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Artificial Intelligence and Deep Learning
for Rheumatologists

Christopher McMaster,1 Alix Bird,2 David F. L. Liew,3 Russell R. Buchanan,4 Claire E. Owen,4

Wendy W. Chapman,5 and Douglas E. V. Pires6

Deep learning has emerged as the leading method in machine learning, spawning a rapidly growing field of
academic research and commercial applications across medicine. Deep learning could have particular rele-
vance to rheumatology if correctly utilized. The greatest benefits of deep learning methods are seen with
unstructured data frequently found in rheumatology, such as images and text, where traditional machine learn-
ing methods have struggled to unlock the trove of information held within these data formats. The basis for this
success comes from the ability of deep learning to learn the structure of the underlying data. It is no surprise
that the first areas of medicine that have started to experience impact from deep learning heavily rely on inter-
preting visual data, such as triaging radiology workflows and computer-assisted colonoscopy. Applications in
rheumatology are beginning to emerge, with recent successes in areas as diverse as detecting joint erosions
on plain radiography, predicting future rheumatoid arthritis disease activity, and identifying halo sign on tempo-
ral artery ultrasound. Given the important role deep learning methods are likely to play in the future of rheuma-
tology, it is imperative that rheumatologists understand the methods and assumptions that underlie the deep
learning algorithms in widespread use today, their limitations and the landscape of deep learning research that
will inform algorithm development, and clinical decision support tools of the future. The best applications of
deep learning in rheumatology must be informed by the clinical experience of rheumatologists, so that
algorithms can be developed to tackle the most relevant clinical problems.

Introduction

Deep learning refers to a group of algorithms that use artificial

neural networks and an optimization algorithm called backpropa-

gation (with gradient descent) to model complex problems by

learning complex functions that describe them (see Figure 1) (1).

While deep learning methods have been designed and applied

for many decades, it is only in the last 10 years that computer

hardware has been able to train these increasingly complex mod-

els to such a level that they now dominate the machine learning

landscape, both in terms of publications and performance.

In recent years, the applications of deep learning in medicine have

not only gained prominence but have started entering clinical

practice. At the time of writing, the American College of Radiology

lists 201 US Food and Drug Administration (FDA)–approved

machine learning algorithms to support radiology (2), many of

which use deep learning approaches. Deep learning methods

power computers that beat grandmasters in Chess and Go (3),

summarize documents as diverse as patents and academic

papers (4), control autonomous cars (5), and predict and design

macromolecules (6). Although still in its infancy, applications of

deep learning in rheumatology are increasing across a broad

range of areas (see Table 1). There are several ways to classify
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these various applications; however, one logical way to categorize
deep learning algorithms is based on the input data type. Time-
series data are used for prediction tasks, written text is used for
natural language processing, and images are used for computer
vision. Here we explore rheumatic applications of deep learning
across these 3 categories.

Learning from text

Natural language processing (NLP) is an interdisciplinary field
of study with the main aim of having computers “perform useful

tasks involving human language” (7). Traditionally, NLP has heavily
relied on linguistic models of syntax and grammar, complemented
by statistical analysis. In contrast, deep learning approaches in
contemporary NLP rely less on assumptions about rules of natural
language, including expertly curated words and phrases, building
models capable of inferring those rules by learning from large bod-
ies of text (8). Most recently, deep learning models for NLP have
moved toward attention-based models, in particular a group of
models collectively referred to as “Transformers” (9). While previ-
ous state-of-the-art NLP algorithms relied on modeling text as a
sequence of words read one-by-one directionally (left-to-right for

Figure 1. Neural network architectures. The first layer of a neural network consists of the data. These data are then passed to the first “hidden
layer.” Each node, represented by a circle, is a weighted linear combination of all the nodes in the layer before. It is the weights that the model
“learns.” Apart from a classic neural network where all nodes from 1 layer are connected to the next (otherwise known as a multilayer perceptron),
other common architectures include recurrent networks with connections between nodes within a layer, usually used for sequence data
(e.g., time-series or text), and residual networks, where information from 1 layer can “skip” the next layer, giving the network a way to bypass inef-
ficient layers.

Table 1. Current applications of deep learning in rheumatology*

Problem (source ref.)
Data
type Model Implications

Identifying GCA features from temporal artery biopsy
reports (13)

Text Transformer Accurate auditing of temporal artery biopsy reports can be
performed using deep learning; however, this
performance dropped when tested across centers.

Classifying HEp-2 cells based on ANA IIF patterns (29) Images CNN Automated ANA classification based on HEp-2 cells is
approaching expert human performance.

OESS from synovial ultrasound (44) Images CNN Deep learning can identify synovitis on ultrasound with a
high degree of accuracy.

SHS scoring using hand and foot radiographs (51) Images CNN Radiographic scoring for RA is improving but still requires
work for clinical implementation.

Predicting progression (any increase in K/L score) of
knee OA based on baseline knee radiographs plus
other clinical features (58)

Images CNN Radiographic progression in knee OA can be predicted with
a combination of clinical features and baseline
radiography using deep learning; however, there are
unmeasured factors missing in these models.

Identifying halo sign on temporal artery ultrasound
images (68)

Images CNN Deep learning has significant potential for automated
identification of the halo sign; however, ensuring
standardized image acquisition is a major barrier to
implementation.

Predicting future RA disease activity (controlled versus
uncontrolled) using clinical data from previous
encounters (19)

EHRs RNN Deep learning can predict future disease activity from past
disease activity and baseline factors; however,
performance significantly dropped when the model was
tested at a second center, suggesting that there is
substantial heterogeneity between centers that must be
accounted for in future models.

* GCA = giant cell arteritis; ANA = antinuclear antibody; IIF = immunofluorescence; CNN= convolutional neural network; OESS = EULAROutcomeMea-
sures in Rheumatology synovitis scoring; SHS = modified Sharp/van der Heijde; RA = rheumatoid arthritis; K/L = Kellgren/Lawrence;
OA = osteoarthritis; EHRs = electronic health records; RNN = recurrent neural network.
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English text), Transformers allow the algorithm to view all the text at
once and pick out the important words that provide context
(see Figure 2). Attention-based models, combined with pretraining
on very large bodies of text (see section on transfer learning
below), have allowed deep learning NLP algorithms to achieve
state-of-the-art performance on many language tasks.

Classifying temporal artery biopsy reports. Classic NLP tech-
niques have successfully been used for identifying patients with
rheumatic diseases using electronic health records (EHRs)
(10–12). These methods generally rely on the cultivation of a set
of words and phrases strongly associated with the disease of

interest. Given the wide phenotypic variability of rheumatic dis-
eases, accurate identification and classification of patients based
on clinical notes lends itself to deep learning techniques.

Presently, deep learning on text has only been applied in a
single conference abstract, using Transformer models to classify
temporal artery biopsy reports based on the presence of 3 histo-
pathologic features (adventitial inflammation, giant cells, intimal
hyperplasia) and overall conclusion (giant cell arteritis [GCA] or
not) (13). This study used a model called DistilBERT (14), training
on 161 biopsy reports from 1 center and testing both within
that center and on 220 biopsy reports from a second center.

Figure 2. Visualization of attention model (ref. 94). Two attention layers are shown with text input for NLP (top). The original input text reads,
“There was swelling and redness of the joint. The joint was also stiff and tender, with reduced range of motion.” This text is converted into tokens,
sometimes splitting words into more than one token (here “redness” is split into “red” and “##ness”—the “##” signifying that this token belongs
with the preceding token). On the left, a lower layer of the attention-based model relied on the words “range” and “motion” to interpret the word
“reduced.”On the right, at a higher layer, the word “reduced” also depends strongly on the word “swelling” in the previous sentence. An attention
model can be used for any sequence data (bottom). Here, these numbers could be laboratory values, with the task of predicting the next value in
the sequence. The attention layer used the values “16” and “90” to predict the next value in the sequence. In this instance, attention is used to
focus on a similar pattern to anticipate a future value.
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The authors achieved excellent performance, particularly on the
report conclusion (area under receiver operating characteristic
curve [AUC] 0.99) and the presence of giant cells (AUC 0.99), with
performance reducing slightly in the second center (AUC 0.93
and 0.97, respectively). Pooling data between the 2 centers and
training a new model resulted in significant improvements (AUC
0.99 and 0.99, respectively) when tested on reports across both
sites, suggesting that a diverse data set drawing on the language
of multiple institutions will result in more generalizable models. It
remains to be seen whether this model can generalize beyond
2 centers, particularly given the fact that both were within the
same city in Australia—it is likely that variability in documentation
practices, vocabulary, and idiomatic expressions results in
reduced performance.

Learning from EHRs

Deep learning algorithms used for predicting future events are
varied in design, but often rely on the use of time-series data mod-
eled as sequences. In this respect, predictive algorithms often use
similar architectures to those used when learning from texts, which
are also modeled as sequences. Many EHR prediction algorithms
have been developed, most notably and commonly for inpatient
outcomes such as length of stay and inpatient mortality rate (15).
The nature of EHR data produces unique challenges, reflecting
the bias of clinical decisions as much as patient physiology. Which
data are missing and the presence of noise often reflects system-
atic decision making, rather than a random process (e.g., the
absence of invasive blood pressure data in a critically ill patient
may reflect a decision about the goals of care, rather than the lack
of critical illness). Additionally, care must be taken to ensure data
set leakage (16) does not occur, where the training data set is
inadvertently informed by the testing data set (e.g., the same
patient appears in both, but for different inpatient visits).

Predicting future diagnoses using EHRs. The Transformer
architecture that has been successfully applied to NLP has dem-
onstrated similar success in sequence models. Such models
may use time-sequence data to predict future events, drawing
on the power of self-attention, efficiently learning to recognize
long-range relationships between past events and future events
(9). Li et al developed a Transformer model trained on 1.6 million
primary care patients with at least 5 EHR encounters (17). For
each individual, they created a sequence of EHR encounters, with
the diagnoses and patient age at the time of the encounter form-
ing the components of the sequence. The authors assessed pre-
dictive performance for a number of diseases, including rheumatic
diseases. Most notably, the model was able to predict the future
development of polymyalgia rheumatica (PMR) with very high
accuracy (AUC 0.96). This result may partially reflect data quality
issues, with PMR diagnosis in primary care frequently occurring
without exclusion of alternative diagnoses (18); thus, the model
is likely predicting the onset of a polymyalgic syndrome, rather

than the specific diagnosis of PMR. Additionally, this algorithm
may simply be identifying a pattern of clinical coding, rather than
a sequence of clinical events—any model that uses clinical inter-
pretation rather than patient physiology is prone to modeling not
just patient outcomes, but also physician behavior.

Predicting disease activity using EHRs. Rheumatology, as a
specialty dealingwith chronic, relapsing–remitting disease, hasmain-
tained a strong interest in the task of predicting future disease activ-
ity. Frequent outpatient follow-up with clinical and laboratory testing
is used to detect changes in disease state and allow for interventions
to treat any disease relapse or deterioration; yet precisely predicting
who will experience relapse or deterioration remains a difficult task.
Apart from the Transformer architecture mentioned above, for a long
time, deep learning has approached the analysis of sequence data
and prediction using recurrent neural networks (RNNs).

Norgeot et al (19) developed a model to predict whether
patients with rheumatoid arthritis (RA) would have controlled or
uncontrolled disease at their next clinic visit, based on data from
the EHR. Their definition of disease control was based on a
threshold cutoff of the Clinical Disease Activity Index (CDAI) (20).
The input data included baseline measures (demographic charac-
teristics, rheumatoid factor, citrullinated peptide antibody) and
time-dependent variables (laboratory values, medication, CDAI)
from each visit. The time-dependent variables were used to train
an RNN—designed to identify periodicity and trend—to account
for long-range influences that might affect future disease states.
The model was trained and tested on data from one hospital,
before being further assessed on data from a different hospital.
Predictably, the performance on data from the second
hospital was inferior; however, the authors were able to improve
the performance with a small amount of training on data from
the new hospital, in a process known as transfer learning.

Learning from images. Computer vision is a field of image
processing interested in automating tasks of visual perception.
Since the groundbreaking AlexNet architecture won the
ImageNet competition in 2012 (21), computer vision has been
dominated by deep learning algorithms. The basis for its success
to date has been one specific neural network architecture: the
convolutional neural network (CNN). The CNN has had several
inventors without reference to each other with slight variations;
however, the precursor to modern CNN models is most fre-
quently attributed to a 1999 paper by LeCun et al on object
detection (22).

The building block of CNNs is a convolution kernel, a grid or
matrix of numbers. The convolution passes over an image (a grid
of numbers representing the individual pixels of an image), trans-
forming the image in particular ways. Hard-coded convolutions,
like the one in Figure 3, may perform tasks like vertical edge
detection. While convolutions have existed as an image process-
ing technique for many decades, the innovation in deep learning is
that the convolutions are not hard coded, they are learned. The
layering of many convolutions allows a model to progressively
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build complex features. While early layers might learn convolu-
tions for simple tasks like edge detection, later layers may join dif-
ferent edge detectors together to make object detectors, face
detectors, and eventually solve complex tasks like facial expres-
sion detection.

HEp-2 image classification. Testing for antinuclear antibodies
(ANAs) using indirect immunofluorescence (IIF) assays has been a
cornerstone of the diagnostic evaluation of systemic autoimmu-
nity for many decades (23). These methods rely on the visual
inspection of HEp-2 cells, mixed with fluorescence-labeled anti-
bodies from patient sera. Because different antigens are distrib-
uted differently within the HEp-2 cells, the staining pattern
produced by the fluorescence-labeled antibodies can provide
important diagnostic information about the antigen target and
associated disease (24).

Automated analysis of HEp-2 images has arisen as a field of
research interest, motivated by concerns that the visual assess-
ment of IIF patterns is subjective and time consuming (25).
Recently, deep learning techniques have been applied to this
task, with increasing success. Broadly, these techniques attempt
to classify either individual HEp-2 cells or specimens (containing
many cells), by applying deep learning to coarsely labeled images.
Rahman et al reviewed the application of deep learning tech-
niques to these tasks, identifying 24 published methods for the
classification of individual HEp-2 cells and 7 methods for the clas-
sification of specimens (26).

A wide variety of deep learning techniques have been applied
to cell classification. Broadly, deep learning has been applied in
2 ways to this task by 1) automatically extracting features and
classifying cells or 2) automatically extracting features, which are
then passed to an alternative model for classification. State-of-
the-art models using either technique have achieved accuracies

exceeding 97% (26,27), which favorably compare to human
accuracy (73.3%) (28). However, this comparison has been criti-
cized, as the task of classifying a single HEp-2 cell, isolated from
the broader context of the specimen, is not representative of
how IIF tests for ANAs are performed in real clinical practice (29).
Moreover, these methods are developed, tested, and validated
using limited data sets (30–33). These data sets lack consistency,
both in terms of whether the images contain single cells or speci-
mens, and the number of different staining categories classified.

In response to these data issues, Wu et al (29) curated a
large data set of 51,694 HEp-2 cell slides that more closely reflect
clinical practice. These slides contain multiple cells per image,
with up to 4 different patterns present in a single image. They
tested multiple CNN architectures, ultimately finding that the
Inception-ResNet v2 architecture (34) had the best performance.
In their testing data set, they found interobserver agreement—as
measured using Cohen’s kappa coefficient (35)—was similar
between expert readers (0.85) and between expert readers and
the final model (0.84).

Synovial ultrasound. Synovial ultrasound is an important and
emerging technology in the diagnosis (36) and assessment (37) of
inflammatory arthritis. Recently, the EULAROutcomeMeasures in
Rheumatology (EULAR–OMERACT) ultrasound taskforce devel-
oped a scoring system, sometimes referred to as the EULAR–
OMERACT Synovitis Scoring (OESS) system, designed to be
used as an outcome measure in clinical trials (37). While there is
ongoing effort to validate and refine its use (38), the standardized
application of an ultrasound synovitis scoring system is amenable
to deep learning methods. Andersen et al (39) first applied 2 well-
studied CNN architectures to this problem (VGG-16 [40] and
Inception v3 [41]), after first performing pretraining on the popular
ImageNet data set (42). They found overall good performance

Figure 3. A vertical edge detector convolution kernel. Edges that transition from dark to light (as shown in the input image) will be light in the out-
put image. The pixel values (representing light intensity) are shown as pink numbers. No values in the output image are <0. This is because all val-
ues <0 are turned into 0 by a function known as a rectified linear unit (ref. 95)—this is known as an activation function and is a common technique in
deep learning. The rim of zeroes around the input image—known as “padding”—allows the output image to retain the same dimensions as the
input image. Color figure can be viewed in the online issue, which is available at http://onlinelibrary.wiley.com/doi/10.1002/art.42296/abstract.
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(AUC 0.93) for the task of discriminating healthy joints (OESS
score 0–1) from unhealthy joints (OESS score 2–3); however, pre-
cise scoring on the ordinal scale did not appear to match human
performance (43). A follow-up method from the same group, this

time using a so-called “cascade” CNN (Figure 4A), showed simi-
lar performance compared to expert rheumatologists (44). In this
algorithm, a CNN is given the task of classifying a power Doppler
ultrasound image as either being at or above a given OESS grade.

Figure 4. Three unique deep learning methods used in rheumatology. A, A cascade of convolutional neural networks (CNNs) used to classify
power Doppler images. At each step, the CNN classifies the image as either a certain EULAR Outcome Measures in Rheumatology synovitis scor-
ing class or any higher class (e.g., the first step classifies to either a class of 0 or >0). If the CNN determines that it belongs to a higher class, it is
passed along to the next CNN, which performs the same task for the next highest class. Eventually, the final CNN simply classifies images as either
class 2 or class 3. B, A simplified diagram of the U-Net architecture (49). An image begins as an “N × N × C” shape, where “N × N” is the image
size (e.g., 224 × 224 pixels) and “C” is the number of channels (typically 3 channels of red/green/blue for a color image). The model gradually
reduces the size, while increasing the number of channels, until the bottom of the architecture is reached, and then the reverse occurs. Connec-
tions across the architecture (dashed lines) act as a “memory.” The image recovered at the end is a segmented image, partitioning the original into
the relevant parts. In this example, the bones of 2 metacarpal joints are segmented from the plain radiograph. C, A single coronal radiograph of the
knee joint split into 2 images: the right half of the knee and the horizontally flipped left half. Both images are passed through the same CNN before
joining up to produce a Kellgren/Lawrence (K/L) composite score as the model output. Color figure can be viewed in the online issue, which is
available at http://onlinelibrary.wiley.com/doi/10.1002/art.42296/abstract.
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Each image that is classified as being of a higher grade is then
passed to the next CNN, which performs an identical task for
the next highest grade. These algorithms may be further
enhanced with larger, multicenter data sets and further refinement
of the CNN architecture. As in many medical applications, the
laborious task of manually labeling images could be augmented
by semisupervised learning and potentially by synthetic data from
methods such as generative adversarial networks (45).

Joint damage in inflammatory arthritis. Progressive joint ero-
sion early in the course of RA is one of the major predictors of
future physical function (46). The prevention of progressive joint
erosions is an important outcome measure in establishing the effi-
cacy of any disease-modifying agent in RA and other inflamma-
tory arthritides. It is therefore important that erosive disease is
measured consistently and with high sensitivity. The modified total
van der Heijde Sharp Score (mTSS) (47) is commonly used in clin-
ical trials to assess progressive joint erosions, consisting of both
an erosion score and joint space narrowing score (JSN). The pro-
cess of grading these components is a visual task performed by
trained radiologists and rheumatologists, making it a good appli-
cation for neural network models.

Hirano et al developed a neural network model to grade hand
joints according to mTSS scores using hand radiographs (48). To
perform joint-level scoring, their model first had to perform a task
called image segmentation to create bounding boxes around indi-
vidual joints so they could be assessed. Rather than utilizing a
deep learning model for this task, such as the popular U-Net
model (Figure 4B) first developed for biomedical image segmenta-
tion (49), the authors used hard-coded convolutions known as
Haar-like features, in a method first described by Viola et al (50).
After image segmentation, the authors built JSN and erosion
score models with 2 convolutional layers and 3 fully connected
layers. The JSN and erosion score models had similar perfor-
mance compared to clinician assessment (correlation coefficients
0.72–0.88 and 0.54–0.75, respectively); however, overall sensitiv-
ity to detect erosions was low (34.8–42.4%). The major limitation
of this algorithm was a relatively small data set (186 radiographs).
With larger data sets, deeper models with more sophisticated
architectures will perhaps make this a clinically applicable sce-
nario for deep learning.

Recently, deep learning methods using a combination of
CNNs and attention mechanisms (51) have been used for mTSS
scoring in RA. The authors also used a 2-stage approach, first
using a CNN architecture called RetinaNet (52) to detect joint
groups, followed by another CNN architecture called EfficientNet
(53) to score individual joints. Additionally, the authors applied an
attention layer (Figure 2) after the convolutional layers. The atten-
tion layer effectively constrains the area of interest to only those
pixels in the image that provide a substantial contribution to the
final prediction—the attention to all other pixels becomes negligi-
ble. By interrogating this attention layer, the authors generated
heatmaps to demonstrate which regions contribute to the scoring

of a joint, although interpreting these as an explanation of how the
model works should be treated with great caution (see section on
explainability below) (54,55).

Plain films in knee osteoarthritis (OA). Current EULAR recom-
mendations for the diagnosis of OA only support imaging as a
diagnostic tool in atypical presentations of suspected OA (56);
however, this recommendation is not supported by high-level evi-
dence and the role of routine imaging remains a topic of debate
(57). Outside of diagnosis, there is also debate about the prog-
nostic role of imaging features to predict symptom severity and
progression. The current EULAR recommendations do not sup-
port the use of imaging for prognostication; however, this is on
the basis of older studies using hand-crafted imaging features,
not the systematic discovery of prognostic features from deep
learning algorithms.

Tiulpin et al developed deep learning models for diagnosis
and prognosis of knee OA using plain radiographs (58–61). For
diagnosis, the authors utilized CNN architectures to train 2models
to grade images according to OA severity. In their first model, they
used a Siamese network to grade knee radiographs according to
the Kellgren/Lawrence (K/L) composite score (62), a global rating
system for knee OA (scale 0–4). The Siamese Network, as first
proposed by Baldi and Chauvin (63), trains 2 identical neural net-
works simultaneously, with the task of determining whether
2 images meet some similarity threshold—in the original paper,
the models compare 2 fingerprints to determine whether they
come from the same finger. In the present study, the input image
pairs were automatically segmented from the original plain radio-
graphs, consisting of the right half of the tibiofemoral joint and
the horizontally flipped left half. Because the tibiofemoral joint
has horizontal symmetry with respect to the features that predict
K/L score (Figure 4C), a single model can identify salient features
from both sides (provided one half is horizontally flipped). These
left- and right-sided predictions are then joined to provide an
overall K/L score. Overall, they found good agreement between
model and clinician scores, with a Cohen’s kappa coefficient
of 0.83.

The second diagnostic model from Tiulpin et al used a con-
ventional ResNet architecture with transfer learning from Ima-
geNet to grade both individual OA features using the
Osteoarthritis Research Society International (OARSI) atlas of OA
radiographic features (64) and K/L score. The model was able to
achieve state-of-the-art results on OARSI scoring, exceeding
human accuracy on this task.

For the task of prognostication, the authors trained a CNN on
baseline knee radiographs to predict whether repeat radiography
would show an increase in K/L score (58). They compared this
model to a model that used tabular data: age, sex, body mass
index, K/L grade, Western Ontario and McMaster Universities
Osteoarthritis Index, injury, and surgery history. Additionally, they
combined these 2 models to test whether there was any
additional benefit from a so-called “multimodal” approach.
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Their CNN model outperformed the tabular data model, while the
multimodal approach outperformed the individual models, dem-
onstrating that knee radiographs contain prognostic features not
present in structured patient data, even reported K/L grade.
Despite accurate radiographic scoring, applicability will ultimately
be limited given the poor correlation between radiographic scor-
ing and clinical outcomes such as pain scores (65). Predicting
progressive disease may only be helpful if the definition of pro-
gressive disease is a clinical, rather than radiographic outcome.

Temporal artery ultrasound

The diagnosis of GCA is a vexing problem for rheumatolo-
gists, in no small part due to the lack of an accurate noninvasive
diagnostic test. Temporal artery ultrasound is one emerging solu-
tion to this problem, with EULAR guidelines recommending ultra-
sound as the first-line imaging modality for the evaluation of
suspected GCA (66). Despite its relatively good performance as
a diagnostic test, temporal artery ultrasound suffers from only
moderate interrater agreement, with significant training require-
ments that pose a barrier to the widespread adoption of this test
(67). Deep learning therefore appears attractive as a tool to
reduce the variability in interpretation and perhaps even lower
the barrier to the adoption of this test.

Roncato et al (68) developed a CNN model, specifically to
identify 1 common feature in positive temporal artery ultrasounds:
the halo sign (69). The first step in their algorithm was to perform
semantic segmentation of transverse and longitudinal color
Doppler or power Doppler images of temporal arteries. This
process involved drawing boxes around arteries and adjacent
tissue, with individual pixels in these boxes labeled as either halo
sign–positive or halo sign–negative. The authors used a U-Net
model, designed specifically for biomedical image segmentation
(49). The final classification of each image as either positive or neg-
ative was based on the percentage of pixels within the bounding
box classified as halo sign–positive—a higher percentage of halo
sign pixels means a higher probability that the image truly contains
a halo sign. The accuracy of the model was compared using
2 groups of images: group 1 obtained by a single operator, using
a standardized protocol; and group 2 obtained by multiple different
operators using a variety of parameters. The performance on group
1 was significantly higher than group 2 (AUC 0.95 versus 0.82).
Although training on more nonstandard images may improve per-
formance, deep learning can also be used for computer-assisted
image acquisition to assist clinicians and sonographers in acquiring
standardized views at the time of ultrasound.

The future

Learning with limited data. One of the main features of deep
learning is the ability to capitalize on the wealth of large data sets,
with improvements in computer vision models seen even beyond

massive data sets composed of 300 million images (70). Despite
this, there are 3 established and emerging technical solutions to
the problem of learning with limited data (See Figure 5).

Transfer learning. The first method, now well-established in
deep learning research and applications, is a concept known as
transfer learning. Transfer learning is the process whereby a
model is trained on a large data set (pretraining), and then only
partially retrained on a small data set, even from a different domain
(e.g., a model trained on photographs is retrained on radio-
graphs). The motivation for this process is that, in training a large
data set, the model will have learned generalizable properties.
These generalizable properties are believed to be learned in the
early layers, and so it is only the final layers that are retrained on
the new, smaller data set of interest. This has the effect of
“specializing” a pretrained model for a downstream task. The
pretraining process is generally performed using a process called
self-supervised learning, which does not require any hand-labeled
data, but instead learns by predicting missing words, the next
word in a sentence or similar tasks. In certain circumstances,
these pretrained models can be used in a few- or zero-shot set-
ting, meaning they are fine-tuned on few or even no examples of
the downstream task. This is particularly the case for NLP, where
the task can be distinguished by a text prompt (e.g., a clinical
question)—if the pretrained model can interpret the prompt, then
it may not necessarily need to see any examples in order to per-
form the task.

Self-supervised learning. Recently, self-supervised learning
has emerged as a method to learn from large, unlabeled data sets
(71). Self-supervision is achieved by creating tasks that allow
models to learn generalizable features. For example, in NLP,
learning to predict the next word in a sentence requires learning
common linguistic features, such as sentence structure and word
meaning. In computer vision, learning to pair original and distorted
versions of the same image requires learning invariant features,
such as the rounded shape of the metacarpal head.
Self-supervised models can then be used in a transfer learning
process to train on smaller, labeled data sets. Given the relatively
small data sets in rheumatology, it is highly likely that new applica-
tions for deep learning will be powered by self-supervised learning
and transfer learning.

Methods of increasing data set size. While single institutions
might generate only relatively small data sets, pooling data across
many institutions can result in large data sets. Large data sets
may be necessary, particularly where outcomes are rare. In rheu-
matology, the Rheumatology Informatics System for Effective-
ness registry has begun pooling EHR data to further our
understanding of rheumatic diseases (72); however, further bar-
riers exist where text and image data are needed. Concerns
about data privacy can be a barrier to sharing data across institu-
tional, regional, and international borders—aside from specific
data sharing agreements, much effort has been made in produc-
ing technical solutions to this problem.
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Recently, federated learning has emerged as a powerful tool
to allow multiple sites to contribute training data without ever
sharing raw data (73). Several federated learning techniques exist;
however, recent work has focused on methods whereby individ-
ual sites train small models on local data, with the coefficients of
these models sent to a central site that uses these to train a mul-
ticenter model (74,75). Federated learning is not without signifi-
cant challenges, including the high cost of setting up a central
server and communication between sites, black box models (par-
ticularly if only model weights are shared and not raw data), and
no clear best way to aggregate data from heterogeneous sites
(76). In addition to these concerns, federated learning does not
fully solve the data privacy problem; all models can “memorize”
training data and therefore if privacy is a significant concern, mod-
els have to be trained using a special technique called differential
privacy to prevent data memorization (77).

When there is not even enough data to pool, or data pooling
is impractical, an alternative practice is to generate synthetic data.
Generating artificial samples has been an area of intense research
in deep learning, particularly after the development of Generative
Adversarial Networks (GANs) (45) by Goodfellow et al in 2014.
GANs train 2 networks simultaneously: a generator network to
generate new data and a discriminator network to discriminate
real data from synthetic data. Although these models can be diffi-
cult to train, as it becomes harder and harder for the discriminator
to distinguish between real and synthetic data, the quality of syn-
thetic data increases.

Data integrity, bias, and ethics. Although deep learning has a
long history in computer science research, it has only been the rel-
atively recent development of computers capable of training these
algorithms that has resulted in an explosion of applications in
medicine. In rheumatology, these methods have only now begun
to show promise—although not without potential impediments.

As deep learning methods gain more prominence, issues of data
integrity and standardization will become more important. As we
saw above, the standardized acquisition of temporal artery ultra-
sound images poses a potential barrier to the effective deploy-
ment of deep learning algorithms to diagnose GCA. Outside of
rheumatology, a similar problem in echocardiography has led to
several FDA-approved ultrasound machines that not only inter-
pret images, but guide the user on how to adjust the probe to
obtain enhanced views (78). As rheumatologists and machine
learning engineers begin applying deep learning techniques to
clinical problems, we will need an even greater focus on data
integrity and quality. Beyond simply ensuring high quality data,
careful collection and curation of data sets is required when con-
sidering how data may reflect the systematic biases against mar-
ginalized and underrepresented minorities in our communities,
making resultant algorithms unsafe and inaccurate for many.

New guidelines for reporting clinical trials of artificial intelli-
gence interventions provide a guide for the steps required to
demonstrate safety and efficacy of these algorithms (79). Like clin-
ical trials of conventional medical interventions, careful trial design
is paramount in testing clinical algorithms. Unlike conventional tri-
als, the risk of bias extends beyond the study design and into the
algorithm design itself. The data set or sets used to train deep
learning algorithms can introduce substantial bias that may not
only invalidate the results, but also introduce racial, sex-based,
or other forms of discrimination if applied systematically.
Promising methods to identify and minimize such bias include
report cards for evaluating performance in particular groups (80);
however, static model checks are not enough in production, and
the predictions of any model should be periodically examined to
ensure they are not introducing or perpetuating unacceptable
bias. For more detail on bias in clinical machine learning,
Chen et al (81) provide a detailed overview of how bias is

Figure 5. Three methods to overcome the complications of limited data sets. Transfer learning takes a model trained on a large data set and
repurposes it for a new task, replacing only the final layer. Self-supervised learning is a type of transfer learning; however, the data set used in
pre-training does not need to have labels—here the task is simply to recognize that 2 versions of the same image are indeed the same image,
and in doing so the model learns to recognize invariant features. Increasing data set size can be done in a number of ways; however, pooling data
across institutions has technical, logistical, and privacy issues that must be overcome. Circles represent individual nodes. Color figure can be
viewed in the online issue, which is available at http://onlinelibrary.wiley.com/doi/10.1002/art.42296/abstract.
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introduced at each step of the algorithm development process,
while Gianfrancesco et al (82) detail the sources of bias in EHR-
based models.

New technologies like wearable devices, assisted by auto-
matic deep learning algorithms, have the potential to diagnose a
myriad of conditions under circumstances never seen before at
such scale (e.g., asymptomatic atrial fibrillation in young people),
with the resulting risk of widespread overdiagnosis. In rheumatol-
ogy, for example, the unsolved problem of treatment for clinically
suspect arthralgia may be compounded should automated diag-
nostic tools become available, identifying subclinical reductions
in morning mobility leading to a tidal wave of very early arthritis
diagnoses. While coordinated data collection will be needed to
quantify the risks associated with these new diagnostic para-
digms (83), this also presents a new opportunity to further our
understanding of rheumatic diseases by studying longitudinal
cohorts from very early disease stages. Compounding this,
access to these devices is contingent on affordability (84)—one
way in which technologically enhanced medicine widens the
socioeconomic disparities in the provision of health care.

Explainability in rheumatology

Definition of explainability. Neural networks are often
described as black boxes, in that their internal processes are
inscrutable to humans. Many have argued that we need ways to
explain why a model reaches a decision so that doctors are able
to interpret it and apply it clinically (85). The most common
methods for explainability in conventional machine learning—in
particular Shapley Additive Explanations and Local Interpretable
Model-Agnostic Explanations (86)—are broadly classified as post
hoc perturbation methods. These algorithms perturb the input
data and measure how these perturbations in the input alter the
model output. Although post hoc explainability methods have
shortcomings, including susceptibility to hide model bias (86),
even inadequate model explanations provide interpretable out-
puts when the input variables are themselves simple and inter-
pretable (e.g., how does cardiovascular risk change if the patient
has hypertension). Compared to conventional machine learning
methods, explainability methods for deep learning are more diffi-
cult to interpret. In medical imaging, the most common method
of explainability is saliency maps, which visually show the parts
of the input image that most contributed to the final predic-
tion (87).

Strengths. Explainability methods may have a role in evaluat-
ing models. As previously discussed, a 2019 article predicted
future Clinical Disease Activity Index (CDAI) and used permutation
importance scores to determine feature importance. The authors
concluded that disease activity, laboratory test values, and medi-
cations were the best predictors of future CDAI (19). With simple
input data, this method provides useful information regarding

how the model operates, but when dealing with complex data
(e.g., text, images), interpretation is unclear.

Weaknesses. In a model diagnosing knee OA, saliency maps
were used to show that the model was identifying relevant radio-
logic features (60). The authors found that osteophytes were
highlighted and concluded that attention maps would “build bet-
ter trust in the clinical community.” However, they also acknowl-
edge that the reason these anatomically relevant areas were
highlighted was because they constrained the model to only
assess these regions. Additionally, a model developed to predict
RA radiographic scores used saliency maps to determine which
joints were predictive of the scores (51). While these images show
some focus over bone and joint space, they also highlight parts of
the image that are empty.

In both of these cases, the meaning of these explanations is
unclear. In the first, it was inevitable that these regions would be
highlighted, while in the second case, the model uses areas that
have no anatomical relevance in its prediction. Both papers use
this as evidence that their model is performing reliably. Even more
problematically, it has been shown that in models where the input
image is modified to result in an incorrect prediction, the saliency
map can still highlight clinically relevant regions of the image (88).
This is falsely reassuring that the model is behaving appropriately,
while still providing the wrong answer. A recent paper highlighted
these concerns about the danger of relying on such methods to
engender trust in a system and suggests we ought to depend
on rigorous evaluation instead (54). Whether or not saliency maps
produce sensible explanations, they should not be what we rely
on to trust the behavior of neural networks.

Evaluation. Although explainability techniques can tell us
something about model behavior, they cannot tell us how to inter-
pret the predictions. Three steps are need for safe implementa-
tion: testing on external data sets is needed to ensure models
generalize to different population, performance should be evalu-
ated in subgroups to eliminate bias (89), and, ultimately, models
should be tested in randomized control trials. It is vital to under-
stand how models affect patient outcomes in clinical settings
and it is this, not explainability techniques, that rheumatologists
should be demanding before a model reaches clinical
implementation.

Translation into practice. Deep learning is transforming many
industries and at an ever-increasing pace. For example, Google’s
language translation (90), Uber’s expected arrival time (ETA) pre-
diction (91), andMicrosoft’s code completion tool (92) are all deep
learning algorithms that many people rely on daily. Uber switched
their ETA algorithm to deep learning because of its ability to easily
scale up with larger data sets and larger models. However, the
same cost/benefit tradeoff is not always clear in medicine, where
the scale may not be so large and financial barriers, such as the
cost of regulatory approval, may be a substantial impediment.
The barriers to widespread adoption are necessarily set high, with
minimum standards of safety and efficacy set not only by the
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regulatory authorities, but also the clinicians who must “buy in” to
this new technology. Nevertheless, the deep learning revolution
has been largely driven by falling costs in computing power (93),
with no clear indication that this will significantly plateau. We can
therefore expect further improvements, shifting the cost/benefit
tradeoff and encouraging even greater investment in research.
Who takes advantage of this, whether it be academic or industry,
is an open question.

Conclusion

Deep learning is an important method in medical machine
learning applications and will likely become the dominant method
in the future. Several applications of deep learning in rheumatol-
ogy have been reported, with the promise of many more to come.
Importantly, although deep learning methods offer the opportu-
nity to improve the efficiency of some clinical tasks, they also pro-
vide a powerful technique for generating new knowledge and
insights, particularly in the previously impenetrable analysis of
unstructured data such as text and images. To date, much of
the published work applying deep learning in rheumatology has
occurred on small, homogeneous public data sets that do not
reflect the diversity of real data, including the interactions between
different data modalities (e.g., EHRs plus imaging). Further collab-
oration and interaction between machine learning researchers
and rheumatology researchers will likely result in more clinically
applicable algorithms, with translation into clinical practice being
the next great hurdle to overcome. Researchers should therefore
be familiar with the potential applications and limitations of these
methods in their own research, and clinicians should be familiar
with some of the potential benefits and pitfalls as these methods
make their way into clinical practice.
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