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Abstract
Background and purpose: Advanced analysis of electroencephalography (EEG) data has 
become an essential tool in brain research. Based solely on resting state EEG signals, 
a data-driven, predictive and explanatory approach is presented to discriminate painful 
from non-painful diabetic polyneuropathy (DPN) patients.
Methods: Three minutes long, 64 electrode resting-state recordings were obtained from 
180 DPN patients. The analysis consisted of a mixture of traditional, explanatory and 
machine learning analyses. First, the 10 functional bivariate connections best differenti-
ating between painful and non-painful patients in each EEG band were identified and the 
relevant receiver operating characteristic was calculated. Later, those connections were 
correlated with selected clinical parameters.
Results: Predictive analysis indicated that theta and beta bands contain most of the infor-
mation required for discrimination between painful and non-painful polyneuropathy pa-
tients, with area under the receiver operating characteristic curve values of 0.93 for theta 
and 0.89 for beta bands. Assessing statistical differences between the average magni-
tude of functional connectivity values and clinical pain parameters revealed that painful 
DPN patients had significantly higher cortical functional connectivity than non-painful 
ones (p = 0.008 for theta and p = 0.001 for alpha bands). Moreover, intra-band analysis of 
individual significant functional connections revealed a positive correlation with average 
reported pain in the previous 3 months in all frequency bands.
Conclusions: Resting state EEG functional connectivity can serve as a highly accurate 
biomarker for the presence or absence of pain in DPN patients. This highlights the im-
portance of the brain, in addition to the peripheral lesions, in generating the clinical pain 
picture. This tool can probably be extended to other pain syndromes.
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INTRODUC TION

Objective, easy to obtain and stimulation-free biomarkers for clinical 
pain are intensely sought after. In healthy volunteers, experimen-
tal pain evokes a widespread increase of cortical activity in most 
frequency bands [1] and slower peak alpha frequency (PAF) tested 
over the sensorimotor cortex at rest and during tonic pain stimu-
lation, with an inverse correlation between PAF and experimental 
pain scores [2]. In line, clinical data show slower PAF and increased 
alpha/theta activity in chronic [3, 4] and neuropathic pain [5–7]. 
Furthermore, abnormal cortical activity is normalized after pain al-
leviation [8–11].

Advancing from univariate local cortical activity to multivariate 
analysis approaches (e.g., machine learning) of dynamic cortical net-
works has brought some more insights. Fairly good predictions of re-
sponse to various intensities of experimental thermal pain in healthy 
participants were reported [12] across all electroencephalography 
(EEG) bands. In line, applying machine learning analysis on spon-
taneous frontal delta EEG activity during tonic cold pain stimulus 
[13] successfully classified the responders versus non-responders to 
opioid analgesia in healthy subjects and later efficiently defined the 
responders to postoperative opioid treatment [14]. In another study 
[15] accuracy higher than 80% was achieved in identifying patients 
at risk for central pain after spinal cord injuries.

Further development of EEG analysis is the study of connec-
tivity between brain regions. This is parallel to an established 
body of research on magnetic resonance imaging (MRI) based 
pain-related functional brain connectivity in various diseases and 
healthy controls (for a review, see [16]). A recent study on resting 
state EEG connectivity [17] was based on transforming the discrete 
electrode-derived data into a continuous map of brain activity, 
using sLORETA, and then applying voxel based analysis similar to 
what is done for MRI data. The authors were able to discriminate 
chronic pain patients from the control subjects, primarily based on 
prefrontal theta and gamma connectivity, although they achieved 
a medium accuracy of 57%. They pointed to increased functional 
connectivity for alpha and beta bands in the sensorimotor cortex 
during experimental tonic pain. An additional article from that 
group has reported increased alpha band connectivity between 
sensorimotor and prefrontal cortices in response to experimental 
pain in healthy volunteers [18].

This work aims to further advance the methodology in explor-
ing whether resting state EEG based functional brain activity dif-
fers between painful and non-painful polyneuropathy participants. 
In order to do so, an alternative data-driven approach is proposed 
for studying EEG connectivity. First, functional connectivity infor-
mation is extracted directly from the raw EEG signal, relating each 
electrode to all others. Second, the signal-to-noise ratio is improved 
by identifying the most discriminative bivariate pairs of functional 
connections discriminating painful from non-painful patients. This 
is done using attribute selection statistical methods, which in turn 
allow for performing correlation analysis of physiological–clinical re-
lations on these connections.

MATERIAL S AND METHODS

Data collection

This is a cross-sectional study using a two-group comparison con-
venience sample. The Investigational Review Board approved the 
experimental protocol of Rambam Health Care Campus, Haifa, 
Israel; the study protocol conformed to the ethical guidelines of the 
1975 Declaration of Helsinki. Informed consent was obtained from 
all participants: National Institutes of Health clinical trial identifier 
number NCT02402361. This study was a part of a larger multi-
centre study examining pain in neuropathy (for the detailed study 
protocol, see [19]).

Two hundred patients with confirmed diabetic polyneuropathy 
(DPN) participated in this study. Patients over 18 years old were 
recruited through advertising and local diabetes clinics. To be clas-
sified as painful diabetic neuropathy, patients had (i) to be diag-
nosed as DPN based on a prior clinical assessment combined with 
supportive clinical findings, including either abnormal nerve con-
duction studies and/or abnormal findings on thermal quantitative 
sensory testing [20]; (ii) to have positively answered the question 
‘Are you bothered at the present time by pain in your feet (continu-
ous or intermittent)?’ [21]; and (iii) to meet the NeupSIG criteria for 
their pain being definitely neuropathic [22]. To be classified as non-
painful diabetic neuropathy, patients had (i) to be diagnosed as DPN 
as above and (ii) to have negatively answered the above question. 
Patients with insufficient mental capacity or proficiency in Hebrew 
to obtain consent were excluded. Other exclusion criteria included 
significant neurological or psychiatric disorders and moderate to 
severe pain from other causes that may confound assessment or 
pain reporting.

Clinical, psychophysical and psychological assessment

After providing informed consent, the participants underwent (i) a 
clinical neurological examination scored according to the Toronto 
Clinical Neuropathy Score (TCNS); (ii) quantitative sensory test-
ing via a modified version of the German Research Network on 
Neuropathic Pain assessment protocol; (iii) pain modulation pro-
file assessment; (iv) assessment of perceptual and psychological 

Significance

Resting state electroencephalography based biomarkers 
can accurately classify pain in non-painful diabetic poly-
neuropathy patients. This is based on a machine learning 
analysis of inter-electrode connectivity. Painful patients 
show higher connectivity, suggesting that a certain level of 
‘cross-talk’ between brain regions is required to perceive 
pain.
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parameters via a battery of questionnaires (this battery of assess-
ments is fully described in [19]); (v) EEG recording at rest and contact 
heat evoked potentials.

Resting state EEG recording

Electroencephalography was recorded for 3 min at rest in a seated 
position with eyes closed, and standardized instructions were used. 
The recording was performed with a 64 ActiCHamp Brain Vision 
system (Brain Products GmbH). The sampling rate was set to 500 Hz, 
with a 0.15–100 Hz bandpass filter and a notch filter of 50 Hz to 
reduce electrical net interference. Each electrode's impedance 
was lowered to 20 kΩ or less. The reference electrode was placed 
on the bridge of the participant's nose. An average reference was 
calculated.

Signal analysis

Our data analysis scheme is based on a commonly used data analysis 
pipeline consisting of several steps, including (i) data acquisition and 
pre-processing, (ii) extraction of functional connectivity information 
[23], (iii) variable selection [24], (iv) traditional explanatory analysis 
and multivariate and correlation analysis between clinical and physi-
ological data. These steps are schematically depicted in Figure 1 and 
explained in further detail below. MATLAB® [25] software was used 
for all steps of the analysis pipeline.

Data acquisition and pre-processing

Averaging neighbouring electrodes replaced noisy and detached 
electrodes [26]. The acquired EEG signal was segmented into 
1-s epochs, and segments with visually detected artifacts were 
removed. The total number of segments encompassed in the 
analysis varied from 150 (minimum) to 180. Since the number of 
noisy epochs was relatively small, artifact rejection (i.e., removal 
of contaminated epochs from the analysis) was applied instead of 
artifact correction (e.g., independent component analysis based 
correction).

Features extraction (i.e., functional connectivity)

During the features extraction process, functional connectivity 
values between each possible pair of electrodes were calculated 
separately for each of the standard frequency bands, that is, theta 
(3.5–7.5 Hz), alpha (7.5–12.5 Hz), beta (12.5–30 Hz) and gamma (30–
40 Hz), using the magnitude-squared coherence estimate (MSC) [23]. 
In short, EEG coherence is defined as the spectral correlation be-
tween two EEG signals. When applied to a windowed signal, this pro-
cess allows the temporal synchronization in the frequency domain to 

be evaluated. If two signals are highly correlated, the value of MSC 
is 1; otherwise MSC is close to 0. The high coherence between EEG 
signals recorded at different electrodes provides information about 
the potential cortical interactions. Whilst local functional connec-
tivity (i.e., between close electrode leads) may indicate high fidelity 
neural communication, global coherence (i.e., between different or 
distant brain areas) may indicate modulation of one region to an-
other or an interaction between the regions.

Variable selection

It is well accepted that statistical learning tools are directly affected 
by both the relevance and the number of features. For example, a 
high number of irrelevant features (in our case, individual connec-
tions) or a high number of features compared to the amount of data 
can lead to a low signal-to-noise ratio. It is a variant of the famous 
curse of dimensionality [27] or a small-n large-p [28] problem. To 
resolve it, the ReliefF [24] algorithm is applied to rank the features, 
aiming to choose the top 10 representing the best informative 
subset. The goal here was two-fold: identify features capable of 
successfully classifying patients with painful and non-painful poly-
neuropathy; indicate a brain-wide localization of the origin of dif-
ferences between the groups. In other words, the method should 
be sufficiently predictive and explanatory. Note that relevant fea-
tures (both for explanatory and predictive analysis) were selected 
using the training data only to avoid double-dipping, which entails 
using both training and testing data partitions to select relevant 
features [29]. In other words, the analysed features were selected 
from a sub-sampled dataset and cross-validated against statistical 
biases.

Due to the nature of the cross-validation training iterations 
leaving substantial data for validation, the feature selection pro-
cess is non-deterministic (i.e., each iteration is likely to result in 
the selection process of slightly different features). To overcome 
such uncertainty, a histogram methodology was used. The analysis 
(Figure 1, blue rectangle) was re-run many times and the frequency 
(or a recurrence) of each specific functional connection being se-
lected as a discriminating feature was counted, as proposed in 
[30]. An example of such a run can be seen in Figure 1 (explanatory 
analysis path) and Figure  2, where the x-axis indicates selected 
functional connections (i.e., features) and the y-axis indicates fre-
quency (i.e., the repeatability of a specific feature through differ-
ent selections).

Predictive and explanatory analysis

After extraction of the functional connectivity values, the data 
analysis is provided in two phases: (i) using the multivariate analy-
sis and the receiver operating characteristic (ROC) curve repre-
sentation, the aim was to show that those indicators (functional 
connections) can act as a sole biomarker for separating the painful 



    | 207EEG BASED BIOMARKER OF DPN

and non-painful DPN patients; (ii) by a statistical examination of 
the selected indicators (i.e., features used in the classification de-
cision) and traditional univariate methods, an effort was made to 
explain the classification outcomes and comprehend their clinical 
associates.

Predictive, multivariate analysis

In essence, this type of analysis aims to look at the brain from 
the perspective of a dynamic system or a pattern, as opposed to 
the traditional EEG based approaches analysing activity in terms 
of time and frequency domains in each brain area independently. 
The classification aims to find a multivariate activation pattern be-
tween those electrode pairs that can be reliably associated with 
distinguishing painful and non-painful polyneuropathy, more spe-
cifically a support vector machine as presented in [31] with C-SVC 
(Support Vector Classification) kernel type and the Radial Basis 
Classification Function (i.e., Gaussian kernel). The major advan-
tage of the method lies in its generalization ability on small and 

imbalanced datasets. Our recently published methodological paper 
describes more details and extensively discusses the explanatory 
and predictive methodologies [32].

Explanatory analysis

The connectivity values of the 10 selected functional connections 
and their average value in each band between painful and non-
painful participants (two-sample t test for normally distributed 
parameters and Mood's median test for abnormally distributed pa-
rameters) were compared. After correcting each band for multiple 
comparisons using Bonferroni correction, the connections found 
significantly different between the two groups were used for cor-
relation analysis with clinical parameters (i.e., average self-reported 
pain intensity in the previous 3 months). In order to correct for multi-
ple comparisons, multiplication by the number of analysed variables 
(10 in our case) was carried out. JMP (SAS Institute) was used for 
statistical analyses. When applicable, demographic and clinical pa-
rameters were compared using the t test or via non-parametric tests.

F I G U R E  1  The analysis scheme is 
composed of three main stages: (i) data 
acquisition and pre-processing; (ii) feature 
extraction, including calculation of 
functional connectivity values between 
each possible pair of electrodes for 
each of the standard frequency bands, 
using the MSC and applying the ReliefF 
algorithm to rank the features, aiming 
to choose the top 10 representing the 
best informative subset; (iii) predictive 
analysis—a multivariate analysis and ROC 
curve representation of the selected 
functional connections
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RESULTS

Patient characteristics

Two hundred patients with DPN were recruited to the study; 180 of 
them had an EEG recording at rest adequate for analysis; six patients 
refused EEG, for five patients EEG was not recorded due to technical 
malfunction and nine recordings were unusable due to poor quality. 
Of these 180, 133 patients were classified as having painful diabetic 

neuropathy and 47 as non-painful based on the above described 
classifying question (Table 1). It is noted that the protocol included 
several questionnaires, and some of the patients were classified as 
non-painful based on the classifying question, although they did in-
dicate some level of pain in other questionnaires. The painful pa-
tients had expectedly higher scores in the TCNS, probably due to 
the pain-related components of this score (Table 1). Both groups had 
similar diabetes duration and severity of the neuropathy, as reflected 
by the similar foot sensory thresholds.

F I G U R E  2  Functional connections 
differentiating between painful and non-
painful diabetic neuropathy patients. The 
x-axis represents the selected functional 
connections, and the y-axis describes 
the recurrence (i.e., histogram) of each 
connection out of 300 reiterations on 
a 0–1 range. The higher the score, the 
higher the likelihood of the specific pair 
being selected in a replicative study. For 
example, the leftmost column in the alpha 
range (FC2–C1) represents an 80% chance 
of being found significant again in similar 
studies

TA B L E  1  Participant characteristics

Total Painful DPN Non-painful DPN
p value, painful 
vs. non-painful

N 180 133 47

Demographic parameters

Female (N, %) 50 (27.7) 41 (30.8) 9 (19.5) 0.1149

Age in years (mean, SD) 64.5 (10.1) 63.3 (10.85) 67.9 (6.93) 0.0074*

Clinical parameters

TCNS (mean, SD) 10.73 (4.36) 11.223 (4.4) 9.31 (3.93) 0.0093*

Diabetes duration in years (median, range) 15 (0–46) 15 (0.3–46) 18 (0–44) 0.4245

Average foot pain rating (on a 0–10 numerical 
pain rating scale) 24 h prior to testing (mean, 
SD)

3.25 (2.88) 4.47 (2.5) 0.48 (1.28) <0.0001*

DFNS quantitative sensory testing on the foot

Cold detection threshold (mean, SD) −14.05 (9.5) −14.72 (9.91) −12.58 (8.42) 0.1895

Warm detection threshold (mean, SD) 13.16 (3.87) 13.26 (3.93) 12.99 (3.74) 0.6861

Vibration detection threshold (mean, SD) 5.05 (2.18) 4.97 (2.12) 5.16 (2.45) 0.6128

Abbreviations: DFNS, German Research Network on Neuropathic Pain; DPN, diabetic polyneuropathy; TCNS, Toronto Clinical Neuropathy Score.
*p value < 0.05.
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Variable selection

This analysis scheme is based on the 10 functional connections most 
accurately distinguishing between painful and non-painful DPN 
patients (selected by the ReliefF algorithm, see the section  Signal 
analysis). First, the consistency of the selected connections was dem-
onstrated. Figure 2 presents a histogram of the selected functional 
connections after cross-validation via 300 iterations, with 20% of the 
randomly excluded participants at each iteration. It can be seen that 
there is a monotonous decrease in repeatability with an increasing 
number of electrode pairs, such that the number of functional con-
nections in the analysis must be limited to prevent excessive noise.

Multivariate, predictive analysis

The classification results based on the 10 selected functional con-
nections are presented in terms of a cross-validated ROC curve pre-
senting mean and standard deviation confidence intervals for each 
frequency band (Figure 3).

Explanatory, univariate statistical analysis

Per-band univariate statistical analysis revealed that painful patients, 
on average, had higher connectivity values compared to non-painful 

F I G U R E  3  Grouping of painful/non-painful patients based on brain connectivity: ROC analysis (red line), with standard deviation 
confidence intervals (black broken lines) based on the 10 selected functional connections for each one of the frequency bands. The black 
diagonal line indicates an AUC of 0.5. It is evident that the theta and beta bands contain most of the information required for discrimination 
between painful and non-painful neuropathy patients as reflected in the ROC curve AUC values: 0.93 for the theta band and 0.895 for 
the beta band. Nevertheless, the discriminability based on alpha and gamma data was relatively high as well, with AUCs of 0.83 and 0.87, 
respectively
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patients (Figure  4a). The differences in the averaged connectivity 
values from the 10 most discriminating functional connections per 
band were statistically significant with p < 0.05 after the Bonferroni 
correction in the theta and alpha frequency bands (see Figure 4a).

Intra-band analysis of the 10 most discriminating pairs in each 
band showed significantly higher connectivity in painful patients in 
the following electrode pairs: AF3–AFZ in the theta band, FC2–C1 
and C1–F2 in the alpha band, and between F1 and F2 in the gamma 
band (Figure 4b). In addition, these pairs appeared to have a positive 
correlation to the average reported pain in the previous 3 months in 
all frequency bands (see Figure 5).

DISCUSSION

This study presents a data-driven, explanatory and predictive, 
multivariate approach to EEG connectivity analysis to discriminate 
painful from non-painful patients in DPN. Machine learning on rest-
ing state EEG recordings was applied to achieve a remarkably high 
discriminatory capability between those with and those without 
neuropathic pain.

Electroencephalography functional connectivity is a relatively 
new approach in pain research, shifting from searching for locally ac-
tivated areas of the cortex towards identifying functional networks 

across the whole brain surface. With the advent of our computa-
tional abilities and the interest in central pain processing, advanced 
EEG analysis has become an important research tool in recent years. 
The field has advanced from simple frequency domain analyses such 
as peak alpha frequency and power to a multivariate approach. This 
is a step forward for EEG analyses, parallel to the many MRI based 
brain connectivity studies.

Generally, the connectivity values were higher amongst painful 
DPN patients than non-painful ones, in line with previous EEG stud-
ies [17], suggesting that a certain level of ‘cross-talk’ between brain 
regions is probably required to perceive pain. This is compatible with 
the fact that many brain regions are activated by pain and there is 
an apparent expectation for communication amongst them. In line, 
there is a likelihood of lower expression of clinical pain in the setup 
of a less ‘internally connected’ brain.

The most impressive classification results were observed in 
theta and beta bands. Our main finding is the outstanding ability of 
the connectivity between the 10 best discriminating pairs of elec-
trodes to discriminate between painful and non-painful DPN. It is 
conventional to rate the coefficients of the area under the curve 
(AUC) between 0.6 and 0.7 as ‘poor test’, 0.7 and 0.8 as ‘fair test’, 
0.8 and 0.9 as ‘good test’ and 0.9 and 1 as ‘excellent test’ (AUC of 1 
considered as ‘perfect test’) [33]. In our case, a discriminatory capa-
bility of AUC = 0.93 for the theta band and AUC = 0.89 for the beta 

F I G U R E  4  (a) Average connectivity values of the 10 most differentiating connections for the painful (red) and non-painful (blue) DPN 
patients; (b) within-band particular functional connections average values; (c) the cortical locations of those functional connections. 
Asterisks indicate significant connections after Bonferroni correction (*p < 0.05; **p < 0.005)
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band is an excellent level of discriminatory capability. In practical 
terms, it indicates that an individual patient's classification as painful 
or non-painful based solely on their resting state EEG will be correct 
in 93% of cases.

The differences in brain activity between these two groups sug-
gest that the brain construct contributes to the generation of the 
clinical pain picture beyond and in addition to the pain generators in 
the peripheral nerve itself. Causative relations cannot be explored 
in a cross-sectional study; the altered brain function in the painful 
group could be either a consequence of the chronic peripherally 
generated pain or the cause of pain levels due to the peripheral ac-
tivity. It is noted that most of the connectivity pairs represent local 
short-distance functional connections, mainly within the posterior 
(centro-parietal) ‘sensing’ brain regions and frontal (including the 
mid-frontal) ‘controlling’ brain regions. Our findings on the increased 
frontal theta/alpha connectivity in chronic neuropathic pain patients 
align with those of chronic low back pain patients [17] and fibro-
myalgia [34, 35]. Furthermore, similar to the connectivity patterns 
in our study, these studies emphasized the predominance of short-
distance association U-fibres at theta and alpha frequencies indi-
cating the importance of ‘cross-talk’ between neighbour brain areas 

in the expression and regulation of pain. Finally, the described con-
nectivity topography findings are supported by reports from animal 
chronic pain models on the broadband increase in oscillations from 
theta to beta frequencies in the primary somatosensory and medial 
prefrontal cortices (summarized in [36]).

Most previous studies applying machine learning classifica-
tion to EEG data have been done on healthy controls, on spectral/
temporal data or both, not taking into account the functional in-
teractions, for example information transfer between brain areas 
which is believed to play an essential role in generating the clinical 
pain picture. One exception is a recent clinical study on connec-
tivity data  [17] distinguishing between chronic pain patients and 
healthy controls. Ta Dinh and colleagues [17] reached a relatively 
low average classification rate of 57%. It is believed that this might 
have resulted from (i) high cohort heterogeneity and (ii) the high 
ratio between the initial number of variables to sample size to lev-
els that makes it difficult to compensate even by feature selec-
tion methods. In their study, spectral data did not differ between 
chronic pain patients and healthy control groups, whereas con-
nectivity features did; in line with our findings, they reported sig-
nificantly increased connectivity at theta and gamma frequencies 

F I G U R E  5  Correlations between connectivity values of selected electrode couples and average self-reported pain intensity in the 
previous 3 months on a numerical pain rating scale
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in frontal brain areas. These findings support the hypothesis that 
pain processing is reflected in functional connectivity and not only 
in local activity. To overcome these challenges, a larger sample size 
of patients was used with the same diagnosis and the number of 
functional connections used as parameters for analysis was lim-
ited to 10.

Unlike our resting state EEG based study, other researchers ap-
plied machine learning on pain evoked potentials with promising 
results [37–39]. The analysis is based on experimentally induced 
pain perception data in these studies, not on ongoing clinical pain 
[12]. Our study substantially expands the concept, as a stimulus-free 
state highlighting clinical pain rather than stimulus-evoked pain was 
studied.

Significantly higher connectivity in painful patients was demon-
strated in the following electrode pairs: AF3–AFZ in the theta band, 
FC2–C1 and C1–F2 in the alpha band, and between F1 and F2 in 
the gamma band. These findings align with resting state functional 
MRI connectivity studies that investigated pain processing in pa-
tients with chronic pain [40]. Several studies identified alterations 
in default mode network connectivity, a network of brain regions 
including the precuneus, posterior cingulate cortex, medial prefron-
tal cortex and angular gyrus [41, 42]. Higher connectivity between 
areas of this network suggests a hyperactive state in chronic pain. To 
the best of our knowledge, no resting state functional MRI connec-
tivity studies have investigated the differences between painful and 
non-painful DPN patients.

An effort was made to establish clinical–physiological correla-
tions for our study's EEG connectivity data by exploring the con-
nectivity values of the significant electrode pairs versus clinical 
parameters. It was found that connectivity between some differ-
entiating electrode pairs in most frequency bands is correlated to 
the severity of clinical pain. A possible explanation could be that 
two forces drive this increased connectivity: on the one hand, the 
presence of peripheral sensory loss might be compensated by bet-
ter communication between brain sites; on the other, higher pain 
levels might also cause increased connectivity. A longitudinal study 
exploring the relationship between the severity of the neuropathy 
and levels of brain connectivity might resolve the question of the 
variation in pain expression in patients with similar levels of neurop-
athy severity. Suppose the development of pain in previously non-
painful neuropathy patients is preceded by high brain connectivity. 
In that case, it will tell whether brain connectivity is a co-generator 
or a consequence of the neuropathy-induced pain.

Scalp versus source analysis

In recent years, source analysis has gained increasing attention 
due to its ability to reliably represent sources, that is, anatomical 
locations of the scalp recorded signals. This is mainly due to bet-
ter handling of scalp conduction noise problem, as happens when 
more than one electrode channel can pick up the activity of the 
underlying source. Whilst for some signal analysis methods this 

phenomenon might be considered noise, the primary focus of this 
work is on the detection of (i) a reliable, (ii) objective and (iii) easy 
to apply biomarker. Thus, an ‘information-wise’ point of view was 
adopted: this noise can be thought of as additional (and valuable) 
information. In this sense, on the one hand, the proposed method 
has limited accuracy on sources of activity. However, on the other 
hand, it can lower the number of required electrodes in its clinical 
application. This contrasts with the source analysis methods that 
always require the same high number of electrodes, usually not 
available in clinical use.

Limitations of this study

Several limitations of this study need to be pointed out. First, source 
localization algorithms were not incorporated in our analysis scheme 
(see the above discussion regarding the limitations of the coherence 
estimate); thus, our ability to relate brain regions to electrode sites 
is possibly limited. This study shows that although pain-relevant in-
formation, that is, the signal-to-noise ratio, is clearly identified (see 
the t statistic presented in Figure  4), the automatically selected 
electrode pairs might be different (see Figure 2) in similar studies. 
Much larger studies are required to establish the definite functional 
connections responsible for discrimination between painful and 
non-painful polyneuropathy patients. Future studies should explore 
a more accurate localization of the sources for which connectivity 
is studied. Secondly, patients had neuropathic pain, so it is unclear 
whether our results are unique to neuropathic pain or, most likely, 
can be generalized to all classes of pain. Lastly, in our cohort, non-
painful participants were older than the painful ones, which might 
confound connectivity differences between the groups. However, 
the average age difference between the groups is only 4 years which 
is unlikely to explain connectivity differences. Indeed, after balanc-
ing the age groups by excluding several young participants from the 
painful group (see Figure S1), the age feature did not contribute to 
the classification analysis (see Figure S2).

In conclusion, a new EEG based biomarker for clinical pain with 
high accuracy in discriminating painful from non-painful diabetic 
neuropathy is reported. It is believed that our approach is expand-
able to other pain syndromes, providing a strong and objective tool 
for pain research.
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