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Abstract
Retinoic acid is the main active vitamin A derivate and a key regulator of embryonic

development. Excess of retinoic acid can disturb palate development in mice leading

to cleft palate. WNT signaling is one of the main pathways in palate development. We

evaluated the effects of retinoic acid on palate fusion and WNT signaling in in vitro

explant cultures. Unfused palates from E13.5 mouse embryos were cultured for 4 days

with 0.5 μM, 2 μM or without retinoic acid. Apoptosis, proliferation, WNT signal-

ing and bone formation were analyzed by histology and quantitative PCR. Retinoic

acid treatment with 0.5 and 2.0 μM reduced palate fusion from 84% (SD 6.8%) in

the controls to 56% (SD 26%) and 16% (SD 19%), respectively. Additionally, 2 μM

retinoic acid treatment increased Axin2 expression. Retinoic acid also increased the

proliferation marker Pcna as well as the number of Ki-67-positive cells in the palate

epithelium. At the same time, the WNT inhibitors Dkk1, Dkk3, Wif1 and Sfrp1 were

downregulated at least two-fold. Retinoic acid also down-regulated Alpl and Col1a2
gene expression. Alkaline phosphatase (ALP) activity was notably reduced in the

osteogenic areas of the retinoic acid- treated palates. Our data suggest that retinoic

acid impairs palate fusion and bone formation by upregulation of WNT signaling.
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INTRODUCTION

Cleft palate is a disruption of the normal orofacial struc-

tures caused by a failure in the growth, elevation or fusion of

the palatal shelves during embryonic development [1]. Cleft

palate etiology is complex and poorly understood, but it is

known to involve genetic as well as environmental factors

such as vitamin imbalances [2, 3]. Under normal conditions,

the palatal shelves grow out vertically from the maxillary

prominences, elevate to a horizontal position, adhere form-

ing the medial epithelia seam and then fuse [4]. Fusion
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may involve the migration, differentiation and/or apoptosis

of medial epithelial seam cells [5]. After the fusion of the

palatal shelves, bone formation takes place through intramem-

branous ossification, in which condensed neural crest-derived

mesenchymal cells differentiate directly into osteoblasts [6].

Several signaling pathways have been related to palato-

genesis and cleft palate including fibroblast growth factor,

sonic hedgehog and wingless-INT (WNT) [7–10]. Canonical

WNT signaling is activated by the binding of WNT ligands

to the Frizzled (FZD) receptors and the low-density lipopro-

tein coreceptors-related protein 5/6 (LRP5, LRP6) [11]. This
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interaction stabilizes the cytoplasmic β-catenin and facilitates

its translocation into the nucleus, where it binds to lymphoid

enhancer-binding factor 1/T cell-specific transcription factor

(TCF/LEF) [12]. In the absence of a WNT ligand, β-Catenin is

phosphorylated and degraded in the cytoplasm [13]. Canoni-

cal WNT signaling is antagonized by several secreted proteins

such as the secreted frizzled related proteins (sFRPs), WNT

inhibitory protein 1 (WIF1) and the dickkopf family (DKK)

[14]. sFRPs and WIF1 bind to WNT ligands and prevent

their interaction with the WNT membrane receptors [15, 16].

sFRPs can also bind to the WNT-binding domain of the FZD

receptors [17]. The DKK family of proteins bind to the WNT

co-receptors LRP5 or LRP6, and to Kremen1 and Kremen2.

This complex is then endocytosed resulting in the depletion

of LRP from the plasma membrane [18].

Genetic studies have associated WNT gene mutations with

cleft palate in humans such as a homozygous nonsense muta-

tion in WNT3 and several single nucleotide polymorphism

near the WNT6-WNT10a cluster at the 2q35 region of chromo-

some 2 [10, 19]. Experiments in mice have also confirmed the

role of WNT signaling in cleft palate [20, 21]. For instance,

tissue-specific deletions of Catnb, Tcf4 or Lef1 from the

palatal shelves epithelium in mice disrupt medial epithelial

seam disappearance resulting in cleft palate [22]. WNT sig-

naling is also involved in bone formation as it promotes the

proliferation and differentiation of mesenchymal stem cells

(MSC) into the osteogenic lineage [23]. Several in vivo and

in vitro studies indicate that WNT signaling can be disrupted

by retinoic acid [24–26].

Retinoic acid is the main active metabolite of vitamin A

and is crucial for normal pattern formation during embryonic

development [27]. Retinoic acid regulates gene expression by

binding to cellular retinoic acid-binding proteins (CRABPs)

that transport retinoic acid to the nucleus, where it binds

to the retinoic acid receptors and retinoid X receptors

(RARs/RXRs). This complex then binds to retinoic acid

response elements (RARE) in the DNA thus activating target

gene expression [28]. An overdose of retinoic acid at dif-

ferent embryonic stages induces congenital malformations in

both mouse and humans [29–31]. One of these malformations

induced by retinoic acid is cleft palate [30, 32, 33]. Depend-

ing on the stage of administration, retinoic acid inhibits

palatal shelves growth or fusion [30, 34]. Several studies show

contradictory effects of retinoic acid on osteogenic differen-

tiation, depending mainly on the dose and embryonic stage

of exposure [35, 36]. For instance, retinoic acid decreases the

differentiation of osteoblasts [37]. In contrast, retinoic acid

induces bone mineralization in mouse embryo limbs [36].

However, the molecular mechanisms underlying the effects

of retinoic acid on palate development are not clearly under-

stood yet. Here, we hypothesized that retinoic acid disrupts

palate fusion and bone formation by affecting WNT signal-

ing. Explant cultures of the mouse embryonic palate show

that retinoic acid disrupts palate fusion and osteogenic dif-

ferentiation. This coincides with a downregulation of WNT

inhibitors and an upregulation of the WNT marker gene

Axin2.

MATERIAL AND METHODS

In vitro palate culture

Seventy-two palatal shelves were dissected in cold fetal

bovine serum (FBS) from the mouse fetuses of nine differ-

ent mothers at embryonic day 13.5 using a stereomicroscope

(Leica MZ16). The wild-type mice were from an out-

bred strain Hsd:ICR (CD1). Experiments were approved by

the board for animal experiments of Radboud University,

Nijmegen (RUDEC 2015-0080) according to Dutch laws

and regulations. The dissected palates were gently put on a

0.8 μm pore MF-Millipore membrane filter (Millipore) on

top of a sterilized stainless-steel mesh in a six-well plate (for

detailed description, see Figure 1). Generally, three palates

were put in one well. Three different media conditions were

used. Control: DMEM/F12 medium (Sigma-Aldrich) con-

taining 5% FBS (GIBCO), 200 mM glutamine, 400 mg/ml

ascorbate, 1% penicillin – streptomycin. The other two

media contained control medium with all-trans-Retinoic acid

(Sigma-Aldrich) in a concentration of 0.5 μM retinoic acid

or 2 μM retinoic acid, diluted in dimethyl sulfoxide (Sigma-

Aldrich). Palates were incubated at 37˚C with 5% CO2 for 4

days. Medium was changed and photographs were made every

24 h.

RNA isolation and real-time quantitative PCR

Three biological replicates, containing at least six pooled

palates (from three different mothers) were used for the RNA

isolation using the RNeasy MiniKit (Qiagen) according to the

manufacturer’s protocol. Equal amounts of RNA from each

sample (1 μg) was reverse-transcribed using the iScriptTM

Reverse Transcriptase system (Bio-Rad). Quantitative real-

time PCR reactions were carried out in 25 μl containing

5 μl cDNA (12.5 ng), 4.5 μl RNA-free water, 2.5 μM for-

ward and reverse primers and 12.5 μl SYBR Green Supermix

(Bio-Rad). The amplifications were performed in a CX96

Real Time System (Bio-Rad) using the following conditions:

initial denaturalization at 95˚C for 3 min, followed by 39

cycles performed at 95˚C for 15 s and 60˚C for 30 s. All data

were normalized to the expression of three reference genes

(Gapdh, β-actin and 18 s rRNA). Relative expression was cal-

culated according to the 2−ΔCt method. Primers were obtained

from Biolegio and their sequences are summarized in

Table 1.
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F I G U R E 1 Mouse embryo palate dissection and quantification method for palate fusion. (A) Under the stereomicroscope, mouse embryos

were examined to confirm the embryonic stage E13.5 based on Theiler’s stages criteria [96]. Each embryo was placed in one drop of cold PBS in a

petri dish. To isolate the upper jaw, two transversal cuts were made; one just below the eye level and over the ears and the second from the oral

commissures to below the ears. (B) Once the upper jaw is isolated, the oral side is orientated up and the surrounding tissue is carefully removed. PP:

primary palate. PS: Palate shelves. UL: Upper lip. (C) In order to maintain the in vivo position of the palatal shelves, some tissue anterior and

posterior to the shelves was left. (D) The dissected palates are carefully transferred to a well in a 6-well plate, containing a stainless mesh with a filter

on top and 3.5 ml of medium. 6W: well from a 6-well plate. M: Stainless-steel mesh. MF: 8 μM pore MF-Millipore membrane filter. (E) Diagram

showing the quantification of palate fusion on a histological section. OS: Oral side. b: Total thickness of the palate. a: part of the palate fused. NC:

Nasal cavity. FP: Fusion percentage

T A B L E 1 Primer sequences

Gene category Symbol Forward Primer (5′−3′) Reverse Primer (5′−3′)
RA RESPONSIVE Cyp26b1 GATCCTACTGGGCGAACACC GGAGAAGACCTTGCGCTTGT

Crabp2 TGATCTCGACTGCTGGCTTG TCCCATCGGGTTCCCATAAAG

Rarb GAAAACGACGACCCAGCAAG TTACACGTTCGGCACCTTTC

APOPTOSIS MARKER Trp53 GGAAGACTCCAGTGGGAACC CTTCTGTACGGCGGTCTCTC

PROLIFERATION MARKER Pcna AGAGCATGGACTCGTCTCA CCAGCACATTTTAGAATTTTGGACA

WNT TARGET Axin2 GGTTCCGGCTATGTCTTTGC CAGTGCGTCGCTGGATAACTC

WNT INHIBITORS Dkk3 GGCCCACAGTCTTCATCAAT CCAGAGTGGACAGGTGGTCT

Dkk1 CGGGGGATGGATATCCCAGAA ACGGAGCCTTCTTGTCCTTTG

Kremen1 TGGGTTTCCATGATCCTTGT GCATGAGGACGGAGTCTACTG

Sfrp1 TCTAAGCCCCAAGGTACAACC GCTTGCACAGAGATGTTCAATG

Sfrp4 ATCATCCTTGAACGCCACTC TCGAACACAAGTCCCTCTCA

Wif1 GCATTCTTTGTTGGGCTTTC CCATCAGGCTAGAGTGCTCA

BONE DIFFERENTIATION MARKERS Alpl CCAGCAAGAAGAAGCCTTTG AACCCAGACACAAGCATTCC

Col1a2 CCTGGCAAAGACGGACTCAAC GCTGAAGTCATAACCGCCACTG

Runx2 CGGACGAGGCAAGAGTTTCA GGATGAGGAATGCGCCCTAA

Fusion percentage

After four days in culture, six palates from each concentration

group were fixed overnight in 4% paraformaldehyde, embed-

ded in paraffin and sectioned at 5 μm. The sections were

stained with hematoxylin and eosin (HE), and photographed

with a Zeiss Imager Z1 microscope (Zeiss AxioCam MRc5;

Carl Zeiss Microimaging). Measurements were made on

every tenth section, of the middle region of each palate using

ImageJ software [38]. The fusion percentage (FS) was cal-

culated as the part of the palate that is fuse (b), divided by

total thickness of the palate, including any remaining medial

epithelial seam (a), as previously reported (Figure 1E) [39].

Immunohistochemistry

Mouse palate shelves cultured in vitro during four days, six

palates from each concentration group, were fixed overnight

in 4% paraformaldehyde, embedded in paraffin and sec-

tioned at 5 μm. Briefly, the sections were deparaffinized with

xylene and rehydrated with a graded series of ethanol. Next,

endogenous peroxidase activity was inhibited in 30% H2O2 in

phosphate buffered saline (PBS) in the dark at room temper-

ature for 20 min. The sections for DKK3 and KI-67 staining

were boiled with 0.1 M citrate buffer (pH 6.0) in a microwave

oven for 10 min and left at room temperature for 20 min to

cool down. To reduce non-specific binding, the samples were
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incubated in 10% normal donkey serum in PBS for 20 min

in the dark. After washing with PBS, the primary antibody

against DKK3 and KI-67 (both from Proteintech) was applied

and incubated overnight at 4˚C. The sections for WIF1, sFRP4

and AXIN2 received a trypsin treatment for 1 min at 37˚C

(all from abcam). Then, the primary antibody was applied and

labelled with a streptavidin-biotin immunoperoxidase method

using a commercial kit (Vectorlabs). Antibody binding was

visualized using diaminobenzidine (DAB) as a chromogene

to produce a brown color. Counterstaining was performed

with Mayer’s hematoxylin. The slides were mounted with

DPX mounting medium and photographed with the Zeiss

Imager Z1 microscope (Zeiss AxioCam MRc5; Carl Zeiss

Microimaging).

Alkaline phosphatase staining

The palate sections were deparaffinized with xylene and rehy-

drated with a graded series of ethanol. Then, they were washed

with MilliQ water and incubated at 37˚C with preheated ALP

solution of pH 9.5 (100 mM NaCl, 100 mM Tris–HCl, 50 mM

MgCl2, 4.5 μl/ml nitroblue tetrazolium and 3.5 μl/ml 5-

bromo-4-chloro-3-indolyl phosphate) for 60 min and washed

again in MilliQ water. Sections were counterstained with

natrium acetate 0,1 M (pH 5.1) for 15 min followed by 0.1%

Methylgreen in natrium acetate (pH 5.1). Finally, the sections

were mounted in Kaisers gelatin and photographed with the

Zeiss Imager Z1 microscope (Zeiss AxioCam MRc5; Carl

Zeiss Microimaging)

Statistical analysis

The Shapiro-Wilk test showed that all data were normally

distributed. Each culture experiment was performed in tripli-

cate, and the results are presented as mean ± SD. Differences

between the groups were evaluated by one-way ANOVA.

Post-hoc comparisons were made using the Tukey’s multi-

ple comparison test. Differences were considered significant

if p < 0.05. All statistical tests were performed with Graphpad

Prism version 8.2.1.

RESULTS

Retinoic acid effect in palate fusion

Palates shelves were dissected from mouse embryos at E13.5

and cultured with 0.5 μM and 2 μM retinoic acid for up to 4

days. At day 1, the shelves from the control group had already

grown and contacted in the midline (Figure 2A). The palatine

rugae also started to be visible (data not shown). At day 1 in

the 0.5 μM and 2 μM retinoic acid groups, the anterior region

of the shelves was not in contact (Figure 2A). From 2 to 4 days

in culture, no evident changes occurred in the palate shelves

from the control group. However, in the 0.5 μM retinoic acid

group a persistent gap was observed in the anterior region. The

length of the palate shelves was measured between the yellow

dotted lines (Figure 2A, bottom row). The palates treated with

2 μM retinoic acid showed a progressive reduction in length

up to 34% after 4 days in culture, compared to the controls.

Histological sections were evaluated after 4 days in culture.

The controls showed limited persistence of medial epithelial

seam, molars buds (Figure 2B, M) and mesenchymal con-

densation (Figure 2B, black arrows). Retinoic acid treatment

(0.5 and 2 μM) showed a decreased number of samples with

molar buds (data not shown), persistence of the medial epithe-

lial seam (Figure 2B, red arrows) or reduced contact between

the palatal shelves (data not shown). Mesenchymal condensa-

tions were absent (Figure 2B). Then, to quantify the fusion

of the palatal shelves, defined as the disappearance of the

medial epithelial seam, the percentage of fusion was measured

using image analysis. After 4 days in culture, the control group

showed 84% ± 6.8% of fusion (Figure 2C) while in the 0.5 μM

retinoic acid group this had decreased to 56 ± 26% (not sig-

nificant, Figure 2C). The fusion percentage was significantly

reduced (16 ± 19%) in the 2 μM retinoic acid group when

compared with the control and the 0.5 μM retinoic acid group

(p < 0.001 and p < 0.05, respectively; Figure 2C).

Retinoic acid effects on apoptosis, proliferation
and WNT signaling

To confirm the functionality of retinoic acid, we determined

the expression levels of cytochrome P450 family 26 subfam-

ily B member 1 (Cyp26b1), cellular retinoic acid binding

protein 2 (Crabp2) and retinoic acid receptor beta (Rarb)

that are involved in retinol-dependent signaling. As expected,

retinoic acid up-regulated the expression of two retinoic

acid-responsive genes (Figure 3A). Cyp26b1 gene expression

showed a 2-fold increase in the 0.5 μM retinoic acid group

(p < 0.05) and a 4-fold increase in the 2-μM retinoic acid

treated group (p < 0.01). Rarb expression showed a 50-fold

increase in the 2 μM retinoic acid group compared to the

controls (p < 0.01). Crabp2 expression only showed a trend

towards increased expression.

We also determined the expression of an apoptosis marker

and a proliferation marker (Trp53 and Pcna). After 4 days

in culture, no differences were observed in the expression

of Trp53 (Figure 3B). Pcna expression showed a 3.2-fold

increased expression only in the palate cultures treated with

2 μM retinoic acid (p < 0.05, Figure 3B). Positive cells for the

proliferation marker Ki-67 were located in the plate epithe-

lium, and the number increased from 129 in the controls, to

239 and 303 in the 0.5 and 2 μM retinoic acid treated groups

respectively (p < 0.05, Figure 3C, D).
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F I G U R E 2 Retinoic acid disrupts palate fusion in mouse palate cultures. Palates were isolated from E13.5 mouse embryos from nine different

mothers, cultured oral-side up for 4 days with 0.5–2 μM or without retinoic acid, fixed, and stained with HE. (A) Representative daily pictures of

palates in culture. Green dotted line: middle region. Red dotted line: palate shelves length. PP: primary palate. UL: upper lip. PS: palate shelves.

Scale bars: 1 mm. (B) HE staining of frontal sections. Representative pictures of the palates from the middle region, stained with HE. M: molar. OS:

oral side. NC: nasal cavity. Arrowheads: medial epithelial seam. Scale bars: 200 μm. (C) Palate shelves fusion percentage. Six palates from each

concentration group were used for the measurements. Ten consecutive sections from the middle of each palate were analyzed (* p < 0.05, *** p <

0.001)



6 of 13 ROA FUENTES ET AL.

F I G U R E 3 Gene expression analysis. Quantitative real-time PCR was performed with RNA isolated from mouse palates cultured for 4 days

with 0.5–2 μM or without retinoic acid. (A) Expression of retinoic acid-responsive genes. Data are represented as the mean ± SD (N = 3). * p <

0.05, *** p < 0.001, compared with the controls. (B) Trp53 and Pcna gene expression. Data are represented as the mean ± SD (N = 3). ** p <

0.01. (C) Proliferation marker KI-67 positive cells. Data are represented as the mean ± SD (N = 3. * p < 0.05, ** p < 0.01, compared with the

controls. (D) KI-67 immunohistochemistry. Representative pictures of the staining. OS: oral side. NC: nasal cavity

To evaluate whether the expression of Axin2, a WNT

marker gene, was affected by retinoic acid during palate

fusion, we analyzed the gene expression of Axin2 (40, 41).

Axin2 gene expression did not show significant changes in the

0.5 μM treated group. 2 μM retinoic acid treatment induced

a 4.9-fold increase in Axin2 expression, compared with the

control group (p < 0.05; Figure 4A). In the controls, AXIN2

protein expression was located mainly in the oral epithelium

and the condensed mesenchyme of the palate (Figure 4B). In

the 0.5 μM retinoic acid-treated group, AXIN2 was almost

absent in the mesenchyme but the staining intensity was

increased in the oral and nasal epithelium (Figure 4B). In

the 2 μM retinoic acid-treated group, AXIN2 expression was

stronger all over the mesenchyme and the oral epithelium

(Figure 4B).

WNT inhibitor expression in palate shelves
treated with retinoic acid

We have shown earlier that retinoic acid induces the expres-

sion of WNT inhibitors during osteogenic differentiation of

MC-3T3 preosteoblasts cultured in vitro (37). To investi-

gate whether the activation of WNT signaling was caused

by inhibition of expression of WNT inhibitors, we evalu-

ated the expression of six WNT inhibitors after 4 days of

retinoic acid treatment. The expression of dickkopf-related

protein 1 (Dkk1) and dickkopf-related protein 3 (Dkk3)

was significantly down-regulated compared to the control

group (p < 0.001, Figure 5A). The kringle containing trans-

membrane protein 1 (Kremen1) did not show differences

in expression (Figure 5A). The WNT inhibitor factor 1

(Wif1) was down-regulated in the retinoic acid–treated palates

(p < 0.05, Figure 5A). The gene expression of the WNT

inhibitor secreted frizzled related protein 1 (Sfrp1) showed a

2-fold decrease in the palates treated with 0.5 μM retinoic acid

(p < 0.01, Figure 5A). Sfrp4 was significantly up-regulated in

the two retinoic acid-treated groups (p < 0.01, Figure 5A).

To localize the WNT inhibitors DKK3, SFRP4 and Wif1

in the cultured palates we used immunostaining. Palates from

the control group showed DKK3 protein expression in the

oral and nasal epithelium and in the mesenchymal areas lat-

eral to the middle (Figure 5B, DKK3-control). However, in

the retinoic acid treated groups, mesenchymal expression was
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F I G U R E 4 WNT signaling target gene expression. (A) Axin2 gene expression. Data are represented as the mean ± SD (N = 3). * p < 0.05,

** p < 0.01. (B) AXIN2 immunohistochemistry. Representative pictures of the staining. Scale bars: 200 μm. OS: oral side. NC: nasal cavity

F I G U R E 5 Retinoic acid affects the expression of WNT inhibitors. Palates were isolated from E13.5 mouse embryos from nine different

mothers, cultured oral-side up for 4 days with 0.5–2 μM or without retinoic acid and then processed for qPCR or fixed for histology. (A) Relative

WNT inhibitors gene expression. Data are represented as the mean ± SD (N = 3). * p < 0.05, ** p < 0.01, *** p < 0.001. M: molar. OS: oral

side. NC: nasal cavity (B) Immunohistochemistry of WNT inhibitors. Representative pictures of the staining of each group. Black arrows: protein

expression. Scale bars: 200 μm
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F I G U R E 6 Retinoic acid inhibits the expression of osteogenic markers. After four days in culture RNA from the palates was isolated for

qPCR. Additionally, palates were fixed in 4% paraformaldehyde for ALP staining. (A) Relative osteogenic markers gene expression. Data are

represented as the mean ± SD (N = 3). * p < 0.05, ** p < 0.01. (B) Alkaline phosphatase staining. Representative pictures of each group. Dark

blue staining indicates ALP activity. M: molar tooth bud. OS: oral side. NC: nasal cavity Scale bar: 200 μm

almost absent and the signal in the epithelial tissues was

reduced (Figure 5B, DKK3).

Palates from the control group, showed WIF1 expression

in the nasal and oral epithelium, and in the lateral mes-

enchymal tissue (Figure 5B, WIF1-control). In the 0.5 μM

retinoic acid-treated group, oral epithelial WIF1 expression

was restricted to the intermolar region, and the mesenchy-

mal expression was strongly reduced. In the 2 μM RA-treated

group, a weak WIF1 expression was present in the lateral

parts of the oral epithelium. Palates from the control group,

showed a strong SFRP4 protein expression in the nasal epithe-

lium but not in the oral epithelium. The lateral mesenchymal

areas were also stained (Figure 5B, SFRP4-control). Inter-

estingly, the expression in the oral epithelium was greatly

increased in the 0.5 μM retinoic acid-treated palates, which

continued into the medial epithelial seam and the nasal

epithelium. Additionally, SFRP4 was highly expressed in the

molar buds and the surrounding condensed mesenchyme but

absent in the lateral mesenchyme. The 2 μM retinoic acid-

treated group showed slightly increased expression in the

oral and nasal epithelium, and the molar buds (Figure 5B,

SFRP4).

Osteogenic differentiation in palatal shelves
treated with retinoic acid

As WNT signaling is related to bone formation, we also ana-

lyzed the expression of three marker genes for osteogenic

differentiation. The gene expression of the early osteogenic

marker alkaline phosphatase (Alpl) was significantly down-

regulated in the palates treated with 0.5 μM and 2 uM retinoic

acid (p < 0.01, Figure 6A). The extracellular matrix protein

collagen type I alpha 2 (Col1a2) was significantly down-

regulated in the 2 μM retinoic acid-treated palates (p < 0.05,

Figure 6A). Retinoic acid did not significantly inhibit Runx2
expression, but showed a clear trend (p > 0.04, Figure 6A).

To localize ALP activity, we used an enzymatic staining on

histological sections. In the controls, ALP activity was located

in the lateral sides of the palatal shelves and around the molar

tooth buds. ALP activity was completely absent in the two

retinoic acid treated groups except a few small lateral spots in

the 0.5 μM retinoic acid-treated palates (Figure 6B).

DISCUSSION

The complex molecular and cellular regulation of palate

development is susceptible to disruptions, which may lead

to c left palate [42]. In humans, retinoic acid is known to

increase the risk of cleft palate if the serum concentration is

outside the normal range of 0.004–0.009 μM [43–45]. In addi-

tion, retinoic acid is known to interact with WNT signaling,

which has an essential role during embryogenesis [46, 47]. We

hypothesized that retinoic acid disrupts palate development by

affecting WNT signaling. Therefore, we cultured palates from

mouse embryos (E13.5) to study the effect of retinoic acid on

palate fusion and the underlying mechanism.

Our results show that retinoic acid reduces palate fusion

in vitro as measured by the reduced disappearance of the

medial epithelial seam. Previous studies show similar effects

of retinoic acid both in vitro and in vivo, which was related

to the inhibition of apoptosis and cell migration in the medial

epithelial seam [48–50]. However, in our data, the expression

of the apoptosis marker Trp53 was not affected by retinoic

acid. As the medial epithelial seam is only a small part of
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the total palatal shelves tissue, we might not have picked

up an inhibition of Trp53 expression. In addition, we show

reduction in the growth of the palatal shelves by retinoic

acid. Similarly, studies in pregnant mice exposed to retinoic

acid show that the growth of the palatal shelves was reduced

because of an inhibition of mesenchymal cell proliferation

leading to cleft palate [51–54]. Conversely, our results show

increased Ki-67 expression by retinoic acid, which seems to

be mainly located in the epithelium of the treated palates.

Contradictory effects of retinoic acid on cell proliferation

have been also reported earlier. While retinoic acid treatment

induces proliferation of irradiated murine fetal liver-derived

stromal cells, it also has anti-proliferative effects on human

renal and breast cancer cells [55–57].

To clarify the mechanism of the retinoic acid effects, we

evaluated the activity of WNT signaling. WNT signaling

plays an important role during development, controlling both

proliferation and differentiation processes [58]. Disruption

of WNT signaling during mouse palate development can

lead to cleft lip and/or palate [47]. For instance, conditional

inactivation of WNT/β-catenin signaling in the mouse palate

epithelium leads to cleft lip and/or palate due to failed palate

fusion [59]. It has also been shown that LiCl-induced WNT

activation during palate development inhibits palate fusion

inhibition and ossification [60]. Our results show that retinoic

acid-treatment upregulated the expression of the WNT marker

gene Axin2. Axin2 is recognized as a good marker gene

in vertebrates for WNT signaling as it acts in a negative

feedback loop to limit and fine-tune Wnt signaling [61–64].

Studies in mouse mesenchymal stem cells and human fetal

palatal chondrocytes also showed that retinoic acid stimulated

WNT signaling by an increase in the β-Catenin level dur-

ing osteogenic induction [65, 66]. However, studies in several

types of cancer cells and mouse pre-osteoblasts have shown

that retinoic acid can also down-regulate WNT signaling [37,

67–69]. Interestingly, another study reports suppression of

Wnt signaling and cleft palate in mouse embryos in vivo by

retinoic acid [53]. However, they included tongue tissue in the

expression analyses, which might have affected their results as

it has been reported that WNT signaling is required to induce

proliferation of epithelial cells and differentiation of muscle

progenitor cells in the tongue [70]. Our results also showed

that the increased AXIN2 expression is mainly localized in the

palate epithelium along with an increase in the proliferation

marker KI-67. Enhanced proliferation related to WNT signal-

ing activation has also been reported in mouse and human

cardiomyocytes, and human ocular epithelial cells [71, 72].

Our results indicate that increased WNT signaling in retinoic

acid-treated palatal shelves induces proliferation of epithelial

cells.

The increased activity of WNT signaling might also explain

the persistence of the medial epithelial seam in the retinoic

acid-treated palates. Several studies in the cancer field show

that WNT signaling inhibits apoptosis, one of the crucial

cellular processes for medial epithelial seam disappearance

[73–75]. For instance, inactivation of the WNT inhibitor

DKK1 in human breast cancer cells increases WNT signaling

and inhibits apoptosis [75]. In addition, reduced expression of

DKK2 in human and mouse breast cancer cells has also been

related to inhibition of apoptosis and cell migration [76].

Our results also show that retinoic acid down-regulates the

expression of the WNT inhibitors Dkk1, Dkk3 and Wif1 in the

cultured palates. Similar results were found in mouse bone

marrow stem cells in which retinoic acid stimulated WNT

target gene expression by downregulation of Dkk1 [77]. This

was also reported in human neuroblastoma cells and in mouse

cerebrovascular development where retinoic acid is required

to suppress Dkk and Sfrp expression [78, 79]. Also, during

lung development, a retinoic acid-WNT network seems to

maintain lung progenitor cell fate by a retinoic acid-dependent

Dkk1 suppression leading to increased WNT signaling [80].

Together, the data suggest that retinoic acid stimulates WNT

signaling through repression of WNT inhibitors. However,

further work is needed to clarify the exact mechanism through

which retinoic acid downregulates WNT inhibitors in palate

development.

Different from the other WNT inhibitors, Sfrp4 gene and

protein expression was increased in the palates treated with

retinoic acid. This was also shown in pancreatic cancer cells,

where retinoic acid induced Sfrp4 expression as well as

decreased WNT signaling [81]. Interestingly, SFRPs can also

function as WNT enhancers favoring the transport of WNT

ligands to the FZD receptor in Xenopus embryos, MDCK cells

and Drosophila S2 cells [82, 83]. Similarly, a simultaneous

increase in SFRP4 and WNT expression has been shown in

mouse and human skin affected by systemic sclerosis [84].

Based on these reported mechanisms of SFRP4, we suggest

that it functions as an agonist of WNT signaling after retinoic

acid exposure of the palate.

In normal palate development, bone formation starts

around the time of fusion in the lateral areas of the palatal

shelves [4]. Our results show a reduction in expression of the

osteogenic marker Alp by retinoic acid, a trend of reduction in

Runx2 and a pronounced decrease in ALP activity in the mes-

enchyme. Also, in vivo retinoic acid inhibits the development

of the palatine and maxillary bones in mouse embryos [85].

In general, increased WNT signaling is related to an increased

bone mass in mouse and rat studies [86, 87]. This evidence

suggests that retinoic acid reduces WNT signaling and sub-

sequent osteogenesis in palate development. In mesenchymal

stem cells, WNT signaling is required for their commitment

to the osteoblast lineage, and inhibition of the adipogenic and

chondrogenic cell fate [23, 88]. Once commitment is estab-

lished, canonical WNT signaling is essential for osteoblast

precursor proliferation and differentiation [89]. It has also

been shown that too low as well as too high serum retinoic
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acid levels can contribute to poor bone health and skeletal

fragility in humans [90]. Moreover, long-term exposure to

retinoic acid impedes osteoblast differentiation and prevents

mineralization of mouse pre-osteoblasts, bone marrow stro-

mal cells and calvarial bone cultures [91–93]. Additionally,

it has been suggested that retinoic acid inhibits the differ-

entiation of osteogenic progenitor cells, leading to a marked

reduction in the expression of osteogenic markers (Runx2,
Alpl, Sp7) as also shown in our results [94, 95]. We suggest

that long-term retinoic acid exposure inhibits bone formation

trough down-regulation of osteogenic genes.

In summary, this study shows that retinoic acid signifi-

cantly reduces palate fusion and osteogenic differentiation.

Our data suggest that this is correlated to an increased WNT

signaling caused by a reduced expression of WNT inhibitors.

Further in vivo experiments, for instance using reporter mouse

lines, are needed to validate our in vitro findings.
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