P3HT film.[86]

The electrolyte ion interface doping processes between the
active P3HT layer and ion gels were thoroughly investigated in
order to confirm the operational processes behind the fluctua-
tions in conductivity and excitatory postsynaptic current (EPSC)
in organic synaptic devices. This research was a significant step
forward in the development of future artificial neuromorphic
systems using newly developed ion gel gated organic synaptic
devices.[86]

To imitate the functions of the biological synapse, Xing
Deng’s group[87] created a transparent, flexible ionic gel-gated
VO2 Mott synaptic transistor. The volatile electrostatic carrier
accumulation and nonvolatile proton-doping modulation were
used to achieve short-term and long-term plasticity of the
synapse, respectively. The channel semiconductor and gate
insulator were made of epitaxial VO2 film and a rubbery solid
ionic gel, respectively.

The Mott synaptic transistor was well-suited to simulating a
key sensory nerve nociceptor with threshold, relaxation, and
sensitization properties. More notably, this synaptic transistor
demonstrated outstanding bending stability and endurance.
Under the inter-conversion of flat and bending states, the cycle-
to-cycle (C2 C) variance of continuous LTP and LTD measure-
ment was as low as 3.8%, which is analogous to the synaptic
device on rigid substrate. Simulations with an artificial neural
network made from these Mott transistors demonstrated that
the recognition accuracy of handwritten digits can reach 95%
based on the low variance of multi-conductance states in
potentiation and depression features.[87]

Instead of modifying the pattern of presynaptic spikes, Dae-
Gyo Seo and colleagues[88] modified the synaptic decay constant
of organic synaptic transistors using stable materials and device
topology, allowing for a wide range of applications ranging
from neuromorphic computing to neuro-prosthetic. Figure 13
depicts a schematic of their device. The crystallinity of the
polymer controlled the electrochemical doping kinetics and
synaptic behaviour of artificial synaptic transistors. In this way,
they demonstrated both memory and learning’s long-term
retention for IGOST (ion-gel gated organic synaptic transistors),
which are useful for neuromorphic computing, as well as short-
term retention for fast synaptic transmission needed to simulate
peripheral nerves such as nerves of the sensory and motor
systems. Their approach combines a composite IGOST of a
polymer semiconductor with an acoustic sensor coupled with a
triboelectric sensor to demonstrate the feasibility of their
approach in two ways. First, they simulate pattern recognition
on the MNIST data-set of handwritten digits using an IGOST
with long-term retention due to increased crystallinity. Then,
they develop artificial auditory sensory nerves that combine an

IGOST with short-term retention due to disordered chain
morphology in a polymer semiconductor.[88]

This team adjusted the morphology of the polymer film in
order to create a variety of synaptic decay times in a single
IGOST without changing the device’s shape or the organic
polymer composition. As the polymer crystallinity varied, the
synaptic decay features changed from STP dominant to LTP
dominant. Modifying the crystallinity of the synaptic decay time
constant in IGOST also revealed a relationship between synaptic
and morphological features. MNIST recognition accuracy for
devices that used Tanh=310 °C films was 94.49% for 8×8
MNIST data and 91.29% for 28×28 MNIST data with LTP-
dominant synaptic decay, but these devices cannot be used for
artificial sensory neural systems. On the other hand, devices
that utilised Tanh=80 °C-prepared films, demonstrated appro-
priate features for an artificial sensory nervous system, with
STP-dominant synaptic degeneration. Simulations and sensor
integration by IGOST demonstrated the importance of engi-
neering the microstructure of the polymer film for specific
neuromorphic applications (like simulating the central or
peripheral nervous system). This is the first study to demon-
strate that the decay-time constant of devices may be altered
by changing the morphology of thin films, rather than changing
presynaptic spike forms. In a single device, synaptic functions

Figure 13. (a) Schematics of biological synapse and structure of synaptic
transistor. (b) Chemical structure of poly(thienoisoindigo-naphthalene)
PTIIG� Np and 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide
([EMIM][TFSI]). Alkyl side chain (R) is 2-octyldodecayl. Reproduced with
permission.[88] Copyright 2019, Elsevier.
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Figure 14. (a) Schematic of material learning based on SPANI reservoir. There are two kinds of charge carriers in SPANI: polarons and protons. Polarons are
intrinsic electrical carriers that are generated by self-doping from sulfonic groups (red arrow). Protons can be directly injected into the SPANI molecular chain
under humid conditions (blue arrow), which generates ionic conduction. Therefore, the electrical properties of SPAN can be controlled by adjusting the
humidity of the environment. Various output responses including electrochemical dynamics have been used for solving complex tasks applying the reservoir
computing (RC) approach. In RC, a randomly connected network (the “reservoir”) is used to create nonlinear projections of inputs into high-dimensional
space. Here, the SPANI device functions as a reservoir. The network can be trained by a simple supervised readout layer to learn linear combinations (Σ) of
network states. Only the output layer weights are trained, and the random network itself remains the same during the process. (b) V–t curves of an 11 Hz
sinusoidal input signal with a peak-to-peak voltage (VPP) of 2.0 V and nonlinear outputs for a SPANI device. The output currents are terminated with a
resistance of 305 kΩ. (c) Log–log plot showing the fast Fourier transform (FFT) spectrum of output 1 (OUT1). PSD denotes power spectral density. FFT was
performed for the same time periods as the Lissajous curves in Figure S5 (Supporting Information). Higher harmonic generation from a single input frequency
(11 Hz) indicates that the device exhibits high-dimensional mapping, which is essential for achieving multiple classifications with high accuracy. Reproduced
with permission.[90] Copyright 2021, John Wiley & Sons.

Figure 15. (a) Schematic of spoken-digit classification. The spoken-digit time series signals in the data-set were converted to cochleagrams by separating the
intensities in four frequency regions up to 130 Hz with Lyon’s auditory model filtering. The cochleagrams were normalized and applied to the high-SPAN-
concentration OEND as time series bias voltages. After recording and labelling the output from the device, the labelled outputs were classified by a ridge
regression to one-hot target vector with training (90%) and prediction (10%). The detail is shown in Section S8 (Supporting Information). (b) Normalized
confusion matrix of spoken-digit classification with the FSDD data-set of one speaker (Jackson) when using OEND output signals (accuracy: 66%). The
accuracy of the echo state network (ESN) in the simulation was 78%. (c) Comparison of the accuracy of spoken-digit classification between the software ESN
and OEND output signals for each speaker. d) Normalized confusion matrix of human classification for all speakers using OEND output signals (accuracy: 60%).
The accuracy of the ESN in the simulation was 63%. Reproduced with permission.[90] Copyright 2021, John Wiley & Sons.
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such as SNDP, PPF, SFDP, SVDP, and SDDP were replicated. The
aim of this paper was to develop a new method for engineering
organic synaptic transistors with a few necessary characteristics
for use in neuromorphic computing, neural prosthetics, bio-
interface devices, and soft robotics.[88]

Ling-an Kong and colleagues[89] created ion-gel coupled
synaptic transistors with solution-possessed amorphous Indi-
um-Zinc-Oxide (In-Zn� O) thin films in a study. Because of the
substantial electric-double-layer (EDL) capacitance (4.87 mF/
cm2), the ion-gel dielectric produced a strong ionic/electronic
coupling on solution-processed In-Zn� O thin films. Synaptic
functions were simulated using ion-gel gated In-Zn� O FETs. The
presynaptic input terminal was the in-plane gate, while the
postsynaptic output terminal was the In-Zn� O channel with
source/drain electrodes. Neuro transmitters were thought to be
mobile ions in ion-gel. On the in-plane electrodes, gate pluses
were applied, which were equivalent to presynaptic spikes on
the presynaptic membrane. The excitatory postsynaptic current
(EPSC), spike time-dependent EPSC, paired-pulse facilitation
(PPF), and dynamic synaptic behaviours were all replicated.[89]

The high-mobility and low-voltage solution-processed In-
Zn� O FETs benefited from highly efficient ion-gel gating. The
ion-gel gated In-Zn� O FETs were most critically employed to
simulate synaptic functions in a biological system. Using
solution-processed amorphous semiconductors, the results
presented here provided a new possibility and technique for
fabricating artificial synaptic circuits and neuromorphic
systems.[89]

A beautiful example of reservoir computing device based
on conducting polymer gel; sulfonated polyaniline (SPANI) has

been reported by Tanaka, van der Wiel and Matsumoto.[90] In
this system, a metal-patterned glass substrates are covered by
sulfonated polyaniline gel and kept in humid environment to
prevent drying (Figure 14). The device, subjected to AC
stimulation exhibited un-pinched hysteresis loop, characteristic
for redox processes in polyaniline. Furthermore, the resulting
signal were rich in higher harmonics (within 10 Hz–1 kHz),
indicating intrinsic power-law dynamics (Figure 14b–c). These
two features indicate the applicability of the device in neuro-
morphic computing: in has rich internal dynamics and memory.
These features have been exploited in speech analysis, namely
speaker identification. Recorded voices of six speakers (labelled
as Jackson, Nicolas, Theo, Yweweler, George and Lucas) were
transformed into cochleagrams, which were subsequently used
as a spatiotemporal input (i. e. cochleagrams corresponding to
different spoken digits were applied to different input ports of
the device (Figure 15).

The examples presented above demonstrate the applicabil-
ity of gel materials in neuromorphic computing, not only
mimicking basin neural/synaptic functionalities, but also in
more complex computational approaches, like reservoir com-
puting. These computing systems are capable of complex
computational tasks, like speaker identification or image
recognition.

Polyaniline combined with polyethylene oxide seems to be
the most successful material combination for fabrication of soft
neuromimetic devices: artificial synapses and electrochemical
spiking neurons. Numerous devices and complex neuromorphic
circuits, along with their models and detailed application
schemes has been developed over last 15 years by Victor

Table 4. Comparative analysis of neuromorphic devices.

Device Cycle, ms Pre-proc-
essing

Density,
device
/mm2

Voltage
range,
V

Current
range

Power
consumption

Life time Re-usability,
cycles

Self-Heal-
ing

Refs.

MoO3 device N/A N/A N/A � 60 to 60 0.1 nA to
10 μA

N/A N/A N/A No [70]

Memory: 2D-SnO2

memtransistor
1000 (DC
sweep)

1 min N/A 15 V to
� 15 V

0.1 μA 1.5–1.8 μW 3 months 1000 (DC
sweep)

N/A [71]

Analog :2D-SnO2

memtransistor
1 min N/A 15 V to

� 15 V
60–85 nA 1.9 pJ 3 months N/A [71]

Transistor N/A N/A N/A � 4 to 4 0.4 to 53 μA 0 N/A N/A No [72]
Memristor N/A N/A N/A � 1.5 to 1.5 � 100 to 140 150 μW 20000 s 100 No [75]
neuromorphic
device

5 N/A 0.44 cm� 2 � 8 to 5 0 to 0.1 mA 69.6 nJ/
event

600 s 200 No [47]

Memristor N/A N/A N/A � 3 to 3 � 0.1 to
0.1 A

N/A N/A N/A No [13]

Optoelectronic
device

200 N/A N/A 0 to 0.8 11 nA 18 N/A N/A No [78]

Li-ion transistor N/A N/A N/A 1.8 to 3.5 N/A N/A No [81]
Actuators 2000 N/A 1.1 gcm� 3 N/A N/A 100 mW N/A No [85]
Transistor 200 N/A N/A � 2 to 2 1.1 to

13.5 μA
0.24 μW N/A N/A No [86]

Transistor 2000 N/A 150 cm� 2 � 1.5 to 1.8 80 to
600 nA

0.00018 N/A 500 No [87]

Transistor 557 N/A N/A � 1 to 2 0 to
6.44 mA

0.32 μW N/A N/A NO [89]

Memristor
AgNO3:
PVDF-HFP : IL

100 NO N/A � 10 to 10 1 μA to
1 mA

N/A 100 NO [48]

Memristor
AgNO3 :PEO : IL

100 NO N/A � 5 to 5 1 μA to
1 mA

N/A 500 NO [48]
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Erokhin. His great contribution to gel neuromorphic devices,
the operation of which is based by dynamic doping of
conducting polymer structures accompanied by ionic diffusion
has been summarised in his recent book “Fundamentals of
Organic Neuromorphic Systems”.[91]

5. Conclusion

The goal of brain-inspired neuromorphic computing is to offer
an effective replica of the human brain’s functionality through
the use of electrical components. We overviewed the properties
and materials of liquid, colloidal and gel neuromorphic systems,
compared them and discussed various liquid based synaptic
devices as well as their neuromorphic applications. To simulate
synaptic functions, these gadgets use an aqueous solution.
These liquid-based artificial synapses have potential applica-
tions in biocompatible devices and constitute a new paradigm
to explore innovative computational protocols at the liquid
state. Comparative characteristics of the devices reviewed are
summarised in Table 3. We find that neuromorphic device[47]

and Analog :2D-SnO2 memtransistor[71] are devices with shortest
cycles. Memory: 2D-SnO2 memtransistor and Analog :2D-SnO2

memtransistor[71] are devices whose pre-processing time is
comparable with their cycle lengths. Actuator,[85] 2D-SnO2

memtransistor and Analog:2D-SnO2 memtransistor[71] have
longest life time. Transistor,[87] 2D-SnO2 memtransistor and
Analog:2D-SnO2 memtransistor[71] can survive largest number of
cycles.
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