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An objective of phase I dose-finding trials is to find the maximum tolerated
dose; the dose with a particular risk of toxicity. Frequently, this risk is assessed
across the first cycle of therapy. However, in oncology, a course of treatment fre-
quently consists of multiple cycles of therapy. In many cases, the overall risk
of toxicity for a given treatment is not fully encapsulated by observations from
the first cycle, and hence it is advantageous to include toxicity outcomes from
later cycles in phase I trials. Extending the follow up period in a trial naturally
extends the total length of the trial which is undesirable. We present a compari-
son of eight methods that incorporate late onset toxicities while not extensively
extending the trial length. We conduct simulation studies over a number of sce-
narios and in two settings; the first setting with minimal stopping rules and the
second setting with a full set of standard stopping rules expected in such a dose
finding study. We find that the model-based approaches in general outperform
the model-assisted approaches, with an interval censored approach and a modi-
fied version of the time-to-event continual reassessment method giving the most
promising overall performance in terms of correct selections and trial length.
Further recommendations are made for the implementation of such methods.
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1 INTRODUCTION

In phase I dose finding studies, the aim is to find the maximum tolerated dose (MTD) to recommend for phase II, defined
as the highest dose giving an acceptable level of toxicity.1 An acceptable level of toxicity is in general equated to a certain
probability of occurrence of a dose limiting toxicity event (DLT), which in oncology is most often defined as a grade 3 or
higher toxicity by the grading scale of the National Cancer Institute.2 This probability is usually set to 20%-30% within the
general treatment population, with the actual choice of target probability depending on the indication, available treatment
option and expected benefit within the target population.

However, this probability refers to the risk of DLT within the follow-up period of the trial, which is typically only one
cycle of treatment. In many cancer treatments, the full course of treatment actually consists of multiple cycles of therapy,
given sequentially. It is therefore important to consider multiple cycles of therapy in the dose-finding trial. In a review
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of 445 patients in 36 phase I trials by Postel-Vinay et al,3 it was found that 57% of grade 3 or 4 toxicities occurred after
the first cycle of treatment, and that for 50% of patients, their worst grade of toxicity was observed after the first cycle.
This is a clear indication that later cycles are important to include in phase I dose-finding trials, since their omission may
lead to missing large amounts of information on toxicity risk of the investigated doses and hence the recommendation
of sub-optimal doses. However, by increasing the follow up period, one also greatly increases the trial duration if the
entire follow up period must be completed for the previous cohort of patients before the dose for the next cohort can be
assigned. Such an increase in trial duration is obviously undesirable, as the focus in such trials is in efficient decision
making.

A small number of statistical methods for the design of trials in such a setting have been proposed, with varying
approaches to include the later onset toxicities without substantially increasing the trial duration. For example, the
Rolling 6 design,4 a rule based approach that is an extension of the 3+3,5 uses a set of rules based on the number of
DLTs observed and the number of patients who have completed and are yet to complete their full follow up period. Other
(model-assisted) designs,6-8 follow similar sets of rules, with the addition that escalation is aided by a simple model for
the probability of toxicity at each dose level under the assumption of monotonicity, that a higher dose is associated with
a higher probability of toxicity. There are also a limited selection of model based designs that account for later onset
toxicities.9-12 These designs vary in their approach to accounting for the occurrence of DLTs in the different treatment
cycles. The time-to-event approach9 models the DLT occurrence using a time-to-event variable defined on the entire fol-
low up period, and not necessarily breaking down this period into cycles. The other model-based approaches do break
the follow up period into the respective cycles, with the interval censored approach of Sinclair and Whitehead10 mod-
eling the probability of DLT in each cycle, conditional on the lack of DLT in all previous cycles, whereas the method
by Doussau et al11 fits a proportional-odds mixed model to data from the different cycles. The approach by Yin et al12

fits a linear mixed effects model including a cycle effect to data of total toxicity profile, including grades and type of
toxicity.

As expected with novel statistical methodology, each approach is praised by the respective authors for its advantages
over another given method in any particular setting. However, such settings usually fit well to the approach suggested, and
although some exploration of settings that violate assumptions is often undertaken, it would be of great aid to have a com-
parison of the leading methods in settings that are both realistic and not adhering to the assumptions of the approaches.
Although different approaches use different levels of information in their analyses, it does not necessarily mean that a
higher level of information used leads to a higher level of accuracy, since higher levels of information often accompany
stronger assumptions in these methods. More complex methods may also struggle with the small sample sizes in such
studies. Therefore in this work, we undertake a simulation study to compare the most prominent methods for dose-finding
studies incorporating late-onset toxicities, in order to evaluate the strengths and weaknesses of each of the methods, and
their applicability to phase I dose finding studies. We have chosen this range to incorporate different levels of complexity
and to include well-known and already applied designs. A strength of such a wide range of designs is that they have such
different approaches. In this comparison, we use modified versions of the methods, to improve their applicability in this
setting and to ensure their comparability.

This article has the following structure. In Section 2, the eight approaches for comparison are outlined, with notations
introduced and assumptions of each method highlighted. In Section 3, we introduce the setting for the simulation study,
and in Section 4, we describe the procedure we use to choose the values for the hyper-parameters of the prior distribu-
tions in order for a fair comparison across methods. In Section 5, we present the results of the simulation study, before
concluding with a discussion in Section 6.

2 METHODS

In this section, we outline the eight methods that are implemented in the comparison study. The purpose is to give an
overview of each method, with key details on the different models used in the dose escalation. Further and more in-depth
descriptions can be found in the relevant referenced literature. We highlight any modifications made to the original
proposals.

In each method, the following notation is consistent throughout. Consider a dose-finding study where J dose levels
labeled dj for j = 1, … , J are investigated. Each patient i is followed up for S cycles of therapy indexed s = 1, … , S. A new
cohort of patients is admitted at the beginning of each cycle, so that partial information is available for the previous S − 1
cohorts when assigning the dose for the current cohort. For example, for a follow up period of 3 cycles, partial information
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is available for the previous 2 cohorts; information is available for only the first cycle of therapy of the previous cohort, and
information on the first two cycles for the second previous cohort. Dose assignment is based on some target, 𝜏, defined
as the probability of observing a DLT in the entire follow-up of S cycles.

The general process of a dose-finding study is as follows. Pretrial, for a model-based method, a dose response model is
chosen and prior distributions assigned to the parameters. For a model-assisted method, prior distributions are assigned to
any relevant parameters that guide escalation, and a decision table based on these and all possible outcomes is calculated.
The first cohort of patients is assigned to the lowest dose. After one cycle of treatment, the observed responses from these
patients are used to decide which dose to assign to the next cohort of patients to, or to stop the trial. For a model-based
method the posterior distribution is updated from which the next best dose is derived and for a model-assisted method
the result is looked up in the decision table. This same process is repeated after each cycle of treatment, until the trial is
stopped for a prespecified reason, and either a dose is recommended as the MTD or all doses are deemed unsafe in which
case no MTD is recommended.

2.1 Time-to-event continual reassessment method approach

The first method we review is perhaps the most well known, the time-to-event continual reassessment method
approach (TITE-CRM) first proposed by Cheung and Chappell.9 We consider two approaches under the umbrella of
TITE-CRM, an approach closely mirroring the original proposed methodology by Cheung and Chappell9 (1-parameter
TITE-CRM) and a modification to include the actual dose values instead of standardized doses (2-parameter
TITE-CRM).

2.1.1 1-Parameter TITE-CRM

Here, a weighted dose response model is used:

G(d,w, 𝛽) = wF(d, 𝛽),

where 0 ≤ w ≤ 1 is a function of time-to-event of a patient response, F is the assumed dose-response model, d is the
scaled dose, and 𝛽 is the parameter to be estimated. The scaled doses are interpreted as the prior belief of the probability
of toxicity on that dose, these are used as opposed to real values of the dosages. The dose-response model suggested is
F(d, 𝛽) = dexp(𝛽) and a Normal prior distribution is elicited on 𝛽 (∼ N(0, 𝜎2)), with the posterior distribution updated after
each cycle using likelihood

(𝛽) =
n∏

i=1
G(d[i],wi,n, 𝛽)y

(TC)
i,n {1 − G(d[i],wi,n, 𝛽)}1−y(TC)

i,n
,

where n is the number of patients treated, and y(TC)
i,n is an indicator taking the value 1 if patient i has observed a DLT after

information is available for at least one cycle for n patients. Dose assignment is determined by minimizing |F(dj, ̂𝛽n) − 𝜏|
where ̂

𝛽n is the posterior mean of 𝛽 after information is available for at least one cycle for n patients and 𝜏 is the target
P(DLT) for all S cycles. We use the weights suggested by Cheung and Chappell,9 of the simple wi,n = ui,n∕S, where ui,n is
the current number of cycles patient i has been observed for. As outlined by Cheung and Chappell,9 if a DLT is observed
then wi,n = 1. The final dose recommendation is the dose level that minimizes |F(dj, ̂𝛽n) − 𝜏| once the follow-up for all
enrolled patients has completed.

Although this method is flexible enough to allow for continuous time-to-event responses, here we discretize this
variable according to the cycle the response is observed in. The TITE-CRM has an initial period where the dose is escalated
one level at a time until a DLT is observed. In the original methodology, in this initial period, each patient is followed up
for their entire follow up time before the next patient’s dose is assigned. In our implementation, only one cycle is required
for follow up before the next is assigned, in line with the rest of the trial. This is also in line with the other methods
considered in this comparison.
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2.1.2 2-Parameter TITE-CRM

In order to make use of the real doses used in the trial, we modify the TITE-CRM to include these, henceforth labeled
as the TITE-CRM2. Since the above dose-response model is only valid for 0 < d < 1 we now use the 2-parameter logistic
model:

F(dj, 𝜷) =
exp(a0 + a1dj)

1 + exp(a0 + a1dj)
,

where dj is the real value of the dose. Here, MCMC methods must be used to update the posterior distribution for 𝜷 =
(a0, a1). The prior distributions are a0 ∼ N(𝜇a0 , 𝜎

2
a0
) and log(a1) ∼ N(𝜇a1 , 𝜎

2
a1
). These Normal priors are in line with other

dose-finding methods.13

2.2 Interval censored survival approach

This approach introduced by Sinclair and Whitehead10 uses 𝜋j,s, the conditional probability of observing a DLT in cycle
s for a patient on dose dj given they did not observe a DLT in previous cycles. The prior for this method takes the
form of pseudo-data, based on the approach by Whitehead and Williamson,14 where a small number of pseudo-patient
observations (allowing for non-integer observations) used to guide the escalation. Here we have n0 pseudo-patient obser-
vations on dose d1, with 𝜋

∗
1 n0 patients observing a DLT on the first cycle and n0 pseudo-patient observations on dose

dJ , with 𝜋

∗
J n0 patients observing a DLT on the first cycle. Pseudo-data for subsequent cycles is calculated based on a

decreasing 𝜋

∗
j .

With the pseudo-data prior, the posterior for 𝜃 and 𝜸 is updated using likelihood:

(𝜃, 𝜸) =
J∏

j=1

S∏

s=1
𝜋

rj,s

j,s (1 − 𝜋j,s)qj,s
,

with link function log(− log(1 − 𝜋j,s)) = 𝛾s + 𝜃 log(dj), where rj,s is the number of patients that experience a DLT in cycle
s, qj,s is the number of patients who have completed s cycles without experiencing a DLT, 𝛾s is an intercept term for cycle
s. Dose assignment is determined by maximizing gain function 1∕(𝜏 − 𝜌j(tS))2 where 𝜏 is the target P(DLT) for all S cycles
and 𝜌j(tS) is the current estimate of P(DLT) for dose dj for all S cycles. The final dose recommendation is the dose level
that maximizes 1∕(𝜏 − 𝜌j(tS))2 once the follow-up for all enrolled patients has completed. This is a modification from
the original proposal, which recommended any dose on the continuous scale, which we make in order for results of this
design be measured by the same metric as other designs.

2.3 Proportional odds mixed effect model approach

The third approach is the proportional odds mixed effect model approach (POMM) proposed by Doussau et al.11 This
method uses the additional information on the grades of toxicity observed in each cycle. Due to difficulties in model
fitting in the original proposal, we make two modifications to improve the stability of the method. We introduce the use
of prior information to align this method with the other Bayesian approaches, as well as to aid the model fitting. This
prior is in the form of pseudo-data, with responses from pseudo-patients on all doses and cycles, down-weighted so as to
not outweigh the observed data. We also alter the target probability of DLT to include all cycles, as opposed to per cycle.
Again, this aligns with other methods but also allows for differing risks across cycles.

Toxicities are categorized by grade, the response variable for subject i in cycle s is defined as:

y(POMM)
i,s =

⎧
⎪
⎨
⎪⎩

1, if no toxicity or grade 1 toxicity,
2, if grade 2 toxicity, or
3, if grade 3+ toxicity.
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For the first 15 subjects, the following generalized linear model is used:

logit
(

P
(

Y (POMM)
i,1 = 3

)||||
dj

)
= b0 + b1dj,

so that there are no mixed effects and only the responses from cycle 1 are used. Dose assignment is determined by
minimizing |P(Y (POMM)

i,1 ) = 3|data, ̂b0, ̂b1, dj) − 𝜏s=1| where 𝜏s=1 is the target P(DLT) for cycle 1.
From subject 16 onwards, a logistic proportional odds mixed-effect regression model is used

logit
(

P
(

Y (POMM)
i,s ≤ k|dj

))
= 𝛼k − 𝛽1dj − 𝛽2s − ui for k = 1, 2,

where ui ∼ N(0, 𝜎2
0 ) is the individual patient effect. 𝜽 = (𝛼1, 𝛼2, 𝛽1, 𝛽2). Dose assignment is determined by minimizing

|P(Y (POMM)
i,− = 3|data, ̂𝜽, dj,ui = 0) − 𝜏| where 𝜏 is the target P(DLT) for the whole follow up period and P(Y (POMM)

i,− ) is the
estimated probability of DLT in the whole follow up period for a patient with ui = 0. If a DLT is observed in any cycle,
then this is dealt with in the censored likelihood.

The final dose recommendation is the dose level that minimizes |P(Y (POMM)
i,− = 3|data, ̂𝜽, dj,ui = 0) − 𝜏| (or

|P(Y (POMM)
i,1 = 3|data, ̂b0, ̂b1, dj) − 𝜏s=1| if there are less than 16 patients) once the follow-up for all enrolled patients has

completed.

2.4 Total toxicity profile approach

This approach proposed by Yin et al12 calculates a normalized total toxicity profile (nTTP) value for each patient using
information on grades and types of toxicity. The flexibility of this approach allows for any number of types of toxicity,
provided the specification for the method of calculating the nTTP value is decided before the trial. Here, following from
Yin et al,12 three types of toxicity are included (renal, hematological, neurological), each with grades 0 to 4. Patients can
observe any combination of grades and types of toxicity within a given cycle, and the maximum grade of each type for
each cycle is recorded. This is used to calculate the nTTP value using the weights specified by Yin et al.12 A linear mixed
effect model is fitted to the nTTP values for all cycles:

y(nTTP)
i,s = 𝛽0 + 𝛽1xi + 𝛽2s + 𝛾i + 𝜖i,s,

where y(nTTP)
i,s is the observed nTTP value for patient i on cycle s, xi is the dose assigned to patient i, 𝛾i ∼ N(0, 𝜎2

𝛾

) is
the individual patient effect, and 𝜖i,s ∼ N(0, 𝜎2

𝜖

) is measurement error. The following priors are elicited: 𝛽0 ∼ N(𝜇
𝛽0 , 𝜎

2
𝛽0
),

𝛽1 ∼ N(𝜇
𝛽1 , 𝜎

2
𝛽1
), 𝛽2 ∼ N(𝜇

𝛽2 , 𝜎
2
𝛽2
), 𝜎2

𝛾

∼ IG(0.001, 0.001), and 𝜎

2
𝜖

∼ IG(0.001, 0.001) and the posterior distributions for all
parameters are updated after each cycle. As in the POMM method, if a DLT is observed in any cycle, then this is dealt with
in the censored likelihood. Dose assignment is determined by minimizing |nTTP(dj, cycle 1) − 𝜏nTTP| where 𝜏nTTP is the
target nTTP for cycle 1 and nTTP(dj, cycle 1) is the current posterior estimate of nTTP for dose dj for cycle 1. Although
the nTTP value for each cycle is included in the model, only the current posterior estimate of nTTP for cycle 1 is included
in the criterion. Because of the nature of the nTTP variable, there is no natural measure across all cycles in the same way
there is with a variable of probability and hence we here use the criterion using only cycle 1 as recommended by Yin et al.12

The final dose recommendation is the dose level that minimizes |nTTP(dj, cycle 1) − 𝜏nTTP| once the follow-up for all
enrolled patients has completed.

2.5 Time to event Bayesian optimal interval approach

The time to event Bayesian optimal interval (TITE-BOIN) model-assisted approach proposed by Yuan et al6 is a
time-to-event extension of the Bayesian optimal interval design, whereby dose escalation is guided by the target interval
(𝜏1, 𝜏2). Doses are escalated or de-escalated one dose level at a time, and this decision is based on two metrics: the escala-
tion and de-escalation boundaries of the non-time-to-event versions (𝜆d & 𝜆e) and the standardized total follow-up time
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(STFT). A set of rules based on these two values determines whether the dose is escalated, de-escalated or remained con-
stant. A decision table for these rules can be calculated before the trial, based on the target interval and the Beta(𝛼, 𝛽)
prior assigned to the probability of DLT at each dose. The values of 𝛼 and 𝛽 are originally chosen so that the prior has an
effective sample size of 1 and mean 𝜏∕2, with this prior the same across all doses. The target interval used by the authors is
(0.6𝜏, 1.4𝜏). The final dose recommendation is based on an isotonic regression once the follow-up for all enrolled patients
has completed.

2.6 Time to event modified toxicity probability interval

Time to event modified toxicity probability interval (TITE-mTPI2) model-assisted approach proposed by Lin and Yuan8

is a time to event extension of the modified toxicity probability interval 2 design also known as the “Keyboard” design,
whereby dose escalation is guided by the target interval (𝜏1, 𝜏2)= (𝜏 − 𝜖1, 𝜏 + 𝜖2) where 𝜏 is the target probability of DLT.
The interval [0, 1] is divided into equally sized “keys” of size 𝜖1 + 𝜖2 (apart from the end keys) and the key that has
the largest probability guides whether the dose is escalated or de-escalated. These probabilities are calculated based on
“effective” binomial data, including the patients whose full observation period has not yet completed. Again, the decision
table can be calculated before the beginning of the trial, based on the target interval and the Beta(1, 1) prior assigned
to the probability of DLT at each dose. The target interval used by the authors is (𝜏 − 0.05, 𝜏 + 0.05). The final dose
recommendation is based on an isotonic regression once the follow-up for all enrolled patients has completed.

2.7 Rolling modified toxicity probability interval

The rolling modified toxicity probability interval (R-mTPI2) model-assisted approach introduced by Guo et al7 is an exten-
sion the rolling 6 design and of the modified toxicity probability interval design, whereby dose escalation is guided by the
target interval (𝜏1, 𝜏2)= (𝜏 − 𝜖1, 𝜏 + 𝜖2) where 𝜏 is the target probability of DLT. Again, the interval [0, 1] is divided into
equally sized “keys” of size 𝜖1 + 𝜖2 (apart from the end keys). In the traditional mTPI2 design, the key that has the largest
probability guides whether the dose is escalated or de-escalated, whereas in this rolling version, the decision to escalate
is based on a series of rules. These rules first consider the escalation decision based solely on the number of observed
DLTs within completely observed patients, then consider decisions based on the best/worst case scenarios that none/all
incomplete observations are DLTs, and finally a consideration of how many patients have been consecutively assigned
to the current dose without interruption. Like the other two model-assisted methods, a decision table can be calculated
before the start of the trial, based on the target interval and the Beta(1, 1) prior assigned to the probability of DLT at each
dose. The target interval used by the authors is (𝜏 − 0.05, 𝜏 + 0.05). The final dose recommendation is based on an isotonic
regression once the follow-up for all enrolled patients has completed.

3 SETTING

We consider the motivating example of the phase I trial, “First-in-human study of BAY2287411 injection, a Thorium-227
labeled antibody-chelator conjugate, in patients with tumors known to express mesothelin”,15 an ongoing trial which
started in June 2018. Subjects with either advanced recurrent epithelioid mesothelioma or serous ovarian cancer who
have exhausted available therapeutic options are given a single dose of Thorium-227 on day 1 of each cycle lasting 6 weeks.
The dose starts at 1.5 MBq and increases in steps of 1.0 or 1.5 MBq.

In this example trial, the follow-up for observation of DLTs is only the first cycle of treatment, up to day 43, with a
target DLT rate of 0.3. We base the setting for our simulation study on the motivating example, exploring the impact of
considering later onset toxicities in the design. Six doses of therapy are investigated, of quantity 1.5, 2.5, 3.5, 4.5, 6.0, 7.0
MBq. The study enrolls a maximum of 30 patients in cohorts of size 3. Patients are followed up for a total of 3 treatment
cycles, each of length 6 weeks. If a DLT response is observed, that patient goes off study. The first cohort of patients are
always enrolled at the lowest dose.

In order to review the performances, we consider two settings, the first with minimal stopping rules, and the sec-
ond with a set of stopping rules that are used as standard in such studies in practice. The first setting eliminates many
confounders that may mask some aspects of the differences in performance of the methods, and the second setting is to
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mimic more closely a real study. The following enforcement and stopping rules are considered, although individual num-
bers can be adapted according to the study itself, and any additional rules may of course be used in practice, for example
personalized to patient requests. For any given dose, ps is the P(DLT) in cycles up to and including cycle s.

Enforcement rules:

1. Hard safety: If there is a high probability that the dose exceeds the target, that dose and all above is excluded from
further experimentation (ie, A dose is excluded when P(p1 > 𝜏) > threshold). Here we use a threshold for excessive
toxicity of 95%, with a Beta(1,1) prior, which translates to the following numbers. For any given dose, in the first cycle,
if there are at least 3 DLT responses out of 3 patients, or at least 4 DLT responses out of 6 patients, or at least 5 DLT
responses out of 9 patients, then all dose assignments must be lower than that dose for the rest of the study (ie, A dose
is excluded when P(p1 > 30%) > 0.95).

2. K-fold skipping doses: No more than a 2-fold-rise in dose based on the highest experimented dose so far.

Stopping rules:

1. Sufficient information: If a dose is recommended on which 9 patients have already been treated, the trial is stopped.
2. Lowest dose deemed unsafe: P(p1 > 30%) > 0.80 for dose d1 and at least one cohort of patients has been assigned to

dose d1.
3. Highest dose deemed very safe: P(p1 ≤ 30%) > 0.80 for dose dJ and at least one cohort of patients has been assigned to

dose dJ .
4. Precision: Stopping when MTD is precisely estimated, CV(MTD) < 30%. The coefficient of variation is calculated as

an adjusted median absolute deviation divided by the median. This stopping rule is only used once at least 9 patients
have at least one cycle of treatment (on any dose).

5. Hard safety: The lowest dose is considered unsafe according to the hard safety enforcement rule.
6. Maximum patients: The maximum number of patients (N = 30) have been recruited.

In setting 1, we only consider the enforcement rule of no k-fold dose skipping, and the stopping rules of sufficient infor-
mation and maximum patients. In setting 2, all enforcement and stopping rules are applied. Note that the model-assisted
methods are unable to stop for precision since they only consider discrete dose levels with no model relating dose value
and response. Although stopping rules 2 and 5 both stop the trial for safety concerns, it is important to highlight that they
do so in a different manner. The hard safety stopping rule only considers the lowest dose in isolation, and does not use
the analysis from the design itself. The lowest dose deemed unsafe rule uses the full observed data and the method of
analysis from the design itself. Stopping rules 2 and 3 are implemented for the model assisted designs using the assisting
Beta-binomial model, and for TITE-CRM and TITE-CRM2 by using an additional model which restricts the total follow
up time to the length of one cycle.

4 PRIOR CALIBRATION

The value of hyper-parameters of the prior distributions can have a substantial effect on the dose escalation. In a clinical
setting, these can reflect belief of the toxicity of the doses, but they also have a key role in the safe and controlled escalation
procedure. In order for a fair comparison between these methods, we use a calibration procedure, in line with that used
by Mozgunov et al,16 where further details to supplement the outline we present here can be found.

This calibration procedure is conducted as follows. For any given design, a grid search is performed over values of the
hyper-parameters in order to find the combination of hyper-parameter values that gives the best overall performance. This
performance is measured as the geometric mean of proportion of correct recommendations of MTD in 1000 simulations
across a small set of clinically plausible settings. The geometric mean is used to penalize a very poor performance in any
given scenario. This calibration procedure gives each design the same opportunity to achieve a good performance.

The priors are calibrated separately for setting 1 and setting 2, as setting 2 includes safety stopping rules so we must
consider performance in scenarios where all doses are unsafe and where all doses are too safe. In setting 1, we cannot
calibrate using such scenarios as there is no “correct” outcome.

The following scenarios in Table 1 are considered for prior calibration. In setting 1, P.S.1-P.S.4 are used, and in setting
2 we introduce P.S.5 and P.S.6, to reflect the addition of the stopping rules. In scenario P.S.5, a “correct” outcome is
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T A B L E 1 The P(DLT) in cycle 1 for the six doses in the six scenarios used in the prior calibration procedure, with the MTD highlighted
in boldface

p1

1.5 MBq 2.5 MBq 3.5 MBq 4.5 MBq 6.0 MBq 7.0 MBq

P.S.1 0.300 0.400 0.450 0.500 0.550 0.600

P.S.2 0.050 0.070 0.100 0.150 0.200 0.300

P.S.3 0.100 0.200 0.300 0.400 0.500 0.600

P.S.4 0.150 0.200 0.250 0.300 0.350 0.400

P.S.5 0.400 0.450 0.500 0.550 0.600 0.650

P.S.6 0.070 0.090 0.110 0.130 0.150 0.170

stopping according to stopping rules 2 or 5, not recommending any dose. In scenario P.S.6, a “correct” outcome is stopping
according to stopping rule 3.

The calibrated hyper-parameter values for the prior distributions are given in Table 2. Details of the grid over which
the search was conducted are available in the supplementary materials. In many methods these values are the same in
setting 1 and setting 2 (TITE-CRM, TITE-CRM2, POMM, TITE-mTPI2, R-mTPI2) and for the other methods they are
relatively similar. There are some differences between these values and those in the original proposals, discussed further
in Section 5.2. We also include the value of the prior effective sample size (ESS)17 for each of the priors in Table 2. The
prior ESS has a large impact on the dose escalation18,19 and hence is important to keep low enough so as to not dominate
the actual trial data. For each of the priors, this is approximately 1 to 2 patients per dose.

5 SIMULATION STUDIES

In this section, we detail the comparative simulation studies undertaken. We first describe the data generation used in
the simulation studies in Section 5.1, then present and analyze the results of those studies in Section 5.2.

5.1 Data generation

Since the methods require different levels of information of patient response, the mechanism of generation of patient
responses is not immediately obvious. Here we describe the process of generating data in a generic way. For notational
simplicity, we describe the generation for a single dose and so have omitted any index referring to dose. Note that here we
only describe the data-generation process so that the required data for each method are generated consistently, and not
any assumptions of the analysis of each method.

Data are generated for each patient in the following way. Each patient i has a latent toxicity variable zi drawn from a
Uniform(0,1) distribution. This variable determines the outcome of patient i on all cycles and all doses.

In the data generation, it is assumed that there is a constant decrease in P(DLT) across cycles, this value is taken to
be 1/3. This is reflective of cumulative toxicity. Extending the notation of defining ps as the total true P(DLT) in cycles up
to and including cycle s, we define p as the total true P(DLT) in the entire follow up period. We obtain the following for a
follow up period of 3 cycles:

p = p3 = p1 + (1 − p1)
p1

3
+ (1 − p1)

(
1 −

p1

3

) p1

9
.

For example, given a toxicity target of p1 = 0.3 in the first cycle, we obtain a cumulative toxicity target across three cycles
of p3 = 0.391.

To generate the binary variable Yi,s, which equals 1 if patient i observes a DLT response in cycle s and 0 otherwise, the
simple indicator is used Yi,s = I[ps−1 < 1 − zi < ps]where p0 = 0 and Yi,1 is always defined, with Yi,s only defined for s > 1
if Yi,s−1 = 0.
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T A B L E 2 The values of hyper-parameters resulting from the prior calibration procedure

Setting 1 Setting 2

TITE-CRM 𝜎

2 = 1 𝜎

2 = 1

d = (0.05, 0.10, 0.15, 0.20,
0.25, 0.30)

d = (0.05, 0.10, 0.15, 0.20, 0.25, 0.30)

ESS ≈ 2 ESS ≈ 2

TITE-CRM2 𝜇a0
= −1 𝜇a0

= −1

𝜎

−2
a0
= 0.3 𝜎

−2
a0
= 0.3

𝜇a1
= log(0.2) 𝜇a1

= log(0.2)

𝜎

−2
a1
= 0.3 𝜎

−2
a1
= 0.3

ESS ≈ 1 ESS ≈ 1

ICSDP 𝜋 ∗1= 0.2 𝜋 ∗1= 0.2

𝜋 ∗J= 0.4 𝜋 ∗J= 0.3

n0 = 6 n0 = 4

ESS ≈ 2 ESS ≈ 1

POMM p1 ∗= (0.15, 0.20, 0.25,
0.3, 0.35, 0.40)

p1 ∗= (0.15, 0.20, 0.25, 0.3,
0.35, 0.40)

n0 = 2 n0 = 2

pG2
1 ∕p1 = (0.20, 0.30, 0.40,

0.50, 0.60)
pG2

1 ∕p1 = (0.20, 0.30, 0.40, 0.50, 0.60)

ESS ≈ 2 ESS ≈ 2

nTTP 𝜇
𝛽0
= 0.1 𝜇

𝛽0
= 0.05

𝜎

2
𝛽0
= 100 𝜎

2
𝛽0
= 10

𝜇
𝛽1
= 0.5 𝜇

𝛽1
= 0.1

𝜎

2
𝛽1
= 100 𝜎

2
𝛽1
= 10

𝜇
𝛽2
= 0 𝜇

𝛽2
= 0

𝜎

2
𝛽2
= 10 𝜎

2
𝛽2
= 10

ESS ≈ 1 ESS ≈ 1

TITE-BOIN 𝜏1 = 0.3128 (equivalent to
𝜆e = 0.3512)

𝜏1 = 0.3128 (equivalent to
𝜆e = 0.3512)

𝜏2 = 0.5083 (equivalent to
𝜆d = 0.4492)

𝜏2 = 0.5083 (equivalent to
𝜆d = 0.4492)

𝛼 = 0.1 𝛼 = 1

𝛽 = 0.9 𝛽 = 1

ESS ≈ 1 ESS ≈ 2

TITE-mTPI2 𝜏1 = 0.3519 𝜏1 = 0.3519

𝜏2 = 0.5474 𝜏2 = 0.5474

ESS ≈ 2 ESS ≈ 2

R-mTPI2 𝜏1 = 0.3519 𝜏1 = 0.3519

𝜏2 = 0.5474 𝜏2 = 0.5474

ESS ≈ 2 ESS ≈ 2

Note: This corresponds to a target toxicity of 0.391 over 3 cycles. ESS is the average effective sample size per dose level.
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Both the POMM and the nTTP approaches need more detailed patient responses than the binary variable Yi,s, and
so we must also generate the grades and types of toxicities. The nTTP method specifies three type of toxicity (renal,
hematological, neurological) of grades 0 to 4. Patients may observe toxicities of different types, and the maximum
grade is used in the POMM approach. As is standard in such studies, we classify a toxicity of grade 3 or above as
a DLT.

We first illustrate how the maximum observed grades are calculated for the first cycle. First, define the probability of
a grade g toxicity being the maximum observed grade in cycle 1 as pGg

1 . Then let

pG4
1 = pG3

1 = p1∕2,

pG2
1 = (1 − p1)I

[
p1 >

1
2

]
+ p1 I

[
p1 ≤

1
2

]
,

pG1
1 = (1 − 2p1)I

[2
5
< p1 <

1
2

]
+

p1

2
I

[
p1 ≤

2
5

]
,

pG0
1 =

(
1 −

5p1

2

)
I

[
p1 ≤

2
5

]
.

In the same way as Yi,1 is calculated, the observed grade Y Gg
i,1 is determined by the latent variable zi in the following

way:

Y Gg
i,1 = I

[ 4∑

k=g+1
pGk

1 < 1 − zi <

4∑

k=g
pGg

1

]
for g < 4, and

Y G4
i,1 = I

[
1 − zi < pG4

1
]
.

To illustrate this, we provide an two examples, one dose where the probability of DLT in cycle 1 is exactly on target at 0.3,
and a second dose where the probability of DLT in cycle 1 is 0.6.

Example 1.

pG4
1 = pG3

1 = 0.15,
pG2

1 = 0.3,
pG1

1 = 0.15,
pG0

1 = 0.25.

Example 2.

pG4
1 = pG3

1 = 0.3,
pG2

1 = 0.4,
pG1

1 = 0,
pG0

1 = 0.

Next, we describe how we calculate the combination of grade and type of observed toxicity. For the five grades and three
types, there are therefore 125 combinations of type and grade observations. These are partitioned into sets defined by
the maximum grade, with the probability that the observation is in a given set being the previously defined pGg

1 . Within
each set, each combination has equal probability. nTTP values are then calculated according to the weights given by
Yin et al.12

For subsequent cycles, the same approach is taken, with all pGg
s values scaled accordingly, so that pGg

2 = (1 − p1)pGg
1

and pGg
3 = (1 − p2)pGg

1 . This means that for patients with 1 − zi < ps, no responses are defined for cycles after cycle s,
since the patient has left the study. In this framework of generating data, the probability of each outcome is defined by
the value of p1.
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5.2 Results

Five thousand simulations are conducted for each approach across a wide range of scenarios. A full study of 17 scenarios
is undertaken in order to explore the behavior of the different methods in both setting 1 and 2 with a target, 𝜏, of the
P(DLT) across the three cycles of 0.391, which although may seem high, equates to P(DLT) in cycle 1 of 0.3 in our data
generation and hence is in line with a standard setting. While we focus on the results of four of these scenarios here, the
full specification and results of all 17 scenarios is given in the online supplementary materials, due to space limitations.
We also look at an additional set of similar scenarios in setting 2, with a target, 𝜏, of the P(DLT) across the three cycles of
0.25. This is to investigate any differences that may occur for a lower target.

The six scenarios we look at in depth are specified in Figure 1. We consider scenarios A-D in settings 1 and 2 with a
target of 0.391 across the three cycles, and scenarios C-F in setting 2 with target 0.25 across the three cycles. The MTD in
scenarios A, B, D, E, and F is highlighted by the dotted line. In scenario A, the lowest investigated dose is the MTD, with
p1 linearly increasing with dose level. In scenario B, the fourth dose level is the MTD, with a nonlinear increase in p1 by
dose level. In both of these scenarios, the MTD has the exact target p1. In scenario C, all doses are unsafe. In scenario D,
the lowest three doses have p1 = 0.05 and the highest three doses have p1 = 0.8, hence the third dose level is the MTD.
Although p1 is clearly well below the target, the fourth dose is very unsafe and so the third dose level is by definition the
maximum dose that is on target or below. In scenario E, we have a similar pattern to scenario A, but for a lower target
P(DLT). Again for scenario F, there is a similar pattern to scenario B but for the lower target rate.

We use a number of metrics to compare the performance of the designs. The first is the proportion of correct selections
(PCS), defined as the proportion of simulations that make the correct choice, be that recommending the true MTD or
stopping for safety when all doses are unsafe. Note that in the supplementary materials, where we also consider scenarios
in which all doses have P(DLT) below the target 𝜏, we define a correct outcome in this case as stopping the trial for
stopping rule 3, highest dose deemed very safe. We compare this PCS value to an empirical optimal benchmark,20 whereby
each individual patient’s latent toxicity variable zi determines that patient’s response in all cycles on all dose levels. This
is evaluated for all patients, as we know the response of any patient at any possible dose level and the dose with the
mean response closest to the target (either nTTP or P(DLT) across the three cycles) is chosen as the recommended dose.
The benchmark level is then the number of simulations that correctly identify the MTD with this full information on all
patients and all doses. It is important to note that the way the simulations are conducted means that it is the same sequence
of patients with the same latent toxicity variables in the simulations for all methods and the benchmark comparator. The
only difference is that the benchmark always uses the maximum number of patients, whereas the other methods have the
options to stop before this maximum is reached. The purpose of this benchmark is to give an indication of the difficulty of
the scenario, with more difficult scenarios exhibiting a lower percentage of PCS. This metric is only concerned with dose
selection and therefore we must also consider other metrics, especially those related to safety of patients within the trial.

We use two measures of the size of the trial: the total number of patients and the total length of the trial in weeks until
all recruited patients have finished their follow up time or experienced DLTs. It is desirable to have a shorter trial with
fewer patients. We consider the allocations of patients, focusing on the number of patients assigned to the MTD and to
unsafe doses. The reason for stopping the trial is also of interest, especially in setting 2 where there are many stopping
rules implemented.

In scenario A, where the lowest dose is the MTD, the best performing design in setting 1 in terms of PCS is the
TITE-CRM2 (87%), closely followed by the nTTP (82%) and TITE-CRM (80%), these are also the designs with the highest
allocation to the true MTD (a mean of 9, 8, and 8, respectively). These designs even outperform the benchmark, a phe-
nomenon possible due to the sufficient information stopping rule. The worst performing design in this case is the POMM
(41%), where a large number of patients are assigned to unsafe doses, on average 14. However in scenario B, where the
fourth dose level is the true MTD, the POMM is the best performing design in setting 1 with a PCS of 62%. This could
also potentially be driven by the prior pseudo data that in this case closely matches the true scenario for the lowest four
out of the six investigated doses. The interval censored survival approach (ICSDP) is the next best performing with a PCS
of 47%, with the other designs all below 30%. In this scenario we also see that both variants of the mTPI2 design have a
much longer trial duration, nearly twice as long as the model-based designs.

In scenario C, where all doses are unsafe, setting 1 does not allow for stopping for safety (this is left for setting 2),
therefore there is no measure of PCS. However we can still note that the POMM has the largest mean sample size of 20
patients and mean duration of 52 weeks. We can also see in Figure 2, that due to the lack of stopping rules in setting 1,
the shape of the graphs for scenario A and C are very similar. In scenario D, where the third dose level is the MTD, the
model-assisted methods show superior performance in terms of PCS, ranging from 83% to 93%. There is no noticeable
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(D) Scenario D

F I G U R E 2 Setting 1 dose recommendations expressed as a percentage of simulations which recommend the given dose level. 0
indicates no dose is recommended, which is not applicable in setting 1

difference in sample size between these designs and the model-based ones, but there is still a large increase in the mean
trial duration for the mTPI2 based designs. Figure 3 shows that for most methods, there is a similar level of assignment
to the third and fourth doses, despite the vast differences in underlying toxicity between the two doses.

In setting 1, minimal stopping rules are implemented in order to investigate the behavior of the designs by themselves.
In setting 2 however, the rules are more reflective of a true dose-finding trial, with stopping rules for safety and precision.
In scenario A, this is especially noticeable in that it introduces the extra possibility of wrongly stopping the trial because
the lowest dose is deemed unsafe. Comparing Figure 2A to Figure 4A, it is clear that for all methods, a large proportion
of simulations that in setting 1 correctly recommended the lowest dose as the MTD, now stop early for safety. This is
especially prevalent for the TITE-CRM2 method, the best performing in setting 1, where 50% of simulations are stopped
for this reason. The best performing method in scenario A in setting 2 is the nTTP, although a PCS of 57% in a scenario
where the lowest dose is the MTD is by no means an outstanding performance.

Scenario B shows less of a contrast in setting 2 to setting 1, with POMM and ICSDP giving the best, and similar per-
formances. In scenario C, the safety stopping rules are implemented more effectively in some methods than others. Both
the TITE-CRM2 and nTTP stop for safety in around 72% to 73% of simulations, whereas the ICSDP only stops for safety
in 29% of simulations, with 50% of simulations recommending the lowest dose as the MTD. There is an average of 14
patients, nearly 5 cohorts, an unacceptable level when all doses are unsafe. This is most likely driven by the prior for this
method, as there are 5 pseudo-patients on the lowest dose, providing evidence that although chosen by the calibration
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(D) Scenario D

F I G U R E 3 Setting 1 dose assignments expressed as an average number of patients over simulations which are assigned the given dose
level

procedure, such a prior may be too strong to use practically. The POMM also has an average of 14 patients in this scenario,
although stops in 50% of simulations. The dose assignment for this method is more unsafe than the ICSDP, indicated in
Figure 5C, by the high levels of assignment to higher dose levels. The TITE-BOIN design also sees high levels of assign-
ment to higher doses. In general we see the model-assisted designs allocating higher numbers of patients to unsafe doses
due to the asymmetric target interval resulting from the prior calibration. Results for the model assisted designs with the
originally proposed prior hyper-parameters are available in the supplementary materials, illustrating that the lower num-
ber of patients assigned to unsafe doses is accompanied by a much lower PCS in scenarios where the MTD is higher in
the dose range (Tables 3-6).

In scenario D, the PCS is improved in setting 2 over setting 1, with four methods (ICSDP, TITE-BOIN, TITE-mTPI2,
and R-mTPI2) achieving the benchmark level and nTTP even exceeds this. This is in part due to the hard safety rule that
eliminates unsafe doses, and in part to the precision stopping rule. The dose assignment shows this is the case, comparing
Figure 5D to Figure 3D clearly shows the reduction in assignment to the fourth dose.

When considering a lower target DLT rate in setting 2, Figure 6 shows the dose recommendations, Figure 7 shows
the dose assignments and Table 7 gives the mean duration and size of the trials in scenarios C-F. In general we see very
similar patterns to the corresponding scenarios with the higher target DLT rate, with a few small differences. In scenario
C, where all doses are unsafe, fewer patients are assigned, as expected when the difference between the target and the
toxicity of the lowest dose is larger. In terms of dose recommendations, performance is generally better, despite prior
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F I G U R E 4 Setting 2 dose recommendations for a target of 𝜏 = 0.391 expressed as a percentage of simulations which recommend the
given dose level. 0 indicates no dose is recommended

specifications having been calibrated using scenarios with the higher target rate. The exception being the nTTP method
which performs considerably poorer in scenario D, due to the nonlinearity of the true dose-response relationship.

Observing the overall performance across the entire range of scenarios, the front-runner is the ICSDP, despite its poor
performance when all doses are unsafe in setting 2, especially for the lower target DLT rate. The next best performing
method is TITE-CRM2, which gives a good yet balanced performance across scenarios in both settings. The TITE-CRM2
also has a slightly shorter average trial duration, requiring fewer patients overall and fewer patients treated on unsafe
doses. However we also note that the process of data generation follows more closely the ICSDP assumptions than the
TITE-CRM2, and so this comparison may be slightly different under the different assumptions.

In both settings, the mTPI2 based methods clearly have a longer than ideal trial length, as evidenced in the full study
of 17 scenarios where their average durations are nearly twice those of the other methods, and hence would not be rec-
ommended for use. The TITE-BOIN also has larger patient numbers in most scenarios. It is important to note that the
relationship between trial duration and the total trial size for the methods varies due to the rules implemented in the dif-
ferent methods. The model-assisted approaches’ PCS are also less than the model-based approaches in most scenarios in
setting 1, although this is improved somewhat in setting 2. Of the model-based approaches, although the nTTP provides
the shortest trial duration, the PCS is much lower than the other designs when the true MTD is in the higher doses in
setting 2, and so also not recommended. This is mainly due to premature stopping for precision, a consequence of the fact
that this rule is designed for binary rather than continuous endpoints.
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(D) Scenario D

F I G U R E 5 Setting 2 dose assignments for a target of 𝜏 = 0.391 expressed as an average number of patients over simulations which are
assigned the given dose level

T A B L E 3 Setting 1: Measures of size of the trial across scenarios, total duration in weeks, and total number of patients

TITE-CRM TITE-CRM2 ICSDP POMM nTTP TITE-BOIN TITE-mTPI2 R-mTPI2

Scenario Mean duration in weeks (SD)

A 39 (11) 36 (10) 46 (10) 52 (9) 32 (5) 40 (14) 46 (23) 50 (26)

B 55 (14) 53 (15) 55 (10) 55 (8) 44 (14) 57 (13) 81 (31) 95 (34)

C 34 (9) 32 (7) 44 (10) 52 (9) 31 (4) 35 (16) 37 (22) 37 (23)

D 63 (7) 57 (8) 57 (5) 55 (6) 56 (10) 49 (3) 85 (7) 100 (9)

Mean 48 45 51 53 41 45 62 70

Scenario Mean number of patients (SD)

A 14 (6) 12 (5) 17 (5) 20 (4) 10 (2) 19 (6) 15 (5) 15 (5)

B 22 (7) 21 (8) 22 (5) 22 (4) 16 (7) 26 (4) 21 (6) 23 (7)

C 11 (4) 10 (3) 16 (5) 20 (4) 10 (2) 17 (7) 13 (5) 12 (5)

D 26 (4) 23 (4) 23 (3) 22 (2) 23 (5) 24 (1) 24 (2) 25 (2)

Mean 18 17 20 21 15 22 18 19
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T A B L E 4 Setting 1: Summary of stopping reasons for setting 1, expressed as a percentage of simulations where the given stopping rule
was triggered

TITE-CRM TITE-CRM2 ICSDP POMM nTTP TITE-BOIN TITE-mTPI2 R-mTPI2

Stopping reason Scenario A

Sufficient information 99 100 100 97 100 95 100 99

Maximum patients 2 1 2 3 0 10 1 1

Stopping reason Scenario B

Sufficient information 90 88 95 95 96 80 95 75

Maximum patients 21 22 11 5 4 41 11 32

Stopping reason Scenario C

Sufficient information 100 100 100 96 100 95 100 100

Maximum patients 1 0 1 4 0 8 1 1

Stopping reason Scenario D

Sufficient information 89 94 100 99 96 99 99 99

Maximum patients 32 16 2 1 4 2 2 5

Note: The sum of these may be greater than 100, since it is possible for more than one rule to be triggered in a single trial.

T A B L E 5 Setting 2, 𝜏 = 0.391: Measures of size of the trial across scenarios, total duration in weeks, and total number of patients

TITE-CRM TITE-CRM2 ICSDP POMM nTTP TITE-BOIN TITE-mTPI2 R-mTPI2

Scenario Mean duration in weeks (SD)

A 39 (13) 31 (13) 44 (12) 44 (13) 29 (4) 33 (18) 41 (26) 43 (30)

B 52 (12) 50 (16) 53 (10) 45 (9) 32 (6) 51 (17) 78 (32) 90 (38)

C 32 (13) 25 (11) 38 (14) 39 (15) 27 (5) 27 (19) 32 (25) 29 (27)

D 57 (9) 50 (10) 49 (5) 36 (7) 29 (5) 40 (7) 76 (10) 92 (12)

Mean 45 39 46 41 29 38 57 63

Scenario Mean number of patients (SD)

A 14 (6) 10 (6) 16 (6) 17 (6) 9 (2) 16 (8) 13 (7) 12 (7)

B 20 (6) 19 (8) 21 (5) 17 (4) 10 (3) 24 (7) 20 (7) 22 (8)

C 11 (6) 8 (5) 14 (6) 14 (7) 8 (2) 13 (9) 10 (7) 9 (6)

D 23 (5) 20 (4) 19 (3) 13 (3) 10 (2) 20 (3) 20 (3) 21 (3)

Mean 17 14 17 15 9 18 16 16

6 DISCUSSION

In this article, we conducted a simulation study to compare the leading methods for dose-finding trials incorporating
later onset toxicities in a variety of scenarios. The purpose of such a comparison was to evaluate the performance of the
different methods in generic settings where their individuals assumptions may not hold, in order to highlight any key
differences.

The values of the hyper-parameters for the prior distributions in each method were calculated using a calibration
procedure. They were calibrated over a small number of clinically plausible scenarios, but still ranging in the position of
the MTD in the dosing sequence. This ensured that the different methods all had the same opportunity to achieve their
potential in a large range of scenarios. Although sensible for the purpose of this comparison, the choice of values does
raise some questions for future thought. A superior performance across the calibration scenarios can give a somewhat
informative prior, which can adversely affect performance in some scenarios and positively in others. The similarities of
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T A B L E 6 Setting 2, 𝜏 = 0.391: Summary of stopping reasons for setting 2, expressed as a percentage of simulations where the given
stopping rule was triggered

TITE-CRM TITE-CRM2 ICSDP POMM nTTP TITE-BOIN TITE-mTPI2 R-mTPI2

Stopping reason Scenario A

Sufficient information 57 46 88 60 46 68 70 68

Lowest dose deemed unsafe 42 50 11 20 22 28 30 32

Highest dose deemed too safe 0 0 0 0 0 0 0 0

Precision 0 17 2 14 73 0 0 0

Hard safety 10 4 11 14 10 3 4 4

Maximum patients 2 1 1 2 0 7 1 1

Unsafe (total) 42 50 11 26 25 28 30 32

Sufficient/precision (total) 58 50 89 71 75 68 70 68

Stopping reason Scenario B

Sufficient information 65 65 83 35 32 77 89 70

Lowest dose deemed unsafe 4 11 1 1 1 6 6 8

Highest dose deemed too safe 0 1 0 0 0 2 1 1

Precision 34 21 21 72 96 0 0 0

Hard safety 1 0 1 1 1 0 0 0

Maximum patients 7 17 9 2 0 29 8 27

Unsafe (total) 4 11 1 2 1 6 6 8

Sufficient/precision (total) 94 79 95 97 98 77 89 70

Stopping reason Scenario C

Sufficient information 37 24 70 42 20 49 49 47

Lowest dose deemed unsafe 63 73 29 38 71 48 51 53

Highest dose deemed too safe 0 0 0 0 0 0 0 0

Precision 0 19 1 6 32 0 0 0

Hard safety 24 10 29 30 21 9 10 10

Maximum patients 1 0 1 2 0 6 1 0

Unsafe (total) 63 73 29 50 72 48 51 53

Sufficient/precision (total) 37 27 71 48 28 49 49 47

Stopping reason Scenario D

Sufficient information 96 64 63 5 8 99 99 99

Lowest dose deemed unsafe 0 1 0 0 0 1 1 1

Highest dose deemed too safe 0 0 0 0 0 0 0 0

Precision 0 44 60 99 100 0 0 0

Hard safety 0 0 0 0 0 0 0 0

Maximum patients 13 4 0 0 0 1 1 1

Unsafe (total) 0 1 0 0 0 1 1 1

Sufficient/precision (total) 96 98 100 100 100 99 99 99

Note: The sum of these may be greater than 100, since it is possible for more than one rule to be triggered in a single trial.
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(D) Scenario F

F I G U R E 6 Setting 2 dose recommendations for a target of 𝜏 = 0.25 expressed as a percentage of simulations which recommend the
given dose level. 0 indicates no dose is recommended

the performances when the target toxicity rate is lowered demonstrates the robustness of the calibration procedure to give
an overall strong performance.

Both model-based and model-assisted approaches were explored in the study, with differences in their results reflect-
ing the difference in the methods. The model-assisted approaches offer the advantages of fewer assumptions on the
dose-response relationship, which is clear to see in very strong performance in scenario D of the simulation study, where
the pattern of toxicity risk does not adhere to any standard dose-response model. However, without the assistance of a
model to guide the escalation, larger number of patients are on average treated on unsafe doses. This pattern is of course
not unique to late onset toxicities, but is potentially accentuated by this.

It is worth noting that in order to compare the designs in a fair manner, we have had to simplify some of their features.
For example, the TITE based methods are capable of including a continuous time-to-event variables as opposed to the cycle
of the event. In these simulations, our simplifications have not adversely affected the comparisons, since the discretization
of the time-to-event captures the behavior across the cycles, and most importantly the accrual of cohorts aligns with the
discretization. If the exact timing of the event is critical for the particular drug in the trial then this of course can be
incorporated in the design.

In these implementations we have assumed in our data generation that the risk of DLT decreases linearly across cycles.
It may be of interest to additionally perform a sensitivity analysis on this relationship. However, careful consideration
must be given to the data generation process and the definition of the target in order to correctly identify the true MTD
in each scenario.
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(D) Scenario F

F I G U R E 7 Setting 2 dose assignments for a target of 𝜏 = 0.25 expressed as an average number of patients over simulations which are
assigned the given dose level

The scenarios we investigated were purposefully difficult in order to test the methods. For example, in scenario B, there
is only a 0.05 difference in toxicity risk between the 3.5 and 4.5 MBq dose. This is illustrated with the empirical benchmark
only achieving 50% PCS. Results as such must be considered in the context of the scenario. In a real dose-finding trial, it
is likely that the scenario may be “easier” and hence we should not be concerned by such low PCS in this case.

However, in scenario A, the low PCS in setting 2 across methods is of some concern. Setting 2 is more reflective of
the implementation of a dose-finding trial, with stopping rules in place to ensure the safety of patients. In this case, these
stopping rules are then overly implemented. It is perhaps worth reconsidering that in trials with late onset toxicities, the
traditional safety stopping rules may be too strict.

This highlights the importance of considering the impact of the stopping rules on the different statistical methods, as
they have a large effect on the true performance of any method used in practice. While it is both interesting and informative
to explore the behavior of the approaches without the implementation of stopping rules, there is a limit to the usefulness
of such simulations in isolation.

As well as safety stopping rules, the impact of the precision stopping rule must be considered. This is not applied to
the model-assisted methods as the precision of the MTD cannot be estimated without a model. In the case of the nTTP,
the precision rule is very often implemented too soon and hence the MTD is underestimated. It is therefore important
to consider when using alternative measures of toxicity, whether the traditional approach to stopping rules are actually
applicable.
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T A B L E 7 Setting 2, 𝜏 = 0.25: Measures of size of the trial across scenarios, total duration in weeks, and total number of patients

TITE-CRM TITE-CRM2 ICSDP POMM nTTP TITE-BOIN TITE-mTPI2 R-mTPI2

Scenario Mean duration in weeks (SD)

C 28 (9) 24 (8) 38 (12) 31 (10) 24 (3) 16 (11) 22 (14) 21 (17)

D 54 (10) 53 (10) 53 (8) 43 (4) 29 (5) 43 (8) 73 (17) 92 (22)

E 40 (11) 37 (12) 42 (10) 41 (9) 30 (4) 33 (15) 42 (20) 47 (26)

F 57 (13) 55 (14) 54 (12) 44 (6) 33 (6) 56 (15) 79 (31) 86 (34)

Mean 45 42 47 40 29 37 54 61

Scenario Mean number of patients (SD)

C 9 (3) 7 (3) 14 (5) 10 (4) 6 (1) 8 (5) 7 (4) 7 (4)

D 21 (5) 21 (5) 21 (4) 16 (2) 10 (2) 21 (4) 20 (5) 19 (4)

E 14 (5) 12 (6) 15 (5) 15 (5) 9 (2) 16 (7) 13 (5) 13 (6)

F 22 (7) 22 (7) 21 (6) 16 (3) 11 (3) 26 (5) 20 (7) 20 (6)

Mean 17 15 18 14 9 18 15 15

A limitation of such a simulation study is that the decisions in a real trial that would made be on an individual patient
basis cannot be incorporated. Any rule must be prespecified and therefore deviates from the practical realities of such
trials. It is not our explicit intention to recommend whether or not including later cycles is beneficial or not in deciding
the MTD, as this will be a decision individual to the trial in many ways, taking into account multiple factors that we
cannot include in a simulation study. However, we hope that this article will provide some insight into how late onset
toxicity can be incorporated if it is deemed appropriate.
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