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Simple Summary: Automatic delineation and detection of the primary tumour and lymph nodes
using PET and CT in head and neck cancer can be helpful for diagnosis, prognosis, and monitoring
the disease. However, these algorithms can suffer from silent failures, limiting their trust. In this
research work, we estimate the confidence of the predicted segmentation and use it to reduce the
number of false predictions. We also investigate the prognostic potential of quantitative image
features extracted from the primary tumour and lymph nodes. We combine these features with
clinical characteristics to predict recurrence-free survival and stratify patients into three groups of
low, medium, and high-risk patients. We gain insight into the decision-making process of the model
using explainability methods and correlate it to clinical knowledge. We also evaluate if the models
are impacted by different biases. Our proposed framework can aid clinicians in the detection of head
and neck cancer and patient risk stratification.

Abstract: Automatic delineation and detection of the primary tumour (GTVp) and lymph nodes
(GTVn) using PET and CT in head and neck cancer and recurrence-free survival prediction can be
useful for diagnosis and patient risk stratification. We used data from nine different centres, with
524 and 359 cases used for training and testing, respectively. We utilised posterior sampling of the
weight space in the proposed segmentation model to estimate the uncertainty for false positive
reduction. We explored the prognostic potential of radiomics features extracted from the predicted
GTVp and GTVn in PET and CT for recurrence-free survival prediction and used SHAP analysis
for explainability. We evaluated the bias of models with respect to age, gender, chemotherapy, HPV
status, and lesion size. We achieved an aggregate Dice score of 0.774 and 0.760 on the test set for GTVp
and GTVn, respectively. We observed a per image false positive reduction of 19.5% and 7.14% using
the uncertainty threshold for GTVp and GTVn, respectively. Radiomics features extracted from GTVn
in PET and from both GTVp and GTVn in CT are the most prognostic, and our model achieves a
C-index of 0.672 on the test set. Our framework incorporates uncertainty estimation, fairness, and
explainability, demonstrating the potential for accurate detection and risk stratification.

Keywords: head and neck cancer; segmentation; uncertainty estimation; explainability; CT radiomics;
PET radiomics; fair artificial intelligence
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1. Introduction

Head and neck (H&N) cancer is the seventh most common cancer worldwide with
more than 0.66 million new cases and 0.3 million deaths every year [1]. The incidence
rate of H&N cancer is increasing worldwide, and the five-year survival rate for H&N
cancer varies from 85.1% in localized cancer cases to 40.1% in distant cancer cases [2,3].
Research has shown a significant association between surgical delay and increased mortality
rates in various populations. Patients with stage I or II cancer can achieve at least a
70% five-year survival rate if they receive appropriate treatment [4]. Early diagnosis and
staging are important for improving the prognosis of H&N cancer. Computed tomography
(CT) and 18F-fluorodeoxyglucose (FDG) positron-emission tomography (PET) are the
most commonly used imaging modalities for the initial diagnosis, staging, and follow-
up of H&N cancers, as they provide synergistic information related to metabolism and
morphology [5–7]. With an increasing population, especially in developing countries, an
increasing number of images acquired, and an increasing incidence rate for H&N cancer,
there is a need to develop automatic segmentation and detection tools for H&N cancer to
aid clinicians and reduce their workload. Automatic segmentation models cannot only help
clinicians in tumour detection and delineation but also reduce inter- and intra-observer
variability [8].

Convolutional neural networks (CNNs), a type of deep learning algorithm adapted
to accept images as inputs, are becoming increasingly popular for medical image segmen-
tation tasks. The U-Net architecture is one of the widely used CNNs for medical image
segmentation [9,10]. In recent years, U-Net has been used as the backbone for head and
neck segmentation [11,12]. No-new-U-Net (nnU-Net) has shown state-of-the-art perfor-
mance in many medical image segmentation tasks [13]. The nnU-Net has streamlined
many design choices related to pre-processing, network architecture, and hyperparam-
eter selection. These design choices in nnU-Net are configured automatically based on
the model hyperparameters. However, the success of nnU-Net and other segmentation
methods in achieving high scores on segmentation tasks does not ensure the reliability of
the segmentation results, as they can fail silently without any notice [14]. This problem is
particularly acute when a lot of heterogeneity is present in the medical data. Incorporating
an uncertainty estimation can help quantify the reliability and robustness of the segmen-
tation outcomes, as there is a positive correlation between uncertainty and segmentation
error [15]. Therefore, an uncertainty estimation is critical for the clinical deployment of the
segmentation models [16].

Radiomics is a quantitative image analysis technique that can be divided into hand-
crafted radiomics (HCR) and deep learning (DL). Handcrafted radiomics extracts imaging
features from radiographic medical images and correlates them with clinical and biological
information using machine learning methods [17–19]. Deep learning involves training arti-
ficial neural networks to learn representative features for outcome prediction from amounts
of data, and deep learning-based models have been developed to predict progression-free
survival for head and neck squamous cell carcinoma patients using clinical and PET/CT
imaging data [20–22]. Several studies have shown that radiomics in CT has the potential
to improve the prediction of the prognosis of H&N cancer [23–25]. Some studies have
also investigated the use of radiomics in both CT and PET for survival analysis for H&N
cancer [26,27]. While these studies investigate the prognostic potential of CT and PET
radiomics based on primary tumour delineation, there is a need to quantify the prognostic
potential of radiomics features extracted from different regions of interest (ROI) such as
the primary tumour and lymph nodes. Furthermore, it is also necessary to evaluate the
predictive potential of radiomics features from different imaging modalities of CT and
PET. The radiomics features can be extracted from the primary tumour and lymph nodes
independently from both PET and CT images.

Handcrafted radiomics and deep learning has the potential to revolutionize the field of
radiology. However, AI algorithms can lead to biased tools that replicate and amplify health
inequalities between different cohorts, such as gender, age, and income [28,29]. The fairness
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principle of FUTURE-AI emphasises that AI algorithms should be impartial to individual
and group differences, and they should demonstrate similar performance irrespective of
the disparities [30]. An investigation into the fairness of the algorithm for abnormalities
detection in chest X-rays revealed that the algorithm shows biased performance with
respect to sex, age, and ethnicity [31]. A study on cardiac segmentation performance
with respect to fairness revealed that a dataset which is balanced with respect to gender
but imbalanced with respect to ethnicity does not perform consistently with respect to
ethnicity [32]. Therefore, it is important to evaluate the performance of the algorithm
with respect to possible biases to identify if there are any significant differences in the
performance of the algorithm.

In this paper, we propose an end-to-end framework for survival analysis based on the
automatic detection and segmentation of tumours and lymph nodes as well as uncertainty
estimation. The key contributions of this work are as follows:

• We evaluated a 3D segmentation framework for primary tumour and lymph node
segmentation.

• We implemented a method for uncertainty estimation to calculate the model confidence
for the primary tumour and lymph nodes segmentation to minimise the risk of the
model failing silently. We applied the uncertainty score for the false positive reduction
in lymph nodes and tumours.

• We extracted handcrafted radiomics features both from the primary tumour and
lymph nodes, separately from CT and PET images, and investigated their prognostic
potential. We explored different combinations of these regions of interest in these two
modalities to guide future research.

• We evaluated the performances of the segmentation model and the radiomics model
for fairness with respect to relevant clinical characteristics such as age, gender, HPV
status, and chemotherapy status, as well as lesion size.

2. Materials and Methods
2.1. Dataset

Our work is based on the HECKTOR 2022 challenge dataset (https://hecktor.grand-
challenge.org/Timeline/, accessed on 20 August 2022), which includes 883 H&N cancer
patients from 9 different centres [33,34]. The training set consisted of 524 patients acquired
from 7 centres, and the test set consisted of 359 patients from 3 centres. All patients have
histologically proven oropharyngeal H&N cancer and have been treated with radiotherapy
and/or chemotherapy. For all patients, PET/CT scans were acquired, and some patient
information such as institution, age, sex, weight, tobacco, alcohol use, performance status,
human papillomavirus (HPV) status, and treatment (radiation only or adjuvant chemo
and/or surgery) were collected.

For the segmentation task, the annotation of primary gross tumour volume (GTVt) and
nodal gross tumour volume (GTVn) of all 524 patients are provided as ground-truth masks
in the training dataset. For the survival prediction task, recurrence-free survival (RFS),
including time-to-event in days and censoring, is provided as ground truth labels of 489 pa-
tients in the training set. Due to the availability of data, 359 patients and 339 patients in the
test set were used for the segmentation task and the survival prediction task, respectively.

2.2. Segmentation

The multicentric data contained CT and PET images with varying resolutions. The
median resolution of CT images in the training dataset was 0.98 × 0.98 ×3.27 mm3. We
resampled the PET and CT to a common resolution of 1 × 1 × 3 mm3. The CT intensity
values were clipped at 0.5 and 99.5 percentiles. We applied z-score normalization and
min-max normalization for CT and PET images respectively in accordance with nnUNet
guidelines [13]. We applied Otsu thresholding to the PET scan and found the first four
axial slices containing the brain region starting from the top. We found the centre Ic−axial of
the thresholded region in the axial plane. We cropped a region of 260 × 260 × 104 voxels

https://hecktor.grand-challenge.org/Timeline/
https://hecktor.grand-challenge.org/Timeline/


Cancers 2023, 15, 1932 4 of 21

(or 260 mm × 260 mm × 312 mm) centred around Ic−axial , starting from the top of the
detection brain region. This cropping step reduced the image size, which decreased the
computation cost and allowed the model to focus on the relevant region for head and neck
cancer detection. The size of 260 × 260 × 104 voxels was selected after ensuring that all the
ground truth tumours and lymph nodes were encapsulated within this region and no loss
of information had occurred.

Figure 1 summarizes all the components present in our proposed framework. The
proposed segmentation model has been shown in the first step. We modified the 3D nnU-
Net [35] to include residual skip connections [36], squeeze-and-excitation channel-wise
attention mechanisms (SE) at each layer [37], and grid attention gates (GA) at each skip
connection [38]. The SE layer aids in learning useful features by fusing spatial and channel-
wise features. Grid attention gates can aid in reducing the number of false positives
by allowing the model to focus on the relevant parts of the image. The patch size for
training was set at 192× 192 × 64 voxels. Random rotation, random scaling, random elastic
deformation, mirroring, the addition of gaussian noise, and gamma correction were applied
to each patch for augmentation. Multi-class Dice loss [39] and cross-entropy loss were used
to train the model with deep supervision to allow the loss to be calculated at each stage of
the decoder. We trained the model for 1200 epochs to allow for convergence and used a
stochastic gradient descent (SGD) optimizer for training with a learning rate of 0.01 and a
momentum of 0.9. We performed fivefold cross-validation on the training dataset and use
the ensemble of the five models from the fivefold for prediction on the test set.
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lymph nodes, tumour regions of interest for radiomics feature extraction for survival prediction, and
fairness evaluation.

2.3. Uncertainty Estimation

We incorporated uncertainty estimation in the segmentation model to avoid silent
failures and estimated the model’s confidence for the predicted segmentation mask. We
employed posterior sampling of the weight space to estimate uncertainty by saving pos-
terior models at appropriate moments during stochastic gradient descent (SGD) training
as proposed in [15]. When the number of epochs increases, the polynomial learning rate
results in model convergence as the learning rate diminishes to zero. When trained for long
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epochs using SGD, the saved weights oscillate around the local minimum after a sufficient
number of epochs have elapsed. Let the training data set consisting of N training images
be denoted by D = {(xi, yi)}N

i=1, where xi represents the training images and yi represents
the corresponding segmentation masks.

For a test image x and predicted segmentation mask y, the prediction can be given by:

p(y|x, D) =
1
n
·

n

∑
i=1

p(y|x, wi)

wi represents the saved checkpoint weights when the SGD training stabilises and
γ training epochs have elapsed. The predicted posterior p(y|x, D) is the average of the
prediction of N models with weights wi where i = 1 to N.

We utilised the multi-model posterior weight sampling around multiple local optima
as proposed in [15] to make use of the diversity of weight samples. We used a cyclic
learning rate for exploring multiple local optima. The total training budget Tmax is set at
1200 to allow for convergence within each training cycle. Tmax is divided into Ncycles = 3.
Each cycle consist consists of Tcycle = Tmax

Ncycles
= 400 epochs. We kept the gradient-step

constant after γ = 80% of the training budget in the cycle Tcycle has elapsed. At any point in
the cycle, the learning rate follows the following equation:

lr (t) = 0.1, tmod = 0

lr (t) = 0.01 ·
[

1− min(tmod, 320)
400

] 0.9
, tmod > 0

tmod = t % Tcycle = t % 400 represented the number of epochs elapsed within the cycle.
At tmod = 0, we set a high learning rate of 0.1 for one epoch at the start of the cycle to get out
of the local optimum. For tmod > 0, we employed polynomial learning rate decay within
each cycle to reach model convergence. After 320 epochs within each cycle, the gradient
step is constant, and we randomly save 10 checkpoints per cycle. 30 checkpoints are
saved from 3 different cycles, constituting the multi-model posterior samples in the weight
space. We quantified the uncertainty by calculating the variance of the predictions Iuncertain
made by 30 different models. High values of variance correlate with high uncertainty and
demonstrate that the model is unsure about the prediction. Furthermore, the correlation
of false positives with high uncertainty can be exploited for reducing false positives per
image. The uncertainty density tuncertain of the lesion li is calculated as follows:

tuncertain =
1
N
·∑ Iuncertain(x, y, z) · li(x, y, z)

Iuncertain(x, y, z) represent the uncertainty value of a pixel at the coordinate (x, y, z)
in the image and li (x, y, z) represented a binary lesion mask. We set tuncertain at various
thresholds to reduce false positives and investigated the impact on both the false positives
per image and the sensitivity of detecting tumour and lymph nodes.

2.4. Handcrafted Radiomics

The segmentation masks predicted by the model were used for extracting radiomics
features. A total of 107 radiomics features were extracted using PyRadiomics including
first-order features, shape features, and texture features (Appendix A, Table A1). These
radiomics features were extracted from five different ROIs from CT and PET images sepa-
rately. The bin width for intensity discretisation was set at 25 and 0.5 for CT images and
PET images, respectively, to ensure that the bin count is greater than 30 for reproducibility
and better performance [40]. All the radiomics features were extracted from 3D region of
interests (ROI). CT_all and PET_all represented radiomics features extracted from com-
bined primary tumour and lymph node regions from CT and PET images respectively.
CT_only_tumour and PET_only_tumour represented radiomics features extracted from the



Cancers 2023, 15, 1932 6 of 21

tumour region only from CT and PET images respectively. The segmentation model can
predict multiple tumours and lymph nodes. CT_largest_tumour and PET_largest_tumour
represented radiomics features extracted from the largest tumour region from CT and
PET images respectively. CT_only_lymph and PET_only_lymph represented radiomics
features extracted from the lymph nodes region only from CT and PET images, respectively.
CT_largest_lymph and PET_largest_lymph represented radiomics features extracted from
the largest lymph node region from CT and PET images, respectively. The radiomics
features also included 6 volume-related features i.e., total tumour volume, largest tumour
volume, total lymph nodes volume, largest lymph node volume, the total number of lymph
nodes and the total number of tumours. All 9 available clinical features, namely, gender,
age, weight, chemotherapy, tobacco, alcohol, surgery, HPV status, and performance status,
were included as clinical features.

Feature selection is performed in two steps. Univariate analysis is performed to select
the top 10 features with the highest C-index in a Cox proportional hazards model in the
first step. These features are then aggregated one by one in the order of C-index to find
the best combination. A model based on the XGBoost classifier with a regression tree
base learner is trained for survival prediction. The ten sets of radiomics features from
CT and PET images along with volume and clinical features are explored individually
for survival prediction. Feature selection is performed to evaluate the performance of
radiomics features extracted from a specific modality and region of interest. All the selected
features are aggregated along with clinical features, and feature selection is performed
again to form the radiomics_clinical model. Fivefold cross-validation is performed on the
training set for hyperparameter tuning and evaluation. The final radiomics_clinical model
is tested on the unseen external test dataset. Shapley additive explanations (SHAP) is a
post-hoc interpretability method that helps in measuring the importance of each individual
feature on the model’s prediction in terms of SHAP values. SHAP global summary plots
were used to study the impact of features in the radiomics_clinical model.

2.5. Fairness

The performance of artificial intelligence algorithms, in particular deep neural net-
works, is highly correlated with the quality and distribution of the training data [41].
For equitable AI, we need to ensure that the performance of AI algorithms remained the
same when they are applied to various groups of individuals with varying characteris-
tics [30]. The problem of equitable and fair AI is aggravated in the case of unbalanced
datasets. We evaluated the performance of the proposed segmentation model and the ra-
diomics_clinical model with respect to age, gender, chemotherapy, and HPV status during
fivefold cross-validation.

2.6. Evaluation Metrics
2.6.1. Dice Coefficient

Dice coefficient (DSC) measures the spatial overlap between the ground truth mask
and the predicted mask. The formula for DSC is as follows:

DSC =
2
∣∣ Î ∩ I

∣∣∣∣ Î∣∣+ | I|

where I refers to the ground truth mask, and Î refers to the predicted mask.

2.6.2. Aggregated Dice

Aggregated Dice (DSCagg) is derived from the aggregated Jaccard index. All the
intersections and unions between the ground tumour volumes (GTVs) and their respective
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predicted volumes are accumulated across all images [33]. The aggregated intersection is
divided by the aggregated union. The formula is as follows:

DSCagg =
2 ∑N

i ∑k Îi,k Ii,k

∑N
i ∑k( Îi,k + Ii,k)

where Ii,k is the ground truth for voxel k and image i, and Îi,k is the prediction. DSCagg of
the primary tumour is denoted by DSCagg GTVp, and DSCagg of lymph nodes is denoted
by DSCagg GTVn.

2.6.3. Sensitivity

The threshold of Dice coefficient DSC for detection is set at 0.1. If DSC for a lesion was
less than 0.1, it was not detected. This was in line with previous studies that considered
the non-overlapping nature of 3D lesions [42–44]. The ground truth lesions that have
DSC > 0.1 with predicted lesions are counted as true positives (TP), and the ground truth
lesions with DSC < 0.1 are counted as false negatives (FN). The sensitivity is given by:

Sensitivity =
TP

TP + FN

2.6.4. C-Index

The C-index generalises the area under the receiver operator characteristic (ROC)
curve by quantifying the model’s ability to provide a good split between the survival
curves. C-index is based on the computation of individual patient risk scores while ac-
counting for censored data. This statistical tool provides a global evaluation of the model’s
discrimination power.

2.7. Statistical Tests

The Mann–Whitney test and Chi-squared test were used to compare the variables
between the training and test set. The Mann–Whitney test was used to check for statistically
significant differences in Dice score and sensitivity between each subgroup and the total re-
ported statistics. A two-sided permutation test was used to check for statistical significance
for C-index for survival prediction and aggregated Dice score. For survival prediction,
three risk groups were determined using threshold values at the 33rd and 66th percentile
of the calculated risk score. The survival curves were generated using the Kaplan–Meier
method. Two log-rank tests were performed to determine the significance of the split of the
low- vs. the medium-risk groups, and the medium- vs. the high-risk groups.

3. Results
3.1. Patient Characteristics

The clinical characteristics of both the training and test datasets are shown in Table 1.
In the training dataset, the gender ratio was 95/429 (female/male), and the median age was
61.0 (IQR 54.0–67.0) years. In the test dataset, the gender ratio was 63/296 (female/male),
and the median age was 59.0 (IQR 53.2–66.0) years. There were no significant differences
in gender, weight, and chemotherapy between the training and test datasets (all p > 0.05).
There is a significant difference in age between the training and test datasets (p = 0.024). We
evaluated the influence of age on performance by dividing age into four equal quartiles: 0 to
50, 50 to 60, 60 to 70, and more than 70 years. Similarly, we also evaluated the performance
of the segmentation with respect to lesion size by dividing the size into four equal quartiles:
0 to 4.03 cm3 (small), 4.03 to 7.70 cm3 (medium), 7.70 to 17.3 cm3 (large), and over 17.3 cm3

(extra large).
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Table 1. Clinical characteristics of patients included in this study.

Characteristic Training Set (n = 524) Test Set (n = 359) p-Value

Gender (M/F) 429/95 296/63 0.825

Age (years) 61.0 (54.0–67.0) 59.0 (53.2–66.0) 0.024

Weight (kg) 80.0 (67.8–92.1) 81.0 (66.0–96.0) 0.570

Chemotherapy (Yes/No) 457/67 311/48 0.800

Tobacco (Yes/No/NA) 108/111/305 97/94/168 -

Alcohol (Yes/No/NA) 112/70/342 103/45/211 -

Surgery (Yes/No/NA) 51/255/218 34/325/0 -

HPV status (+/−/NA) 279/61/184 203/20/136 -

Performance status (0/1/2/3/4/NA) 91/137/11/3/1/281 116/96/21/5/3/118 -

3.2. Segmentation

The segmentation results are reported in Table 2. For fivefold cross-validation, the
model achieved a mean sensitivity of 0.964 for tumours and 0.878 for lymph nodes, a mean
Dice score of 0.725 for tumours and 0.658 for lymph nodes, and a mean DSCagg GTVp of
0.808 and a mean DSCagg GTVn of 0.780. On the unseen external dataset, the segmentation
model achieved DSCagg GTVp of 0.774 and DSCagg GTVn of 0.760.

Table 2. Fairness evaluation of Dice score coefficients (DSC), aggregated Dice (DSCagg), and sensitiv-
ity metrics for primary tumour and lymph nodes during fivefold cross-validation.

N (%) DSC
Tumour

DSC
Lymph

DSCagg
GTVp

DSCagg
GTVn

Sensitivity
Tumour

Sensitivity
Lymph

Total (All) 488 0.725 0.653 0.808 0.780 0.964 0.878

Age

0–50 44 (9.02%) 0.745 0.629 0.820 0.780 0.943 0.824

50–60 178 (36.48%) 0.715 0.671 0.796 0.786 0.963 0.888

60–70 172 (35.3%) 0.737 0.649 0.822 0.770 0.962 0.897

>70 94 (19.26%) 0.710 0.639 0.794 0.784 0.979 0.854

Gender
Male 402 (82.4%) 0.726 0.663 0.809 0.782 0.966 0.874

Female 86 (17.6%) 0.719 0.606 0.803 0.758 0.953 0.899

Chemotherapy
Yes 422 (86.5%) 0.741 0.669 0.820 0.781 0.947 0.918

No 66 (13.5%) 0.623 0.551 0.627 * 0.756 0.967 * 0.873

HPV

Yes 43 (8.81%) 0.715 0.701 0.797 0.789 0.988 0.852 *

No 274 (56.15%) 0.788 0.563 0.830 0.758 0.962 0.904 *

NA 171 (35.04%) 0.724 0.598 0.817 0.764 0.964 0.846

Tumour
Size

(cm3)

Small = 0–4.03 122 (25%) 0.558 * - 0.552 * - 0.939 0.857

Medium = 4.03–7.70 122 (25%) 0.755 - 0.756 * - 0.996 0.924

Large = 7.70–17.03 122 (25%) 0.750 - 0.774 - 0.963 0.874

Extra Large =17.3–184.5 122 (25%) 0.836 * - 0.854 * - 0.959 0.860

Lymph Node
Size

(cm3)

Small = 0–2.90 122 (25%) - 0.381 * - 0.322 * 0.930 0.889

Medium = 2.90–11.8 122 (25%) - 0.652 * - 0.680 * 0.988 0.859

Large = 11.8–24.0 122 (25%) - 0.768 - 0.782 0.971 0.865

Extra Large = 24.0–124.5 122 (25%) - 0.811 * - 0.812 * 0.967 0.901

* shows that there is a statistically significant difference between the subgroup and total metrics.
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Dice score DSC, aggregated Dice score DSCagg, and detection sensitivity for tumours
and lymph nodes showed no statistically significant difference in performance in different
age groups and different genders when compared with the overall performance of the
segmentation model (all p > 0.05). There was a statistically significant difference in perfor-
mance for DSCagg and sensitivity for patients who have not had chemotherapy (p < 0.05).
The detection sensitivity was significantly higher for HPV-negative patients (p < 0.05).
DSC and DSCagg were significantly lower for small tumours and lymph nodes and higher
when tumours and lymph nodes were larger when compared to the overall performance
(p < 0.05).

3.3. Uncertainty Estimation

Figure 2 shows the impact of varying tuncertain from 0 to 0.5 in steps of 0.025 on false
positive per image and sensitivity. As the threshold for detecting false positives using
tuncertain decreases, false positives decrease with a decrease in sensitivity. Figure 2A,B
show the impact of per image false positive reduction and sensitivity with tuncertain for
the primary tumour. Similarly, Figure 2D,E show the impact of per image false positive
reduction and sensitivity with tuncertain for the lymph nodes. Figure 2C,F show the plot of
per image false positives and the corresponding sensitivity for primary tumour and lymph
nodes, respectively. The green point in Figure 2 showed the ideal operating point that
corresponds to tuncertain = 0.1. At this operating point, there is a per image false positive
detection reduction of 7.14% and 19.5% at 0.62% and 0.21% decrease in detection sensitivity
for lymph nodes and tumours, respectively.
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Figure 3 shows the qualitative results for uncertainty estimation using posterior weight
sampling for tumour and lymph node segmentation. The first row in Figure 3 showed that
the model wrongly predicted two lymph nodes. The uncertainty of one of these lymph
nodes is high and, therefore, tuncertain is high. After applying tuncertain to the threshold, one
of the false positives is removed. The uncertainty of the tumour region was high around
the boundary. High values of tuncertain were also utilised for the false positive reduction in
the second and fourth row of examples in Figure 3. In the third row, the model wrongly
predicted a lymph node as a tumour. The uncertainty for both tumour and lymph nodes
was high for this region.
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3.4. Recurrence-Free Survival Prediction

Our results of RFS prediction are reported in Table 3 and Figure 4A. For fivefold cross-
validation, the average C-index and standard deviation are reported. We first evaluated the
radiomics prediction performance of using different ROIs (all regions including tumour
and lymph node, only tumour, only lymph node, largest tumour, and largest lymph node)
on PET or CT separately. The results showed that in CT, the radiomics model of all regions
performed best with a C-index of 0.659 ± 0.063. In PET, the radiomics model of the largest
lymph node performed best with a C-index of 0.644 ± 0.084. Radiomics models based on
CT performed better than PET models if only the tumour region is considered. However,
radiomics models based on PET performed better than models based on CT if the only
lymph node is considered. Radiomics models based on the primary tumour performed
similarly to models based on lymph nodes if only CT was considered. However, radiomics
models based on lymph nodes performed better than models based on the primary tumour
if only PET is considered. The radiomics_clinical model, which combined the radiomics
features from different regions in both imaging modality as well as the volume and clinical
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features, led to the highest C-index of 0.682 ± 0.083 in fivefold cross-validation. Figure 4B
showed a Kaplan–Meier survival plot in which all patients were stratified by the predicted
risk scores in fivefold cross-validation. The high-risk group showed significantly worse
survival than the low-risk group (p < 0.001) while the low-risk group and median-risk
group did not show a significant difference (p = 0.114). The model showed a C-index of
0.672 in the test set.

Table 3. The C-index results on fivefold cross-validation and test set.

No. Method Fivefold Cross-Validation

1 CT_all 0.659 ± 0.063

2 CT_only_tumour 0.627 ± 0.062

3 CT_largest_tumour 0.587 ± 0.040

4 CT_only_lymph_node 0.608 ± 0.059

5 CT_largest_lymph_node 0.605 ± 0.060

6 PET_all 0.622 ± 0.077

7 PET_only_tumour 0.603 ± 0.065

8 PET_largest_tumour 0.569 ± 0.054

9 PET_only_lymph_node 0.635 ± 0.074

10 PET_largest_lymph_node 0.644 ± 0.084

11 volume 0.598 ± 0.051

12 clinical 0.552 ± 0.032

13 radiomics_clinical 0.682 ± 0.083

No. Method Test Set

1 radiomics_clinical 0.672
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The C-indexes for different subgroups for fairness evaluations of the radiomics_clinical
model during fivefold cross-validation are shown in Table 4. There was no statistically
significant difference in model performance for different subgroups of age, gender and
lymph node size (all p > 0.05) compared with the overall population. However, the model
showed significantly lower performance in subgroups without chemotherapy (C-index:
0.555, p = 0.022), without HPV infection (C-index: 0.551, p = 0.006), and the large tumour
size subgroup (C-index: 0.561, p = 0.037).

Table 4. Fairness of radiomics survival prediction with different subgroups of age, gender, chemother-
apy, HPV status, and lesion size.

Characteristics Group Number (Percentage) C-Index p-Value

Total (All) - 488 (100%) 0.682 -

Age

0–50 44 (9.0%) 0.846 0.126

50–60 178 (36.5%) 0.609 0.217

60–70 172 (35.2%) 0.704 0.368

>70 94 (19.3%) 0.728 0.352

Gender
Male 402 (82.4%) 0.663 0.325

Female 86 (17.6%) 0.759 0.147

Chemotherapy
Yes 422 (86.5%) 0.685 0.408

No 66 (13.5%) 0.555 0.022 *

HPV

Yes 43 (8.81%) 0.650 0.451

No 274 (56.15%) 0.551 0.006 *

N/A 171 (35.0) 0.709 0.321

Tumour size (cm3)

Small = 0–4.03 122 (25%) 0.654 0.271

Medium = 4.03–7.70 122 (25%) 0.737 0.363

Large = 7.70–17.3 122 (25%) 0.561 0.037 *

Extra Large = 17.3–184.5 122 (25%) 0.633 0.378

Lymph node size
(cm3)

Small = 0–2.90 122 (25%) 0.606 0.134

Medium = 2.90–11.8 122 (25%) 0.664 0.327

Large = 11.8–24.0 122 (25%) 0.847 0.053

Extra Large = 24.0–124.5 122 (25%) 0.617 0.224
* shows that there is a statistically significant difference for the subgroup when compared with overall population.

A global SHAP summary plot (Figure 5) identified glszm_GrayLevelNonUniformity
from lymph nodes in PET, firstorder_Range from tumours in CT, glszm_largeAreaLowGray
LevelEmphasis from lymph nodes in PET, HPV status, and glrlm_GrayLevelNonUniformity
from both tumour and lymph nodes in CT as the top five most important features for RFS
prediction. Among these features, glszm_GrayLevelNonUniformity from lymph nodes in
PET, firstorder_Range from tumours in CT, and glrlm_GrayLevelNonUniformity from both tu-
mour and lymph nodes in CT had a similar trend that a higher feature value resulted in a higher
positive SHAP value and higher risk score. While glszm_largeAreaLowGrayLevelEmphasis
from lymph nodes in PET and HPV status had a negative trend in which a higher feature
value resulted in a lower negative SHAP value and lower risk score. The definitions of
all the radiomics features used in radiomics_clinical model are presented in Appendix A,
Table A2.
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4. Discussion

In this study, our proposed segmentation model could detect tumours and lymph
nodes during fivefold cross-validation with a detection rate of 96.4% and 87.8%, respectively.
The aggregated Dice scores for tumours and lymph nodes were found to be 0.774 and
0.760 in the unseen external test set, respectively. We utilised posterior weight space
sampling for uncertainty estimation of tumour and lymph node segmentation to avoid
silent failures and measure model confidence. By applying an uncertainty density threshold,
there was a reduction of 7.14% in false positives per image for lymph nodes and 19.5% for
tumours, with only a minimal decrease in sensitivity. The combination of radiomics
features from multiple regions in multi-modality imaging (PET and CT), volume features,
and clinical features allowed us to achieve a C-index of 0.672 on the unseen test dataset.
The evaluation of fairness showed that the factors such as chemotherapy, HPV status, lesion
size, and lymph node size can have an impact on the segmentation results and on the
survival prediction.

The reliability of segmentation models could be increased by incorporating an un-
certainty estimation to highlight the uncertain areas of segmentation. This can help in
identifying false positives as well as warn clinicians. The qualitative analysis of the pre-
dicted segmentation along with uncertainty maps for tumours and lymph nodes showed
that false positives of lymph nodes have high uncertainty associated with them. Fur-
thermore, the correct segmentations have high uncertainty around the boundary, which
correlates well with the fact that the inter-observer variability is also high around the
margins of the lesion. We also observed that when the model mistakes the lymph node
as a tumour, the uncertainty for both the lymph node and the tumour was high. This
showed that uncertainty estimation could also be used for identifying when the model is
unsure about the type of lesion. We could obtain a significant decrease in the false positive
rate with minimal loss of sensitivity showing that uncertainty is highly correlated with
false positives.
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The prediction of outcomes was crucial for patients with head and neck (H&N) cancer
as it helps clinicians in making informed therapeutic decisions and improving treatment
outcomes. Many studies have explored the use of handcrafted radiomics and deep learning
in predicting RFS in H&N cancer. Meng et al. [45] developed an outcome prediction
model that combines the Deep Multi-task Survival model (DeepMTS), radiomics features,
and clinical indicators, achieving a C-index of 0.681 in the test set. Rebaud et al. [46]
proposed a binary-weighted radiomics model that resulted in a C-index of 0.682. Wang
et al. [47] introduced a prediction framework that integrates the predicted risk scores
from separate clinical feature models, PET radiomics models, and CT radiomics models,
achieving a C-index of 0.673. In comparison, our focus was mainly on the radiomics
prediction performance in different ROIs and modalities. The results showed that the
radiomics models based on CT perform better when only the primary tumour region is
considered, while radiomics models based on PET perform better when only the lymph
node is considered. These results are valuable for further radiomics outcome prediction
research, suggesting that the tumour in CT and the lymph node in PET might provide more
prognostic information. The results are consistent with Carvalho’s research [48] which
showed higher prognostic value for the radiomics model in metastatic lymph nodes than
the primary tumour alone in PET. The reason could be that lymph nodes contain tumour
cells that are more aggressive and have therefore more impact on the prognosis in PET.
However, lymph node staging is difficult in CT because of low soft-tissue contrast [49],
which may be the explanation for the lower performance of lymph nodes in CT. The
combination of multi-region multi-modal radiomics features, volume features, as well as
clinical features led to the best prediction performance. The radiomics_clinical model is able
to stratify patients into three groups, which helps clinical decision-making and selecting
patients for (de-)escalation trials and/or adjuvant treatment.

Researchers have studied the fairness of algorithms to ensure that the AI algorithms
were equitable and fair. Newton et al.’s study [50] revealed a correlation between a model’s
accuracy and an individual’s skin tone classification due to the underrepresentation of
individuals with darker skin in benchmark datasets. Statistical analysis of the segmentation
result with respect to various subgroups revealed that the performance of the segmentation
model was not affected by age and gender. For patients who did not receive chemotherapy,
the DSCagg is lower, and sensitivity is higher than overall performance. This means that
segmentation quality is lower for such patients, but the algorithm is able to detect them with
a DSC threshold of 0.1. The segmentation performance for HPV-positive patients was lower
and for HPV-negative patients was higher than the overall performance. The segmentation
performance is impacted by variations in texture features and morphological characteristics.
AK Tahari et al. conducted a study to evaluate the differences in morphological features
in primary tumours and regional lymph nodes between HPV-positive and HPV-negative
patients. The findings revealed that HPV-negative patients had larger primary tumours,
higher heterogeneity, and a higher standardized uptake value [51]. Furthermore, Fujita et al.
compared texture features between HPV-positive and HPV-negative non-OPC patients
on CT scans and found that numerous texture analysis features demonstrated statistically
significant differences between the two groups [52]. These findings highlight the need to
consider HPV status in the texture analysis and segmentation of head and neck cancer.
Furthermore, small tumours and lymph nodes had lower performance, and large tumours
and lymph nodes had higher segmentation performance. This could be explained due
to the fact that the non-overlapping of a few pixels for small tumours had a significant
impact on the DSC and large tumours are generally easier to segment. While the size of the
lesion had an impact on the segmentation performance, there was no statistically significant
difference in sensitivity. It is crucial to inform the end users whether the segmentation
model was influenced by the presence or absence of clinical features. The statistical analysis
of the radiomics_clinical survival prediction model for several subcohorts revealed that
performance was not impacted except for those who have not received chemotherapy or are
HPV-negative, as well as for large tumour size. For these three subgroups, the performance
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of the model was significantly lower than the overall performance, indicating that the
survival prediction model should be used with caution in certain cases.

Additionally, a SHAP analysis was conducted to better understand the contributions of
each feature to the prediction. The global SHAP analysis highlighted glszm_GrayLevelNon
Uniformity from lymph nodes in PET, firstorder_Range from tumours in CT, and glszm_large
AreaLowGrayLevelEmphasis from lymph nodes in PET as the most important radiomics
features. This result emphasises the significance of texture features and aligns with previous
findings that tumour features in CT and lymph node features in PET are more informative.
The SHAP analysis also revealed that HPV infection was associated with a favourable
prognosis and consistent with other studies that show HPV-related H&N cancers are of-
ten found in younger, healthier patients with high economic status and high-risk sexual
behaviour, leading to improved prognosis [53].

There were a few limitations in this study. We observed that the performance of the
segmentation model and survival prediction model was impacted by chemotherapy and
HPV status. There is a need to investigate bias mitigation strategies in the future to see if
we can ensure that the algorithm is unbiased with respect to these identified biases. We
have limited data on radiation type and chemotherapy dosage to investigate its impact on
the model performance. The non-availability of the clinical data such as HPV status can
hamper the fairness analysis of the segmentation and survival prediction models. While
we have extensively validated our segmentation and survival prediction model on unseen
datasets, there is still a need for prospective validation to study the usability and clinical
utility of the models. There is a need to quantitatively study uncertainty estimation with
inter-observer variability to further instil confidence in the confidence scores. There is
also a need to evaluate the explainability of the proposed clinical_radiomics model in
clinical practice.

In this paper, we proposed an end-to-end framework for tumours and lymph de-
tection, segmentation, and prediction. We increase the reliability of the segmentations
by identifying silent failures and reducing false positives by using uncertainty estimates.
We demonstrated by qualitative and quantitative analysis that the uncertainty maps can
identify salient failures and can also aid in false positive reduction. We also explored the
prognostic potential of radiomics features extracted from tumours and lymph nodes in
PET and CT. We also performed a quantitative analysis of the segmentation and survival
prediction models to ensure fairness and equitable performance with respect to age, gender,
chemotherapy status, HPV status, and lesion size. We aimed to draw the attention of health-
care professionals to the performance outliers of the models. Furthermore, we employed
SHAP analysis for the interpretability of the model and correlated the insights with clinical
knowledge. In future, prospective in silico studies that evaluate the performance of the
clinicians with the aid of these segmentation and survival prediction models as well as
quantify the usefulness of uncertainty estimation and explainability need to be carried
out. Furthermore, fair models that mitigate the identified biases may also be developed in
the future.

5. Conclusions

An end-to-end segmentation and recurrence-free survival prediction framework has
been proposed that incorporates uncertainty estimation, fairness, and explainability. The
uncertainty estimates have been used to identify failure cases and for per image false
positive reduction. The recurrence-free survival prediction model can be used to stratify
patients into distinct risk groups for treatment (de-)escalation trials and clinical decision
support. The fairness of models has been evaluated to identify biases and inform the
end-users of performance outliers.
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Appendix A

Table A1. Description on the type of radiomics features that are extracted from each region of
interest from PET and CT images. More information on the type of features is present in PyRa-
diomics documentation (https://pyradiomics.readthedocs.io/en/latest/features.html (accessed on
20 March 2023)).

Radiomics Feature Description

Gray level co-occurrence matrix
(GLCM)

Gray level co-occurrence matrix features
describe the second order joint probability

function of the voxel intensities. These features
include measures such as contrast, correlation,

energy, and homogeneity. In this study,
24 GLCM features were extracted

using PyRadiomics.

Gray level difference matrix
(GLDM)

Gray level difference matrix features describe
the distribution of gray level differences within
the ROI. These features include measures such
as coarseness, contrast, and busyness. In this

study, 14 GLDM features were extracted using
PyRadiomics.

Gray level run length matrix (GLRLM)

Gray level run length matrix features describe
the length of runs of consecutive voxels with
the same gray level. These features include

measures such as short-run emphasis, long-run
emphasis, and run percentage. In this study,

16 GLRLM features were extracted
using PyRadiomics.

Gray level size zone matrix (GLSZM)

Gray level size zone matrix features describe
the size of zones of consecutive voxels with the

same gray level. These features include
measures such as zone size, zone percentage,
and zone entropy. In this study, 16 GLSZM
features were extracted using PyRadiomics.

Neighbouring gray tone difference matrix
(NGTDM)

Neighbouring gray tone difference matrix
features describe the distribution of voxel-level

texture primitive patterns. These features
include measures such as coarseness and

contrast. In this study, 5 NGTDM features were
extracted using PyRadiomics.

First order statistics

First order statistics describe the distribution of
voxel intensities within the ROI. These features

include measures such as mean, median,
skewness, and kurtosis. In this study, 18 first

order features were extracted
using PyRadiomics.

Shape-based (3D)

Shape features describe the shape and size of
the ROI. These features include measures such

as volume, surface area, sphericity, and
compactness. In this study, 14 shape features

were extracted using PyRadiomics.

https://pyradiomics.readthedocs.io/en/latest/features.html
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Table A2. Description of the radiomics features used in the proposed radiomics_clinical model for
recurrence-free survival prediction.

Class Radiomics Feature Definition

First order:
First order statistics describe

the distribution of voxel
intensities within the image
region defined by the mask

through commonly used and
basic metrics.

Original_firstorder_Range The range of first order
value in the ROI

Original_firstorder_10Percentile The 10th percentile of first
order value.

Original_firstorder_
TotalEnergy

Total Energy is the value
of the Energy feature

scaled by the volume of
the voxel in cubic mm

Original_firstorder_
InterquartileRange

The different value 25th
and 75th percentile of the

first order value.

GLSZM:
A gray level size Zone

(GLSZM) quantifies gray level
zones in an image

original_glszm_
grayLevelNonUniformity

GrayLevelNonUniformity
measures the variability of
gray-level intensity values

in the GLSZM array.

Original_glszm_
LargeAreaLowGrayLevelEmphasis

It measures the proportion
in the image of the joint

distribution of larger size
zones with lower gray

level values

Original_glszm_
SizeZoneNonUniformity

It measures the variability
of size zone volumes

throughout the GLSZM
array, with a lower value

indicating more
homogeneity among zone

size volumes in the
GLSZM array.

Original_glszm_
ZoneEntropy

It measures the
uncertainty/randomness
in the distribution of zone
sizes and GLSZM levels

GLRLM:
A gray level run length matrix
(GLRLM) quantifies gray level
runs, which are defined as the
length in number of pixels, of
consecutive pixels that have

the same gray level value.

Original_glrlm_
GrayLevelNonUniformity

It measures the similarity
of gray level intensity

values in the
GLRLM array.

Original_glrlm_
RunLengthNonUniformity

It measures the similarity
of run lengths throughout
the GLRLM array, with a

lower value indicating
more homogeneity among

run lengths in the
GLRLM array

GLDM:
A gray level dependence

matrix (GLDM) quantifies
gray level dependencies in an

image

Original_gldm_
SmallDependenceEmphasis

A measure of the
distribution of large

dependencies, with a
greater value indicative of

larger dependence and
more homogeneous

textures.
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